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QCD scaling violations for spin-dependent structure functions
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A detailed study of scaling violations for spin-dependent structure functions is worked out by
direct resolution of the Altarelli-Parisi equations. Analytic paranmtrizations of the x and Q depen-
dence of polarized valence-quark, antiquark, and gluon distributions are also given. They are used
to make predictions for spin-spin asymmetries in some specific reactions.

I. INTRODUCTION

Scaling violations in unpolarized deep-inelastic scatter-
ing have been extensively studied in the framework of per-
turbative QCD. In order to solve the Altarelli-Parisi equa-
tions, ' two methods are used. The first one involves the
moments of the quark and gluon distributions. It is
tnainly sensitive to the large-x region and therefore not
really suitable for sea quarks and gluons which are expect-
ed to dominate in the small-x region. The second ap-
proach is based on a direct resolution of the Altarelli-
Parisi equations. Leaving aside the choice of the resolu-
tion method, the large amount of experimental data al-
lows a direct comparison between the different kernels one
can use in the evolution equations, i.e., the leading-
logarithmic kernel, ' the second-order one including next-
to-leading corrections, and the kernel taking into account
soft-gluon emission.

Measurements of polarized electron (muon) scattering
off a polarized nucleon target yield information about the
polarization inside a proton, but the small number of data
points gives only the quark asymmetry A ~ (see below) for
0.1&x &0.64 and in a limited Q range. The quality of
this data from a SLAC-Yale experiment7 does not allow
one to distinguish between the different kernels as in the
case of unpolarized structure functions. In order to help
the determination of the polarized gluon structure func-
tion, spin-spin asymmetries in large-pz production have
been considered. The double-spin asymmetry in Drell-
Yan processes with polarized protons has also been pro-
posed as a good way to probe the sea-quark spin-
dependent distributions. However, these double-spin
asymmetries involving both a polarized beam and a polar-
ized target will retnain very difficult measurements until
the advent of a high-density polarized hydrogen target.
Single asymmetries for weak-boson production in col-
lisions between polarized protons and unpolarized antipro-
tons, which are expected to be large, ' are perhaps easier
to detect and they might give in a not-too-distant future
precise information on the distribution of the proton spin
among sea and valence quarks.

Our purpose here is to provide a very simple and accu-
rate analytic parametrization of the spin-dependent struc-
ture functions to be used in further applications such as
those mentioned above. The paper is organized as follows.
In Sec. II, we give a brief discussion of partonic spin-

dependent structure functions and the set we will use as
input. In Sec. III we will describe the relevant formalism
to solve the Altarelli-Parisi equations governed by the
leading-logarithmic kernel. An analytic parametrization
valid for all x and for 5 & Q & 5000 GeV is presented in
Sec. IV, where we also stress different ways to detect these
scaling violations.

II. PARTONIC SPIN-DEPENDENT
STRUCTURE FUNCTIONS

where G~ /Gt is the ratio of the axial vector to the vector
coupling in neutron P decay, whose experimental value is
1.254+0.006 and not —,', as predicted by SU(6). After the
modification

b,u„(x)=0.44u, (x),

L3,d„(x)= —0.35d„(x),

Eq. (2) is truly satisfied, provided one still assumes no po-
larization for the sea quarks (i.e., b, u =Ed =0) or alterna-
tively, if the sea quarks are polarized, one must assume
isospin invariance of the sea.

The polarization of the sea quarks can be obtained from
a model of gluon bremsstrahlung and quark-pair crea-
tion. ' If one takes for the unpolarized sea quarks

u(x)=d(x)= ' [1+(1—x)~)(l —x)' (4)

The first model which was used to describe spin-
dependent structure functions is the so-called conservative
SU(6) model, " based on the three-quarks SU(6) wave
function. Assuming all the spin of the proton is carried
by its valence quarks, one has

b,u„(x)= —', u„(x),

bd„(x)= ——,
' d, (x)

with the definition b,q(x)=q+(x) —q (x), where + ( —)
denotes the quark helicity parallel (antiparallel) to the
parent proton helicity. Clearly this simple choice does not
satisfy the Bjorken sum rule'

I dx[bu(x)+Du(x) —hd(x) —bd(x)] =
0 Gy
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one predicts

bu (x)= b d(x) = '
(2—x)(1—x)'

3
(5)

GgI dx[b.u(x)+b, u(x) —b,d(x) b—,d(x)) = 1—
0 Gy m.

Similarly it is possible to generate a polarization for
gluons radiated by a polarized valence quark, and from
the gluon distribution

G(x)= —(1—x) [1+(1—x) ],
one obtains

EG (x)= —', (2—x)(1—x) (7)

The distributions Eqs. (5) and (7) are properly normalized
and they fulfill the important constraint

1 1

(J, ) = —,
' = —,g J dx[bq;(x)+bq;(x)]+ J dx EG(x),

(12)

In order to satisfy this new sum rule for Q =5 GeV, we
must have Ho ——0. 114, which is very different from the
value used in Ref. 14. Assuming Eq. (11) for the valence-
quark spin distributions, we find that they carry 73% of
the proton spin and the remaining 27%%uo must be shared
between sea quarks and gluons. Following the brems-
strahlung model, ' we construct the sea-quark spin distri-
butions from the unpolarized sea. The existing deep-
inelastic data at Q =4 GeV favors a distribution like
(1—x) carrying 14% of the nucleon momentum. ' For
the total sea contribution

S(x)=2u(x)+2d(x)+s(x)+s(x),

(8) we will use

namely, the projection of the third component of the total
angular momentum summed over all the constituents
must be equal to —,', if one neglects the orbital angular
momentum. In this model, the valence quarks carry 53%
of the proton spin, the sea quarks 13%, and the gluons
34% of it. Unfortunately, the SLAC-Yale data on polar-
ized electroproduction show that the quark asymmetry de-
fined as

xS(x)=0.588[1+(1—x ) ](1—x) (13)

which leads to the corresponding spin-dependent sea corn-
ponent

x bS(x) = ' x(2 —x)(1—x) ' (14)

which is found to carry 5% of the proton spin. Similarly,
by choosing for the unpolarized gluon distribution

ge; bq;(x)
A i(x)=

e; q;(x)

xG(x) =2.82(1—x)

one obtains9
(15)

is larger than predicted by the conservative SU(6) model
for x &0.4. This means that in a realistic model, the
valence quarks must carry a larger fraction of the proton
spin.

Consequently, it seems preferable to use the model of
Carlitz and Kaur' based on the idea that valence quarks
carry most of the proton helicity only at large x values.
Therefore they introduce a spin-dilution factor
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cos28= 1+Ho (1—.x)

and the quark spin distributions are taken to be

hu (x)=cos28[u„(x)——,
' d„(x)],

hd(x) =cos28[ ——,
' d„(x)] .

(10)
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The spin-dilution factor becomes important for small x
and the free parameter JI0 was fixed by using the Bjorken
sum rule [Eq. (2)]. The value Ho ——0.052 is obtained with
the Field-Feynman valence distributions. '

Let us now describe our model, which iS inspired by the
Carlitz-Kaur model, but with specific differences. Clearly
Ref. 15 is not the best choice for studying scaling viola-
tions and we will use instead the parametrization of
Gluck, Hoffman, and Reya. ' We will also take into ac-
count the fact that there is a QCD correction to the Bjork-
en sum rule, ' which now reads

0.6
CI

04

0.2—

0 0.2 0.4 0.6 0.8 1.0
X

FIG. 1. (a) The quark asymmetry 3
&

on a proton target as a
function of x. The data are extracted from Ref. 7. (b) Predic-
tions for the quark asymmetry A I on a neutron target.
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x b,G (x)= ' x(5—2x)xG (x),0.15
3

where the normalization is fixed to satisfy the proton-spin
sum rule [see Eq. (3)]. This completes the description of
our input parametrization and we are now ready to study
the evolution of the nonsinglet, singlet, and glue distribu-
tion functions.

Before doing so, we ought to make a simple comparison
of our starting point with the quark asymmetry A i deter-
mined by the SI.AC-Yale experiment. As shown in Fig.
1(a), the agreement is good although it is clear that more
accurate data is required, mainly in the low-x region
which is crucial for the precise determination of the sea-
quark polarization. This question will be answered soon
by the European Muon Collaboration in the NA2 experi-
ment at CERN which will investigate accurately the
kinematic region 0.04 &x &0.2 for Q up to 20 GeV. We
also give in Fig. 1(b) our prediction for A i on a neutron
target that one merely obtains by exchanging u and d. Of
course, a measurement of this quantity is extremely im-
portant.

where we have defined

b Q„(x,t) =xb q„(x,t),

bQ(x, t) =x[ hu„(x, t)+b,d„(x,t)+b,S(x,t)],

AG(x, t) =xhG(x, t),

ln[ln(Q 2/Az) /ln{ Q02/A2) ] .2

(11——,N/)

In the leading-logarithmic approximation, and assuming
three flavors, the kernels read

4 1+z
APqq

3 1 z

III. EVOLUTION OF THE DISTRIBUTION
FUNCTIONS

bPqg = —,
' (2z —1),

We have to solve the following set of integrodifferential
equations:

KPgq ———,(2—z),

d AQ„(x, t) =f dz b,Pqq(z)BQ„,t— EPGG ——3. I+z 4

+(3—3z+z +z )
2 3

1 —z . +

=f dz b Pq(q)zb, Q —,t ——,', 5(1—z)

(17)

=f dz b,Pgq(z)bQ ,t—
+ KPgg(z)EG ,t-z

+ bP g(z)2Nyb6 ,t-q z
The analysis of scaling violations has been done by means
of moment inversion, linear approximation20 (only valid
f«very small t), or expansion in Chebyshev polynomi-
als." To solve these equations we will follow the method
of Ref. 21 based on a direct-resolution procedure, which is
much simpler than the other methods. Let us consider
first the nonsinglet case. According to the definition of
the + distribution we are able to write

dzhP«z 5 „—,t = zhP«z 5 „—,t —6 „x,t —6 „x,t zhP«zz

Therefore one has to solve the first equation of Eqs. (17), that is,

(19)

d EQ„(x,t)
Gt

4 ' 1+zf dz
EQ„(x/z, t ) —1 + 2 ln(1 —x)+x +

„ x, t 2
b.Q„(x,t) . (20)

Expanding the expression into curly brackets as a Taylor series and keeping only the first te~s, one gets

IP

b Q„(x,t) =b Q, (x,O)exp —,t f dz
4 ' 1+z2

x 1 —z

b,Q„(x/z, O)

EQ„(x,O)

I
X—1 + 21n(1 —x)+x+
2

(21)
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This approximation is justified because, as in Ref. 21, it
can be shown that the second-order term in the Taylor ex-
pansion gives a negligible contribution.

Let us now turn to the singlet and glue distribution
functions. We have to solve the last two coupled equa-
tions of (17) in the form

10

Q = 5GeV
Q2 = 50GeV
Q —500 GeV

Q = 5000'GQV

d Eg(x, t)
dt

d EG(x, t)
dt

r

R»+5»
R21

Rt2 QQ(x t)

R»+S» ~G(x, t)

)0 3

(22)

where

1+z'
R11= 3 Z

X

b.g —,tx
z

' —1
bg (x, t)

10

X
S&&

———', 2ln(1 —x)+x+
2

AG —,t
z

Ag —,t
1

R21 ——
3 dz 2 —z

1

R12 ——3 z 2z —1
bG(x, t)

r (23)

.3 .5 .7

FIG. 2. The antiquark spin distribution hg as a function of x
for four scales Q'=5, 50, 500, and 5000 GeV2.
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Analogously to the nonsinglet case, one makes a Taylor
expansion and, keeping the first term only, one gets the
solutions of Eqs. (22) in an exponential form which is very
easy to handle.

Let us now describe our numerical results with A=0.2
GeV. %"e show in Fig. 2 the antiquark spin distribution
bg=x bS/6 for four scales Q =5, 50, 500, and 5000
CyeVz. Its behavior is very similar to that of the unpolar-
ized distributions, exhibiting an increase with Q in the
low-x region which is compensated by lower values in the
large-x region. As we can see from Fig. 3, we get similar
conclusions for b,G, but with a more pronounced increase
at very small x.

To make more practical a quantitative analysis of some
hadron asymmetries, we will give now an analytic
parametrization of the x and Q dependence of the vari-
ous spin-dependent distribution functions.

1G':

go 3

10 4

.3 .5 .7 .9

FIG. 3. The same as Fig. 2 for the gluon spin distribution
hG.
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IV. PARAMETRIZATION OF
THE SPIN-DISTRIBUTION FUNCTIONS

AND APPLICATIONS

.2
-ALL

The polarized valence-quark structure functions being
expressed in terms of unpolarized nonsinglet distribution
functions [see Eq. (11)],they can be parametrized accord-
ing to an updated analysis, ' provided one allows a Qz
dependence for Ho as we will see below.

In order to parametrize the sea and glue polarized struc-
ture functions, the following scheme was adopted. We
first evaluate the distribution functions for a set of points
in the x range (0,1) at three evolution scales Q equal to
50, 500, and 5000 GeV . We parametrize the antiquarks
and the glue according to

.15—

and

b,Q(x, t) = Ee ""(x—0.07)+0.03266(1 SN}—
X(2—x)x'+ (1—x)6 5+I'

EG(x, t) = Ee "+0425( .—', ——', x)x '+

(24)

.05

01-
I I I I l I I I l I'

Q [Gev)"
&&(1 SN)(1 ——x) +

We then make a fit of E (E }, F (F ), SÃ (SN ), a (a ),
and p (p ) using the minimization procedure MINtJIT and
parametrize the fitted coefficients in terms of

S=ln[ln(Q /A )/ln(Qo/A )] .

We find

FIG. 4. Predictions for the double helicity asymmetry AI.L,

in p ~p+p X as a function of the lepton-pair mass Q
at s =27 GeV. Dotted-dashed curve: scaling prediction.
Full curve: leading prediction.

0.75

E=0.151 97S—1.115 15S' + 1.165 76S

E=1.34848S —12.96224S' +12.44553S

F= 143.117S—587.045S 1.8+465.662S

F=236.201S—1170.258S &.8+974. 181S

SX=0.5948S+0.669 41S' —0.667 93S

SX=2.832 53S—9.461 22S' +7.337 66S

u = —0.364 07S—0.253 278S

a = —3.01178S+7.907 63S ' —6.203 42S

P=0.525 54S —0.483 34S +0.141 64S

P= —2.593 68S+9.805 38S ' —7.443 97S

(25)

if
ALi

0.5—

0.25—

+0.481 44S ' —0.461 11S (26)

Note that when Q increases Ho decreases and approaches
the value of Ref. 14.

Finally, we have checked that this parametrization is
valid within a few per cent in the range 0.03 &x &0.9 and
5&Q (5000 GeV .

In order to test our evaluation of the sea polarization we
will now give some predictions for two hadron asym-

A similar method was used to determine the valence-
quark spin-dependent structure functions and we found
the following expression for Ho:

H = 0.114—0.105 81S
XT-.5

x =~0 I T I I

-0.8 -0.4 0
Xp

0.4 0.8

FIG. 5. Prediction for the transmitted asymmetry AIL in

pp~yX as a function of xF and xr at Vs =27.4 GeV. Solid
curves: first QCD order with evolved structure functions.
Dashed curve: first QCD order with scaling structure functions
at Qo ——5 GeV~. For xr =0. I dashed and solid curves are indis-
tinguishable.
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metrics. Let us first study the double-helicity asymmetry
for lepton-pair production from polarized-proton—
polarized-proton collisions. In the leading approximation
we have

eq [hq(x~, g )bq(x2, Q )+(q= =q )]
f=Q~d, s

ALL ———
e~ [q(x&,g )q(x2, Q )+(q::q ) j

q =a,d, s

where Q is the lepton pair mass and x~ ——x2 ——Q/vs,
when one calculates the cross section do ldg . If the sea
is unpolarized, AIL is zero and consequently the detection
of a nonzero asymmetry is a very clear indication for sea
polarization. The large subleading corrections which are
present in the Drell- Yan process happen to factorize and
therefore do not affect this leading approximation. As ex-
hibited in Fig. 4, scaling violations are important and in-

crease with the lepton pair mass, giving a correction of
about 30%%uo for Q = 14 GeV. The observation of this effect
will be tough, but it is certainly worth trying in the future
appropriate experimental programs both at Fermilab and
at CERN."

Next let us consider the transmitted asymmetry in
prompt-photon production at large pz in pp collisions
with one initial proton polarized. This reaction has been
advocated as a good test for spin-dependent structure
functions. We show in Fig. 5 that the negative X~ re-
gion at large pj (-vs/4), which is dominated by the
gluon structure function, is very sensitive to the scaling
violations of AG leading to deviations of a factor 5 at
Xz ———0.8 and a factor 2 at Xz ———0.4.

Clearly there are other examples where one can explore
the expected effects of these scaling violations described
by our analytic parametrization. In particular, the asym-
metries in heavy-boson production, which will be studied
in a forthcoming paper.
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