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We confront our explanation of the “European Muon Collaboration effect,” in which the quark
confinement scale increases in going from a free nucleon to nucleus, with a new electroproduction
experiment off several nuclear targets. The change of confinement size is attributed to the overlap
of nucleons in nuclei which increases with nuclear density. A change of confinement scale modifies
the quark and gluon distribution functions and we compute, in leading order in QCD, its effects for
a series of different nuclei. New, precise electron scattering measurements at SLAC agree well with
these predictions for 0.2 < x <0.7, supporting the postulate that the confinement size increases with

nuclear density.

I. INTRODUCTION

Recently it has become clear from experiments' probing
nuclei at high momentum transfers that the conventional
impulse description of a nucleus as a collection of protons
and- neutrons is incomplete. This began with the
discovery? of the “European Muon Collaboration (EMC)
effect” in the inelastic scattering of muons off iron. Even
after standard corrections for Fermi-motion effects are
made, the quark distributions in the range 5 < Q? <200
GeV? disagree with those extracted from deuterium
(essentially free nucleon). This discrepancy was indepen-
dently confirmed® when similar phenomena were found in
a reanalysis of old data where electrons were scattered off
steel and aluminum targets.

The discrepancy largely disappears if the deuterium
data at Q? are compared with iron data not at the same
Q2% but at Q2/2 (Ref. 4), suggesting its origin may be due
to a change in the intrinsic distance scale of the target.
This agreed with the suggestion®® that the effective con-
finement size of quarks and gluons in a nucleus is greater
than in a free nucleon. Partial deconfinement could have
been anticipated on several grounds: it is widely believed
that even at zero temperature, nuclear matter undergoes a
deconfining phase transition at some critical density po.
At po, measures of the confinement length scale become
large or even infinite, so it is not surprising that at densi-
ties below p, they exceed their values for the isolated nu-
cleon. In the framework of perturbative QCD it was
found that such a change in confinement scale predicts
that nucleon and nuclear structure functions (at inter-
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mediate values of x) can be related by rescaling. That is,
there exists a “rescaling parameter” £ ,(Q?) determined by
the change in confinement scale such that for nucleus 4

S FA(x,0)=F}(x,£,(00) . M
£4(Q?) is in principle different for different moments.
We show in Sec. II A, however, that in a valence-quark
model £,(Q?) is the same for all moments. The data
agree well with this relation (1) when the confinement size
in iron is 15% greater than in an isolated nucleon. This
raises the question as to the source of the scale change and
its expected A4 dependence.

In Ref. 6 we proposed a model in which the change in
confinement size is proportional to the probability that
two nucleons overlap with one another. The QCD
analysis was then applied with the predicted effective con-
finement size, A4, to give £,(Q?) and, from Eq. (1), the
quark distribution functions. These results are most
directly compared with data in the form of ratios of struc-
ture functions on nucleus 4 and deuterium. We calculat-
ed this ratio for fourteen nuclei and displayed® the result
for particular values of x and Q2.

Subsequently the first data have been reported’ for
eight of these nuclei over a wide range of x and Q% The
predictions presented in Ref. 6 are reproduced here and
confronted with these new data. The agreement is quite
remarkable (cf. Figs. 2 and 3) throughout the range
0.2 <x <0.7. The purpose of this paper is to expand
upon Ref. 6. We provide a detailed description of the
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model, confront its predictions with data, and suggest fur-
ther tests.

II. THE MODEL

Our analysis consists of two parts. First (Sec. IT A), we
.describe how, in the context of perturbative QCD, quark
and gluon distributions are modified by a change in scale
of the target. The result is Eq. (1), together with a predic-
tion of £,(Q? in terms of the change in confinement
scale and an estimate of the ranges of x and Q2 over
which it may be expected to hold. Second (Sec. II B), we
construct a dynamical model for the rescaling parameter
£4(Q?). Of necessity, this step requires dynamical as-
sumptions which go beyond asymptotic perturbative
QCD. .

A. The effect of a change in confinement size

In this section we review the derivation of the rescaling
relation, Eq. (1), from which the predictions for the nu-
clear dependence of the EMC effect follow. We consider
the nuclear structure function (1/4)F3(x,0%) of a nu-
cleus of atomic number 4. We use Bjorken’s definition of
x =Q2/2Mpq°, so x lies in the range 0 <x < 4. The mo-
ments of the structure function are defined by

A
MA@ =~ [ “axx"FH(x,07) . @

They may be expressed in terms. of an operator-product
expansion

- 1 —

MAQ?) /4" 2= 07 S Gl @310 di(ug? , 3
n,t

where the summation is over all twist-two operators con-

tributing to F5. The O 2w 4?) are the reduced matrix

elements of local operators normalized at the scale u 42,

(PO a®) [PY=O 1 s® Py - P, . (@)

If we are to relate the structure functions of different nu-
clei, at various Q2 it is necessary to determine the nuclear
dependence of the operator matrix elements at some initial
scale. In the impulse approximation, a nucleus with
atomic number 4 is described by A independent nucleons.
This, with the normalization chosen in Eq. (3), would im-
ply that M;(Q?) be independent of 4 and hence

A" 720 2 (uD=4"""20 L) . (5)

We want to modify this relation to take account of the
possibility that different nuclei have different scales of
confinement for the quarks and gluons. In a
noninteracting-valence-quark approximation, the change
in Eq. (5) is straightforward: quarks carrying momenta p
confined within a radius A simply transform to quarks
carrying momenta p’=(A/A’)p when the scale of confine-
ment is changed to A’. There being no other scale in the
system, the dimensionless quantity pA is constant.

We know that a simple valence-quark approximation

for F3(x,Q?) cannot apply for more than one value of
QZ, because radiative corrections modify the original
valence-quark distribution, valid at Q%=p.?, say, to give
valence quarks plus gluon and quark bremsstrahlung at
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any other scale, uo®. Remarkably it was found in deep-
inelastic scattering that twist-two operator matrix ele-
ments are well approximated by a valence-quark (bag)
model,® provided these operators are renormalized at a
scale uo?~0.5 GeV2 Thus we consider it reasonable to
use a simple valence-quark model, at this scale, to deter-
mine the modifications necessary to Eq. (5) to allow for a
change in confinement size. This leads to the result

A0 (pH=4"" 20 M P, ()
where
pal=p® for A=1 @)
and
2
pat= % Ba®. (8)

In Egs. (6)—(8) we have made the natural identification of
1/A4, which determines a typical quark’s momentum,
with the renormalization scale u,, of the quark fields
from which the operators are constructed. This identifi-
cation is supported by the fact that a change in the bag ra-
dius (i.e., A) generates changes in valence-quark distribu-
tion functions which (approximately) mimic QCD evolu-
tion.> Equations (6)—(8) summarize our model for relat-
ing different nuclei. Obviously such relations would al-
ways be possible if the ratio u 42/u 4> were allowed to be
n dependent (since the moments M, (Q?) are monotoni-
cally decreasing with Q?); the nontrivial content of these
equations is that u 42 and u 4 should be independent of n.
This will occur in any model in which quark-momentum
distribution depends on only one dimensionful parameter
(for example, the bag radius in the bag model) and is the
simplest possibility we can imagine. We can gain some
insight into the physics of the initial condition of Egs.
(6)—(8) by noting that the difference between the matrix
elements O !;(u 42 and O ;},(u4?) may be calculated, in
QCD, by computing the bremsstrahlung of quarks and
gluons. In leading order this gives

— — A “Az dkT2 —
O iuaH)—0 i (uH=—"vn Ofiuas?,
nillha nillh 4 8 V0 qu,Z Ky i (14

9)

where the integral runs over the transverse momentum
squared of the bremsstrahled gluon and ¥j is the familiar
anomalous dimension, in leading order. Thus the differ-
ence between the operators normalized at different scales
corresponds to adding the bremsstrahled gluons (and
quarks) whose momenta extend over the phase space be-
tween the scales u 4> and p 2. This makes a direct con-
nection with Eq. (8) because increasing the confinement
size requires us to add the contribution of gluons (and
quarks) which can propagate to the new boundary, of ra-
dius A4, before feeling the effects of confinement. This
corresponds to adding gluons with momenta between
A4~ ' and A~ in agreement with Eq. (9) with 14% and
w42 given by Eq. (8). .

Note that Eq. (6) remains true even if we include the
leading-order QCD correction, as in Eq. (9). It applies to
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any value of 1 42. Once we use the renormalization-group
equations to resum the leading-logarithmic corrections
and to express Eq. (9) in terms of the running coupling
constant, Eq. (9) becomes

() |7
Ofiua)= || Otiwsh, (10)
ag (e 4”)
where
d,=v0/2Bo . (11)
and
as(Qz)=47T/[ﬁolﬂ(Q2/AQCD2)] . (12)

We have argued that Eq. (6) should be true for a unique
value of u 42, with u 42 given by Eq. (8). This value is the
scale at which the valence-quark approximation works
well for the twist-two operator components and is expect-
ed to be of order of a hadronic mass scale. Indeed, from
Egs. (10) and (12) we see explicitly that Egs. (6) and (8)
can be true for only a unique scale, for the left- and
right-hand sides of Eq. (6) change by different, n depen-
dent amounts on changing u 42 and u 42 while keeping
142/u4? fixed. Thus we see why we have given a physi-
cal interpretation to the operator renormalization scale.
Normally this is arbitrary and can be changed if one
simultaneously changes it in the coefficient functions. In
this case, however, Eq. (6) is true only for a specific
choice of renormalization point, i.e., only for a specific
definition of the operator defined at the unique scale
where the twist-two component of the nucleus is given by
valence quarks alone.

We turn now to the use of Egs. (6)—(8) to relate the
structure functions of different nuclei. For large Q?, the
coefficient functions of Eq. (3) may be calculated pertur-
batively in QCD giving, in leading-logarithmic order,

Q%) |™
mAh= | 2L (13)
as(.u‘A
Using Eq. (6), we find
: (0% |
M Q%)= —‘g—z— M4
ag(p 4°)
=M (£44(QQ% , (14)
where
AR ay(u 2 /a(Q?)
E4a(QH)= (15)
A4®
In deriving this equation we have used the result
”l(pcA'z)— BO MA +as " Np ) (16)
to show that
a(0Y) o (£Q?)
— 2=‘§2; 17
ag(p”)  as(p,y®)

modifying Eq. (14).

Since & 44(Q?) is independent of n we get the rescaling re-
lation

Fz (x,0%) = ~—-F2 (x,£44(0%Q0?) . (18)
This concludes our derivation, to leading order, of the ef-
fects of a change of confinement size on the twist-two nu-
clear structure functions. Before we confront experiment
with this dynamical rescaling, let us consider the accuracy
we may expect. There are two types of correction to the
form of Eq. (18), following from nonleading QCD correc-
tions and from higher-twist corrections. The latter are
suppressed by inverse powers of Q2 and may be expected
to be small, except at the end points of the x range. The
former, however, involve corrections suppressed only by
a,(u?) where u? may be below 1 GeV2. They could be
quite large and it is important therefore to check them m
detail. Note that though our analysis continues to low u?,
this is only done to relate the twist-two operators. Twist
> 2 are still suppressed by powers of Q ~2 relative to lead-
ing twist, where Q2 is the point at which the structure
function is measured.

In Ref. 8, an analysis was made of the second-order
QCD corrections to nonsinglet moments using a value for
1o>=0.75 GeV? and Agg=250 MeV (MS denotes the
modified minimal-subtraction scheme). Although &(u,?)
is quite large, it was found that substantial (> 50%) next-
to-leading-order corrections to Eq. (14) occurred only for
n=2 and n > 8. For intermediate values of n, 2 <n < 10,
the coefficients of the second-order terms were small, sup-
porting our use of leading-order QCD to derive Eq. (1).

In order to determine the x range of validity of our
first-order QCD predictions it is necessary to invert the
moments to determine where the large second-order
corrections to the n=2 and n>8 moments will be sig-
nificant. This can be done using a second-order Altarelli-
Parisi analysis of the Q2 evolution structure functions for
different nuclei with the initial condition [corresponding
to Eq. (6)]

1 1 ,
ZFzA(x,MAZ)=7Ff (x,uArz) . (19)

However, this analysis is numerically complicated and has
not been performed. Instead we give a qualitative answer
to the question. For small x, the effective value of n
dominating the inverse Mellin transform is approximately
given by’ :

(n—1)~[ | Ina,/Inx | ]'/?, (20)

so n =2 corresponds, roughly, to x =a;.
dominant value of n is

n~Ina, /Inx (21)

For large x, the

which, for n=10, gives x~a,'/%. For a;~0.2 the range
of validity is of the order

0.2<x<0.9.

The second-order corrections considered, so far, are those
In deriving Eq. (1) from Eq. (14) we
used the expansion of Eq. (16) for a,~'(u42). Thus we
must also consider the second-order corrections to a; .



This leads to the corrected form of the rescaling parame-
ter,

A2 et /aio?
Ear(Q)= |5
AA - }\’ 2
4
o (p 4 ?) (B1/BDlag(p 4P —a(Q%) /ay (@]
a.v(.u‘Az)

(22)

For A 4> A 4 this modification increases the one-loop esti-
mate for & only slightly,. For example, with
Ay /Ay =1.15, & 44 is increased by less than 7%.

B. The A dependence of the quark confinement scale

In order to estimate the A dependence of the rescaling
parameter & 4,4 we construct a simple model for the par-
tial deconfinement of quarks within the nucleus. In short,
we assume quarks to be deconfined to an extent propor-
tional to the amount that nucleons within the nucleus
overlap. When nucleons overlap, we assume that their
quarks are free to propagate over a larger spatial domain.
To measure the overlap of nucleons we treat them as
spheres of constant density and radius a. For any two nu-
cleons the overlapping volume (measured in units of the
nucleon volume) is

3
3(da]l 1 [a
Vo%=l“4 al+16 a]’dgza’
0, d>2a, (23)

where d= |r;—r,|. The radius a is chosen so that the
rms radius of a sphere of constant density equals the rms
radius of the nucleon, a,,. This fixes a —( )12 0.

In a nucleus with 4 nucleons, any given nucleon may
overlap with (4 —1) others. If the nucleons are distribut-
ed according to some  two-particle density function
p4(1,15), then the overlapping volume per nucleon is

=41 [ @Prd’npr,n)Vo(|n—1,|/a), (24
where the function p 4(r,r,) is normalized to unity, i.e.,
f d3r1d3r2pA(r1,r2)=1 .

We replace p 4(r;,1,) by the product of single-particle den-
sities p4(ry) (normalized to unity), p(r,) and the two-
nucleon correlation function F4(|r;—r;|). Nuclear den-
sities saturate at large A4 and so p4 ~1/A4. Consequently,
despite the explicit factor (4 —1) in Eq. (24) we find that
V4 saturates, i.e., V> constant, for large 4.

We assume the nuclear-density function p 4(r) has the
same shape as the charge-density function which we take
from nuclear-structure tables. This we believe to be valid
for A <40. For A >40 the nuclear density is somewhat
smoother than the charge density,!” so we do not take so
seriously the small fluctuations in ¥, for large A. Not
surprisingly it is this density function which dictates the
A dependence of the nuclear structure functions: the
more densely packed the nucleons, the greater likelihood
there is for overlap. For nucleons separated by less than
about 1 fm, some modification of the two-nucleon density
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is expected and this is described by the correlation func-
tion F,(|r;—r;|). The 4 dependence of F, is unknown
except for simple models of the simplest nuclei. We
therefore approximate F, by F, the two-nucleon corre-
lation function for nuclear matter. We try to investigate
sensitivity to the short-distance separation by varying the
choice of the correlation function. We consider three pos-
sibilities.
(a) No correlation, i.e.,

pA(rl,r2)=pA(r1)pA(r2)
or
F(r)=1.

(b) Correlations arising from treating the constituent
nucleons as a Fermi gas,

F(r)=1—2[3j,(kpr)/(kgr)]?,

where kp, the Fermi momentum, ~250 MeV.

(c) Correlations which follow from describing the two-
nucleon force by the Reid soft-core potential.!! This is
probably the most sophisticated correlation we can at-
tempt.

These three correlation functions are compared in Fig.
1. Notice that the correlations (b) and (c) reduce the prob-
ability of two nucleons approaching closely. Since this is:
when overlap will be greatest, the effect of introducing
correlations is to reduce the deconfinement of quarks.

The effective confinement size A 4 in a nucleus of atom-
ic number A will then be intermediate between Ay, the
confinement size for an isolated nucleon, and A, the con-
finement size associated with two totally overlapping nu-
cleons. The relative weighting between Ay and Ay is
governed by the probability for overlap, ¥, and so we ex-
pect A4 to be given by interpolation,

A A .
A4V, | 25)
A Ay
T T
10 e o B e,
Fe) | s o777
o5 —
0 ! L )
r (fm)
FIG. 1. Correlation function F(r) between two nucleons

separated by distance r. (a) no correlation, (b) Fermi-gas model
F(r)=1—+ [3]1(kFr)/k,.-r 1%, (c) Reid soft-core potential.
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TABLE 1. Values of the confinement size relative to that for
the free nucleon for a range of nuclei. The three values (a), (b),
and (c) correspond to the three choices of the correlation func-
tion F(r).

}\'A /7\,1\1
Nucleus (a) (b) (c)
p 1.018 1.015 1.015
‘He 1.047 1.042 1.040
‘He 1.092 1.082 1.079
SLi 1.054 1.045 1.045
Li 1.075 1.064 1.063
9Be 1.088 1.074 1.074
2c 1.124 1.105 1.104
160 1.128 1.109 1.108
0Ne 1.122 1.104 1.104
27A1 1.165 1.140 1.140
32g 1.157 1.134 1.134
40Ca 1.161 1.137 1.137
“Ca 1.196 1.166 1.166
S6Fe 1.180 1.153 1.154
63Cu 1.181 1.154 1.154
0Ag 1.198 1.168 1.169
118gy 1.205 1.175 1.176
197Au 1.229 1.196 1.195
208pp, 1.220 1.188 1.188

The ratio A../Ay is taken to be 2!/3 which follows if the
total overlap volume of two nucleons is simply twice the
volume of a single nucleon. With this choice of A, /Ay,
the values of A, /Ay were then calculated for each nu-
cleus from Egs. (24) and (25) and then fed into Eq. (15)
for the rescaling parameter.

We have neglected multiple overlap between three or
more nucleons, which is certainly justified if the probabili-
ty for two-nucleon overlap is small. Even when the two-
nucleon overlap is not small our procedure turns out to be
reliable because the resulting overestimate of the two-
nucleon overlap is approximately compensated by the
neglect of the three- (or multiple-) nucleon overlap. An
example of how this occurs is shown in Appendix B.
Since the 4 dependence of the effective confinement size
A4 is determined by the A dependence of the nucleon-
density function, it is clear that A 4 will reach a maximum
value as the nucleon density saturates. As we will discuss
in the next section, this saturation value corresponds to an
increase of confinement size of 20% over that of an iso-
lated nucleon.

III. COMPARISON WITH DATA

Using the model described in Sec. II we made predic-
tions for the nuclear dependence of the structure function.
In this section we compare those predictions with the re-
cent SLAC electroproduction experiment’ using nine nu-
clear targets.

First some remarks about parameters. We have four
quantities which could be regarded as parameters but
there is independent information which gives a preferred
value in each case.

TABLE II. Values of the rescaling parameter £, for 4'=2
at Q2=20 GeV? using the Reid soft-core version of the correla-
tion function.

Nucleus £4(Q?=20)
D 1.07
*He 1.20
‘He 1.43
64 1.23
TLi 1.33
°Be 1.40
2c 1.60
150 1.63
Ne ) 1.60
27A1 1.89
28 1.84
40Ca 1.86
“Ca 2.14
S6Fe 2.02
SCu 2.02
1074 ¢ 2.17
1&gy 2.24
97Au 2.46
208pp, 2.37

(i) The rms radius of the nucleon, a.,,. This controls
the degree of overlap of nucleons which, in turn, deter-
mines the confinement size A, in the nucleus. Experi-
mentally the rms charge radius of. the proton is well deter-
mined to be 0.88+0.03 fm (Ref. 12) and we take
Qs =0.9 fm.

(ii) The scale u 42 That is where the structure function
is taken to be the initial valence-quark distribution, with
no radiated gluons. This scale can be fixed by examining
the Q2 dependence of the experimental nonsinglet struc-
ture functions and comparing with the bag structure func-
tion in the method of Jaffe and Ross.® In the Appendix
we update this procedure and find u,4 _s562=0.50%0.11
GeV?, which corresponds to i 4 _2=0.6610.14 GeV>.

(iii) The QCD scale parameter Aqcp. This controls the
Q? variation of a,(Q?) and is determined from analyzing
the scaling violations of structure functions. Recent
evaluations'>!* give Agg=250+100 MeV.

(iv) The ratio Ay /Ay. As stated in the last section, we
take this to be 2!/° which follows from volume invariance
of the two-nucleon system. However this value can be
justified from bag-model considerations. In the bag
model a virial theorem relates the mass and volume of
hadrons containing only light quarks; M =4BYV. Since the
nonstrange six-quark bag system is mnot bound,
M 6, >2M 3, and we expect that R, >2'°R;).

When we discussed the original EMC effect, for data
off an iron target, we found that the data were consistent
with the rescaling hypothesis for the choice &, _s¢~2.
The values of the four quantities above result in exactly
this value for the rescaling parameter which gives us con-
fidence that our approach is a reasonable one. We discuss
the sensitivity of our predictions to these parameters fur-
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ther on.

Table I shows the values of A4 /Ay obtained with each
choice of correlation function. As expected, the choices
(b) and (c) yield a smaller confinement size. Also we see
that approximating deuterium by a free nucleon is accept-
able. For heavy nuclei, we notice that the confinement
size is 20% larger than for a free nucleon. Taking the
Reid soft-core correlation function, the resulting values
for the rescaling parameter £ 44(Q?) at Q?=20 GeV? and
A’'=2 are listed in Table II. In order to make predictions
for the new SLAC experiment we ensure that & 44.(Q?) is
computed at the value of Q? relevant to each measure-
ment of F3(x,Q?).

Finally, in order to exploit the rescaling expression, Eq.
(18), we must know the Q2 behavior of the deuterium
structure function. This is provided by the EMC mea-
surements of F?(x,02)."° Since we need to interpolate to
any desired value of x and Q2 we have carried out a
QCD fit to these data and insert these values into the
right-hand side of Eq. (18). Incidentally, this fit yields a
value of Aqcp consistent with our choice above.

Our analysis applies to the ratio of structure functions
F#(x,0%)/F2(x,0%. Armold et al.” present instead the
ratio 0/0°. The two can differ if R=o0, /o is 4
dependent and is not negligibly small. The framework of
our model is leading-order QCD in which R is zero. So
we compare our calculated ratio of structure functions
directly with the SLAC data. The possibility that R is
large and A4 dependent and helps to reconcile the superfi-
cial difference between SLAC and EMC data at low x is
discussed further in Sec. IV. Figure 2 shows the predicted
A dependence of F3(x,02)/F2(x,0?) at a fixed value of
x (and Q?. The roughly logarithmic dependence in both
the experimental points and our predictions is consistent
with the general slow increase of nucleon density with in-
creasing 4. We also show the prediction which follows
from taking a smooth interpolation of nucleus radius.
For that we take a Gaussian distribution

09—

xxl:u:‘ L I .
5 10 50 100

0.8 L

FIG. 2. SLAC data (Ref. 7) on the 4 dependence of the ratio
of electroproduction cross sections, o(4)/c (D), denoted by @,
together with our predictions, denoted by *, at fixed x (0.594)
and 0?=4.98 GeV2 0 /07 has been assumed to be indepen-
dent of A. The dotted curve indicates the result of approximat-
ing the nucleon density with a smooth A4-dependent Gaussian
function.
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palr)=[3/(2mR 4*)1*"%exp[ —3r2/(2R 4*)] (26)
with
R,=0.844'70.6 .

It can be seen that the curve roughly interpolates the
predicted points. Fluctuations about the smooth behavior
therefore represent fluctuations of the nucleon density and
are probably only significant at small 4. At large A, the
neutron-density function is not the same as the proton
density and tends to smooth out such fluctuations.!® For
light nuclei, however, the deviations from smooth A
dependence are genuine. In particular, our predictions re-
flect the “above the trend” density of “He and “below the
trend” density of °Be resulting in approximately equal
structure functions for these two nuclei. The data of the
SLAC experiment confirm this behavior, thus indicating
that the nuclear dependence of the structure functions is
indeed dictated by the nucleon density. Data on °Li
would be very interesting to compare with “He and °Be as
we predict °Li to show considerably less of an effect than
its neighbors—see Fig. 4. Comparison with *He would
highlight the anomalous case of “He. “®Ca is anomalously
dense compared to its immediate neighbors. In fact, we
expect the structure function of “*Ca and '©’Ag to be simi-
lar in magnitude.

The relative x dependences of nuclear structure func-
tions are governed by the pattern of Q2 scaling violations
of the deuterium structure function. Figure 3 shows the x

ofA)
o(D]

FIG. 3. Comparison of the x dependence of the ratio of elec-
troproduction cross sections, o(A4)/o(D), between our predic-
tions (denoted by the solid curves) and the SLAC data (@) aver-
aged over Q% Our predictions use Q? values given by Q2
=16.x GeV2. The eight nuclei correspond to 4 =4, 9, 12, 27,
40, 56, 107, and 197.
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dependence of F3(x,Q%)/F%(x,Q?) for eight values of 4,
compared with the SLAC experiment. As before the A4
dependence of oy /0r is assumed to be insignificant.
Over this wide range of nuclei, the agreement between our
predictions and the SLAC data is excellent over the range
0.2<x<0.7.

We have investigated the systematic effects resulting
from varying the parameters p 4 _;> and Ay within their
uncertainties (0.11 GeV? and 100 MeV, respectively). To
a very good approximation, the result is a systematic shift
of all the points in Fig. 2 by a maximum of 3.5%. The
same effect is generated by alternatively varying the free
parameter @, by 0.1 fm, demonstrating that it is this pa-
rameter to which the results are most sensitive. In this
context, there is a definite preference for a two-nucleon
correlation, like the Reid soft-core function, which
suppresses close proximity of nucleons in the nucleus. Ig-
noring this correlation would lead to a high degree of
overlap unless it was compensated by a value for the nu-
cleon radius significantly below the range allowed by the
experimental determination of a@ .

IV. DISCUSSION AND CONCLUSIONS

Our view is that the source of the EMC effect is the
fact that the confinement size for quarks in nuclei is
larger than in free nucleons. We have shown that QCD
then leads to a rescaling relation, Eq. (1), which says that
altering the confinement scale at a fixed value of Q2 is
equivalent to altering the value of Q2 for a given target.
The Q2 dependence is just the well known pattern of scal-
ing violations due to radiation of gluons. Indeed a partial
deconfinement is not entirely unexpected and several other
authors'®~!® have realized the connection between this
and the EMC effect. The typical increase in confinement
scale we believe to be around 15%, in contrast, to the sug-
gestion of Nachtmann and Pirner,!® where the quark con-
finement scale is of the order of the nuclear radius.

We made the further assumption that the expansion in
the confinement scale arises from the overlap of nucleons
in the dense nucleus. To compute the 4 dependence of
the confinement size we used a geometrical calculation of
the overlap volume, an assumption which can be motivat-
ed in the bag model. However this really requires deeper
justification—the detailed nuclear dynamics which pro-
duce the change of confinement size may involve clusters
inside the nucleus,>!”19=22 the presence of pions**~?° or
A’s?8 in the nucleus.

As a consequence of our approach of considering
directly the quark distributions in the nucleus, the struc-
ture functions for any pair of nuclei can be equated by re-
scaling, at least within a limited x range. The magnitude
of the rescaling parameter £ 4, is controlled by the rela-
tive confinement sizes within the two nuclei, which in
turn is driven by the difference in nuclear densities.
Nevertheless, as our comparison with the SLAC data
shows, any model which correlates &, with the nuclear
density is bound to succeed in describing the A depen-
dence of the effect.

It should be noted that the shift £,,- depends on Q2.
The values listed in Table II correspond to Q?=20 GeV?,

and the values of £,, relevant to the SLAC data
(Q%=2—15 GeV? are, of course, smaller than for the
EMC data (Q?=10—200 GeV?. An investigation has
been carried out by Liu, Li, and Liu,>’” who demonstrate
that the SLAC data indeed satisfy rescaling but with

SLAC ¢EMC - Our initial analysis® of the EMC data
showed consistency with dynamical rescaling (with
&p,re~2) except for x <0.2. This is evident from Fig. 4
where we plot the ratio of iron/deuterium structure func-
tions measured by EMC? compared with the result of our
model. Also shown are the preliminary data of the
BCDMS collaboration.?® If we take our QCD fit to the
EMC deuterium data,!” and ask how well dynamical re-
scaling describes the EMC iron data® we find a X2 of 147
for 175 data points if £=2, over the entire x range. The
agreement with dynamical rescaling is further improved if
one allows for a 4% reduction in the normalization of the
iron data relative to the deuterium data. Such a shift is
well within the quoted normalization uncertainty and is
strongly hinted at by the new BCDMS data. In any case,
we do not claim our leading-logarithm approximation to
be realistic at small x, and a discrepancy there is not a
serious blow.

The failure of the SLAC data to confirm the EMC ob-
servation of an enhancement at low x may be attributed
to the low values of Q% where the SLAC low-x data are
taken. Higher-twist effects like shadowing are expected to
be important at low x and could account for the differ-
ence. Such effects together with the effects of Fermi

t

o BCDMS (preliminary)

07 4 L 1 1 1 1 1 1

X

FIG. 4. Ratio of structure functions iron/deuterium in
muoproduction. The curve corresponds to our model and the
data is from the NA2 and NA4 experiments at CERN (Refs. 2
and 28).
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motion (at large x), and other higher-order or higher-twist
corrections to nuclear structure functions are outside of
our leading-twist, leading-order QCD analysis.

One point which arises in a discussion of both the EMC
and SLAC data is the question of R =0, /o, and in par-
ticular its 4 dependence. The EMC used a value of R =0
in converting their cross sections off deuterium and iron
into values of F,, while SLAC simply present the ratio of
the cross sections. Clearly the two ratios are equal pro-
vided R is independent of 4. Indeed Arnold et al.” mea-
sured R for three of their targets for Q=5 GeV2. While
it is not surprising that these values are not zero at such
low Q2 the relevant issue is whether they vary with A4 at
each value of x. Averaged over x =0.3, 0.5, 0.7 there is a
hint of a small rise with increasing A, although the errors
are such that the results could be consistent with indepen-
dence of A. The framework of our model is leading-order
QCD in which R is zero. Even O(ay) computation of R
gives a very small value for x > 0.2, substantially smaller
than the measurements off proton targets.>® The most
likely origin of significantly nonzero values at small Q2 is
higher-twist terms®!32 which therefore lie outside the
scope of our present approach. If it eventually turns out
that R depends significantly on A4, then a more careful
combined analysis of the two sets of data will be neces-
sary.

The SLAC data incidentally covers a range of Q2
which reaches down to 2 GeV? and it might seem that the
agreement shown in Fig. 3 is far better than we had a
right to expect, in view of our neglect of higher-twist
terms. The data plotted in Figs. 2 and 3, however, are
Q2- averaged values at each x. In Sec. Il A we argued
that to avoid possible higher-order corrections we should
keep x > 0.2 and for such values of x the SLAC range of
Q% is 2—10 GeV?, with (Q?) ~5 GeV? Experimentally
we know that structure functions can be successfully
described in terms of only leading-twist contributions'>*
for Q%>4 GeV?, and so we may be fairly safe with our
asymptotic model provided 0.2 <x <0.8. Again this may
be true as long as F, is dominated by o ; as we men-
tioned above, o, could be entirely higher twist.

Finally, we list some features which further experi-
ments could profitably explore.

(1) Our knowledge of the low-x region of the EMC ef-
fect is incomplete. EMC measured F5°/FP at low x for
02~10—50 GeV? while SLAC typically have Q2~2
GeV? there. Shadowing may be invoked as the source of
the considerable difference between the two experiments,
but it is important to study the Q2 behavior of the EMC
effect for x <0.2 as precisely as possible and to determine
the behavior of o; /o, on nuclei.

(2) Experiments with neutrino beams*? give results at
variance with the EMC and SLAC data. The main
discrepancy is again in the small-x region where there is
no evidence for an enhancement of the sea. One feature
which must be cleared up is the precise shape of the struc-
ture function F, at small x for v-iron interactions where
present experiments!#34 at high Q2 differ significantly.

(3) Certain nuclei have “anomalous densities.” That is,
the density for some values of A4 (e.g., A =4 or 48) deviate
from a smooth behavior. It would be interesting to in-
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- FIG. 5. Predictions for F#(x,0%/F%(x,0?) for the full
range of nuclei listed in Tables I and II, at x=0.6, 0%=10
GeV2.

clude such nuclei as 3He, SLi, *Ca to see if the nuclear-
structure functions reflect this behavior. Figure 5 shows
details of some of the “steps” in F4 /F> which we expect
because of the fluctuations in the nuclear density.

The central conclusion of this work is that there is evi-
dence from experiment, through dynamical rescaling, that
quarks are partially deconfined in dense nuclei and that
the degree of deconfinement increases with atomic num-
ber. This may be the precursor to a deconfining phase
transition at some higher density; it may even arise from a
modification of symmetry-breaking dynamics which
occurs in passing from the vacuum to nuclear matter.®
There are a number of implications for several other ha-
dronic processes that are immediately testable. One ex-
ample is the nuclear dependence of lepton-pair production
and of J /1 muoproduction.’® '

It may even turn out that structure functions for all
hadrons are essentially determined by their sizes, a feature
which then allows them to be related by a generalization
of the rescaling relation.’’
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APPENDIX A: DETERMINATION OF p .2

Following Ref. 8 we take Q*=u 42 as the point where
the bag calculation of matrix elements is appropriate and
that the moments of the structure function M;(Q?) at
high Q? are obtained by evolving up in Q2 according to
the twist-two operators.

To determine u 42 we reverse this procedure and extra-
polate the high-Q? behavior of the observed moments to
low Q2. We take the nonsinglet structure function
xF3(x,0% from the recent CERN-Dortmund-
Heidelberg-Saclay (CDHS) data and compute the Nacht-
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mann moments M, =%%(Q?). Note that the target for this
experiment was iron. The n=4,5,6 moments can be reli-
ably calculated in the range 5 < Q%< 100 GeV2 Accord-
ingI to the bag model the values of these moments
AT (n,u ) at Q?=p,? are 0.23, 0.14, and 0.10 for
n=4,5,6. Plotting the quantity

M,:‘(QZ) —1/dn

m =1+Y,,ln(Q2/p.A2) (A1)

versus InQ? yields a straight line, the value of Q2 when
the left-hand side =1 gives u 4. The plots are very good
approximation to straight lines yielding

142=0.41+0.11 GeV? (n=4)
1,42=0.53+0.11 GeV? (n=5) {4=56.
142=0.56+0.10 GeV? (n=6)

(A2)

The mean value is u,2=0.50+0.11 GeV? for 4=56.
Taking the value of A4 _s¢/A_; from Table I for a Reid
soft-core correlation function, we get 4 _;>=0.66+0.14
GeV2,

N

APPENDIX B: NEGLECT OF NINE-QUARK
AND (HIGHER) CONFIGURATIONS

For two nucleons overlapping in the nucleus, ¥V, the
overlapping volume is used as the measure of six-quark
bag formation, Pgs. This idea can obviously be extended
to obtain the probability for nine-quark bags from three-
nucleon overlap. Let us look at a simple configuration
which illustrates that the neglect of this last contribution
may not be serious when estimating the confinement size,
even when three-nucleon overlap is significant.

Take three spheres each of radius a, overlapping
symmetrically each center distance d from the other two.
Our procedure is to compute the overlapping volume
Vo(d/a) between each pair [as given by Eq. (23)] and
then, in this case, the ratio of the effective confinement
radius A to the nucleon radius Ay is

Aett
Ay

—142V,213—1), (B1)

where V, is calculated in units of the volume of one of
the spheres. This is plotted as the solid curve in Fig. 6 as
a function of the separation distance. If Vy(d/a) is the

o.2f-.

0.4

o
0.5 .0 . . 2.0

FIG. 6. Contributions to the effective confinement size for a
symmetric three-nucleon system as a function of the separation
d between each pair scaled by the nucleon radius a. The solid
curve is the result of neglecting three-nucleon overlap (our ap-
proach). The dot-dashed curve is the contribution from three-
nucleon overlap and the dotted curve is the “true” two-nucleon
overlap. The dashed curve is the sum of these two contribu-
tions.

volume of overlap between all three spheres, then the con-
tribution of nine-quark bags to A /Ay is

Vo313 1) (B2)

and is shown as the dotted curve in Fig. 6. Subtracting
Vo from the two-sphere overlap volume V|, gives the
correct contribution of two-nucleon overlap,

2Vo—V)(212—1) (B3)

which is shown as the dot-dashed curve in Fig. 6. The
sum of (B1) and (B2) gives the net correct effect and is
shown as the dashed line in Fig. 5.

The closeness of the solid and dashed curves gives us
good reason to believe that the overestimate of the two-
nucleon overlap is approximately compensated by our
neglect of three-nucleon overlap—even when the latter is
not small.

IK. Rith, Proceedings of the International Europhysics Confer-
ence on High Energy Physics, Brighton 1983, edited by J. Guy
and C. Costain (Rutherford Appleton Laboratory, Chilton,
Didcot, United Kingdom, 1984), p. 80.

2J. J. Aubert et al. (EMC), Phys. Lett. 123B, 275 (1983).

3A. Bodek et al., Phys. Rev. Lett. 50, 1431 (1983); 51, 534
(1983).

4F. E. Close, R. G. Roberts, and G. G. Ross, Phys. Lett. 129B,
346 (1983).

5R. L. Jaffe, Phys. Rev. Lett. 50, 228 (1983).

6R. L. Jaffe, F. E. Close, R. G. Roberts, and G. G. Ross, Phys.
Lett. 134B, 449 (1984).

7R. G. Arnold et al., Phys. Rev. Lett. 52, 727 (1984).

8R. L. Jaffe and G. G. Ross, Phys. Lett. 93B, 313 (1980).

D. J. Gross, in Proceedings of the XVIIth International Confer-
ence on High Energy Physics, London, 1974, edited by J. R.
Smith (Rutherford Laboratory, Chilton, Didcot, England,
1974), p. 11I-65.

10y, Negele (private communication).

113, Negele (unpublished).

12F. Borkowski et al., Nucl. Phys. A222, 269 (1974).

I3A. Devoto, D. W. Duke, J. F. Owens, and R. G. Roberts,
Phys. Rev. D 27, 508 (1983).

14H. Abramowicz et al. (CDHS collaboration), Z. Phys. C 17,
283 (1983). .

157, J. Aubert et al. (EMC), Phys. Lett. 123B, 123 (1983).



31 CHANGE OF CONFINEMENT SCALE IN NUCLEL ... 1013

160. Nachtmann and H. J. Pirner, Z. Phys. C 21, 277 (1984);
Heidelberg Report No. HD-THEP-84-7, 1984 (unpublished).
173, Dias de Deus, M. Pimenta, and J. Varela, Lisbon Report
No. CFMC-E-1/84 (unpublished); Phys. Rev. D 30, 697
(1984); Niels-Bohr Report No. NBI-HE-84-23, 1984 (unpub-
lished). . )

18A. W. Hendry, D. B. Lichtenberg, and E. Predazzi, Phys.
Lett. 136B, 433 (1984).

19A. Krzywicki, Phys. Rev. D 14, 152 (1976).

20N. N. Nikolaev Usp. Fiz. Nauk 134, 369 (1981) [Sov. Phys.
Usp. 24, 531 (1981)].

21H. J. Pirner and J. Vary, Phys. Rev. Lett. 46, 1376 (1981).

22C. E. Carlson and T. J. Havens, Phys. Rev. Lett. 51, 261
(1983).

23C. H. Llewellyn Smith, Phys. Lett. 128B, 107 (1983).

24M. Ericson and A. W. Thomas, Phys. Lett. 128B, 112 (1983).

25E. L. Berger, F. Coester, and R. B. Wiringa, Phys. Rev. D 29,
398 (1984).

26], Szwed, Phys. Lett. 128B, 245 (1983).

27Liu Feng, Li Jia-rong, and Liu Lian-Sou, Hua-Zhong Report
No. HZPP-84-5, 1984 (unpublished).

28R. Voss, talk at Neutrino ’84 meeting, Dortmund, 1984 (un-
published).

293. J. Aubert, Phys. Lett. 105B, 322 (1981).

30A. Bodek et al., Phys. Rev. D 20, 1471 (1979); M. D. Mes-
tayer et al., ibid. 27, 285 (1983).

313, F. Gunion, P. Nason, and R. Blankenbecler, Phys. Rev. D
29, 2491 (1984); L. F. Abbott, E. L. Berger, R. Blankenbecler,
and G. L. Kane, Phys. Lett. 88B, 157 (1979).

323, L. Cortéz, J. L. Miramontes, and J. Sanchez-Guillen, Phys.
Rev. D 30, 46 (1984).

33H. Abramowicz et al. (CDHS collaboration), Z. Phys. C 25,
29 (1984); M. A. Parker et al., Nucl. Phys. B232, 1 (1984); A.
M. Cooper et al., Phys. Lett. 141B, 133 (1984).

34D. Macfarlane et al. (CCFRR collaboration), Report No.
FERMILAB-Pub-83/108 (unpublished).

35L. S. Celenza, A. Rosenthal, and C. M. Shakin, Brooklyn Re-
port No. BCINT 84/051/124k; 1984 (unpublished).

36F. E. Close and R. G. Roberts, Rutherford Appleton Report
No. RAL-84-078, 1984 (unpublished).

37F. E. Close, R. G. Roberts, and G. G. Ross, Phys. Lett. 142B,
202 (1984).



