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Finite-energy sum rules for heavy quarkonia
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We show that at large energies the parton model and the vector-dominance model give identical
results for e+e annihilation into hadrons. We derive finite-energy sum rules for heavy quarkonia
which connect perturbative results to resonance parameters. The sum rules are satisfied extremely
well by the Y system. From the available masses and leptonic widths of heavy resonances we con-
struct a quantity M„(T), which is the truncated version of a Green s function M(T). We remark
that as the time T goes to infinity M ( T) approaches M„(T) and we calculate via Monte Carlo tech-
niques the full Green s function M ( T), in the simple case of a linear potential.

I. INTRODUCTION

By now it is an accepted dogma that quantum chromo-
dynamics (QCD) describes the strong interactions. Due to
asymptotic freedom, the coupling constant u, at large en-
ergies is rather small and in such kinematical domains we
can study sufficiently inclusive quantities (such as the
e+e annihilation total cross section, deep-inelastic
scattering, and jet production in hadronic collisions)
within perturbation theory. The perturbative results for
the above quantities are expressed in terms of quark-gluon
parameters (coupling constant ct„quark masses, etc.). On
the other hand, little progress has been made in explaining
and understanding the actual hadronic properties (hadron-
ic masses, widths of resonances, decay constants, etc.).
Our main tools in confronting such problems are lattice
gauge theories and different models (e.g. , vector-meson
dominance, potential models).

In principle, the hadronic properties should be deter-
mined in terms of the fundamental parameters of QCD.
Since we are rather far from this goal, it is worthwhile to
look for methods which would allow us to establish con-
nections between the world of quarks and gluons and the
world of hadrons. Duality' equates a suitable energy
average of the physical cross section for e+e ~hadrons,
to the same energy average of the perturbative cross sec-
tion for e+e ~quarks, gluons. Duality has been shown
to hold in the WKB approximation both nonrelativistical-
ly and relativistically. In Sec. II we provide a precise for-
mulation of nonrelativistic duality. We smear the total
cross section cr(E) with an exponential function e and
we show that at large energies (or equivalently for short
time intervals) the parton model and vector-dominance
model give identical results.

Another fruitful approach in correlating QCD parame-
ters with hadronic parameters is the sum-rules ap-
proach. In Sec. III we derive finite-energy sum rules
which relate QCD perturbative calculations to parameters
of heavy resonances. Using finite-energy sum rules, we
avoid any guess about the high-energy behavior of the
cross section. Furthermore, we use exponential moments,
and it has been shown that the exponential rnornents
suppress the contribution of higher-energy states, thus

providing a fast convergence. ' We consider the finite-
energy sum rules for the c and b--quark sectors. The sum
rules are satisfied extremely well by the Y system. We
suggest that nonperturbative terms are important in the
case of charmonium. "

From the masses M„and the leptonic widths I „of ra-
dially excited S states ( QQ bound states) we can construct
a quantity M(T), which is related to the logarithmic
derivative with respect to time T of the nonrelativistic
propagator of the heavy quark Q. In Sec. IV we point out
that it is feasible to calculate M ( T) via Monte Carlo tech-
niques and therefore extract information about the inter-
quark potential. Finally, in Sec. V we summarize our re-
sults and compare our work with similar approaches.

II. BOUND STATES VS PARTON MODEL

R~(E)= I ( V~e+e )5(E —M),
2(x

where nonrelativistically

47TA eqI (V~e+e )=
~

%(0)
~

mq
(3)

M is the mass of the vector meson, mz is the mass of the
heavy quark, and %(0) is the wave function at the origin.

The duality concept' suggests that a summation of
bound states can simulate the parton-model results. To

Consider the experimentally measured ratio R (E)
=o(e+e ~hadrons)/o(e+e ~p+p ). If we focus
our attention on the contribution to R(E) of a single
heavy flavor, then at low energies we observe resonance
peaks, while at high energies R (E) approaches a constant
value. The asymptotic flatness of R(E) is explained by
the parton model or QCD. A perturbative series for
R (E) gives

R(E)=3e& (1+c~a,+c2a, + ),
i.e., R (E) approaches from above the constant value 3ee .
The resonance structure can be understood through the
vector-dominance model. The contribution of a single
vector meson to R (E) is given by
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explore this idea we define R as ( T) as the Laplace
transform of the contribution of bound states to R (E),

Rns(T)= f +R„(Z)e E~-dZ . (4)

The heaviness of the quark allows us to use nonrelativistic
quantum mechanics to study the bound-state properties.
Recalling that M„=2m&+E„, Eqs. (2), (3), and (4) give

2

Rns(T)= 18m
~ g ~

%„(0)
~

e
mq n

2

=18m ze " (r=o, t=T
~

r=o, t=0),—2m T

mq

where ( r =O, t =T
~

r =O, t ==0) is the nonrelativistic
three-dimensional propagator (in imaginary time). Equa-
tion (5) expresses Riis(T) in terms of a compact object
(propagator), which we know how to manipulate. Consid-
ering the radial part of the wave function

u„(r)
%„(0)= lim

1

4~ r~0 r

Eq. (5) can be rewritten

9me, ' ~ r (r, r =T
~
r, t =0)~

RBs(T)= e ' lim
2mq r -~0 r

(7)

The propagator (r, t =T
~
r, t =0)z satisfies the one-

dimensional Schrodinger equation describing the radial
motion.

This propagator can also be defined for negative r by
assuming that for r & 0 the potential is an infinite barrier.
To proceed further we use the following lemma:

(r, t =T
~
r, t =0)z

= (r t =T
~

r r =0)—( r t =T
~

r t =0), —(8)

where (r, t = T
~

r', t =0) is the one-dimensional propaga-
tor for any r, r' (positive or negative).

Equation (8) reminds us of the image method of elec-
trostatics. To make Eq. (8) look plausible we notice the
following.

(i) When the barrier is present, there are two classical
paths; the direct and the reflected. The first (second) term
on the right-hand side of Eq. (8) corresponds to the direct
(reflected) path.

(ii) We know that (r, t =—T
~
r, t =0)z ——0 at r =0.

Equation (8) guarantees this boundary condition.
(iii) Only paths with r )0 contribute to the left-hand

side of Eq. (8), while the paths contributing to the propa-
gators of the right-hand side have arbitrary r values.
However when we take the difference on the right-hand
side of Eq. (8) the forbidden trajectories with r &0 are
eliminated. '

Generally RBs(T) depends upon the interquark poten-
tial V(r). When T~O, short distances are involved and
the uncertainty principle implies that the kinetic energy of
the particle exceeds considerably the potential energy, pro-

vided the potential is nonsingular at the origin. Therefore
for short times the propagator coincides with the free-
particle propagator. ' As T~O we have

(r, T
~
r, o)z —+ (r, T

~
r, o)+ ( ——r, T

~
r,o)F

T~O

where

(9)

(x,, T ix. ,O), =
2mT

' j/2
p(xb —x, )

exp 2T

9eq
Ras(T) ~

0 4
e

—Zm T

The potential-dependent corrections to this result have
been studied in detail by Whitenton et al.

Now we turn to the parton model. To calculate
RpM(T), we use the standard parton-model expression

3—v
RpM(E) =3e~ u 8(E —2m& ) (12)

1/2
4mq

E2
(13)

To comPare RpM(T) to Ras(T) we consider nonrelativis-
tic energies and velocities (E=2m~, u —+0). In this limit
we can approximate Eq. (13) by

1/2E —2mq

mq

Ignoring v terms, we obtain

9eq' E —2mq
RpM(E)-=8(E—2m ) .

2 mq

Using the relation

f (r —b) e ~~dr =I'(v+1)p
b

we find that

(15)

(16)

RpM(T)= f RpM(E)e dE

9eq

4

1/2

(17)

Comparing Eqs. (11) and (17) we observe that when
T~O, that is, at large energies, the parton model and
summation of bound states give identical results. When
we include u terms' in the leptonic width [Eq. (3)] and
follow the same procedure we again obtain identical re-
sults, this time including the v terms of the parton
model. We feel that this kind of duality (which implies
identical results from the parton model and summation of
bound states at large energies) is a permanent feature and
goes beyond the nonrelativistic approximation we have
used.

(10)

and p =mz/2 is the reduced mass. Using Eqs. (7), (8), (9),
and (10) we obtain
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III. FINITE-ENERGY SUM RULES

The vacuum-polarization amplitude II(E), far from
threshold, can be reliably computed in perturbation
theory, while near physical threshold II(E) is saturated by
resonances and continuum states. Relying on the analyti-
city of II(E) we can construct sum rules which connect
the resonances to QCD parameters. Shifman, Vainshtein,
and Zakharov fully exploited this idea and using the
machinery of the renormalization group and aspects of
nonperturbative physics, they extracted much information
about low resonances ( I/g, p, co, glueballs, . . .). ' In
what follows we derive finite-energy sum rules for heavy
quarkonia and apply them to the charmonium and Y sys-
tems.

Consider the hadronic part of the photon vacuum po-
larization II(E). At low energies II(E) is uncalculable,
since it contains all the complexities of strong interac-
tions. We only know that II(E), as an analytic function
of energy, has a cut along the real axis (Fig. 1). In the
deep Euclidean region (large imaginary energy) II(E) is
calculable within perturbation theory and we denote this
perturbative component by IIQcD(E). Consider now the
quantity [II(E)—IIQcD(E)]f(E) integrated along the con-
tour shown in Fig. 1. If the weight function f (E) has no
singularities within the contour, then we have '"

f [II(E)—IIQ (E)]f(E)dE =0 . (18)

If the radius E is large, then on the circumference we ex-

pect II(E)=IIQcD(E). Recalling that the imaginary part
of II(E) is proportional to R (E) and taking f ( E)
=exp( —ET) we arrive at

f R (E)e dE = f RQCD(E)e dE . (19)

The above finite-energy sum rule (FESR) relates low-

energy data [embodied in the experimentally measured
R(E)] to a high-energy quantity RQCD(E) calculable in

perturbation theory. Consider the contribution to R(E)

of a heavy quark. If we take for E a value just below the
threshold, only the narrow states with M„(E contribute
to R (E). We have then

z I „(e+e )e " = f RQCD(E)e dE .M„E 0

(20)

Equation (20) is quite interesting, since it establishes a
direct connection between resonance parameters (leptonic
widths, masses) and perturbative QCD. Notice also that
as m~~ oo, more and more narrow states are found below
the threshold E. Therefore in the limit m&~oo the left-
hand side of Eq. (20) approaches R~s(T). This is a conse-
quence of our choice for the weight function f(E). Tak-
ing derivatives of Eq. (20) with respect to T we obtain

r (e+e
M„&E

= Rk(T, E)

f RQcD(E)E e dE k =0, 1 2. . .

In what follows, for RQcD(E) we use

(21)

RQCD(E) =3e~ U
— [1+—', a,f(U)]8(E —2m~),

(22)

f(U)=
2U

(3+v) m 3

4 2 4~
(23)

We have applied Eq. (21) to charmonium and Y systems.

A. Charmonium

We use E=3.7 GeV, and for the P and g' parameters
we have used'

Mg ——3.096 GeV,

I (g~e+e ) =4.8+0.6 keV,

M~ ——3.687 GeV,

I (g'~e+e )=2.2+0.3 keV .

(24)

FIG. 1. Contour in the complex energy plane used in evalua-

tion of Eq. (18).

The left-hand side of Eq. (21) for k =0 is represented as a
dashed area (due to the experimental uncertainties of the
leptonic widths) in Fig. 2. For the corresponding right-
hand side of Eq. (21) we have to specify the coupling con-
stant o., and the quark mass m, . For the coupling con-
stant a, we have used a, =0.2. The quark mass, since it
appears in a formula derived within perturbation theory,
is the current quark mass. For m, =1.23 GeV we ob-
tained the solid line (Fig. 2) which is in reasonable agree-
ment with the dashed area constructed from the experi-
mental data. If we attempt to test Eq. (21) for
k =1,2, . . . , we find out that the agreement deteriorates
as k rises. We come back to this point later on.
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2.0„ 5.0 10

03 T (GeV" ) 0.6

0
1.0 T (0~y-& ) 2.0

FIG. 2. The sum rule, Eq. (21) for k =0, in the case of char-
monium.

B. Y states

Mz ——9.433 GeV

I (Y~e+e ) =1.125—0.725 keV,

Mz ——10.0 GeV,

I (Y'~e+e ) =0.578—0.358 keV,

M~~~ = 10.32 GeV,

I (Y"~e+e ) =0.368—0.208 keV .

(25)

We use E=10.4 GeV, so that three narrow states
(Y,Y',Y") contribute to the left-hand side of Eq. (21).
For the Y parameters we have used the Cornell Electron
Storage Ring data'

FIG. 4. The sum rule, Eq. {21jfor k =20, in the case of the
Y system.

terms contributing to RQcD(E) and for heavy quarks the
most important is the gluon condensate, analyzed
thoroughly in Ref. 6. The gluon-condensate term behaves
as 1/m . Therefore, while for the charmonium system
the gluon-condensate term is expected to be rather impor-
tant, for the Y system is smaller by a factor
(mblm, ) =160." We feel this is the reason why [always
using Eq. (22) for RQCD(E)], for the Y system the FESR
are satisfied amazingly well, while for the charmonium
system the agreement is less impressive.

IV. MONTE CARLO ESTIMATES

Imagine a situation where the masses M„and the lep-
tonic widths I „of radially excited S states ( QQ bound
states) are known. We can construct then the following
quantity:

The first (second) number for the leptonic widths corre-
sponds to the upper (lower) experimental bound. For the
QCD parameter a, and the quark mass mb we use

n, =0.15 and mb ——4.4 GeV. Figure 3 shows the nice
agreement between perturbative QCD (solid line) and res-
onance physics (dashed area) for k =0. What we found in
the Y case is that Eq. (21) is satisfied for all values of k
(we checked for k values up to 30). Figure 4 shows this
persistent agreement for k =20.

RQcD(E) as given by Eq. (22), contains only perturba-
tive terms. In general there are also nonperturbative

0.6

—:2m'+ (E), (26)

where (E ) is the expectation value of the energy. (E )
can be viewed also as the logarithmic derivative with
respect to time of the nonrelativistic propagator of the
quark Q. Following Feynman's recipe, ' we can consider
the expectation value of the energy as a statistical average
over all possible trajectories starting and ending at the ori-
gin

I UJ

0.30
CC

rtErt e(E)= —s[r(t)] (27)

0.3 T ( G~y-~ ) 0.6

FIG. 3. The sum rule, Eq. {21)for k =0, in the case of the Y
system.

where $[r(t)] is the classical action along a trajectory
r(t). Creutz and Freedman have shown' that a Monte
Carlo evaluation of different quantities in one-
dimensional quantum mechanics is feasible, if we use the
Metropolis algorithm. The Metropolis algorithm gen-
erates paths r(t) with probability exp( —S[r(t)]). Then
Eq. (27) is reduced to an arithmetic average
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m 35-

(2&)

where X is the total number of paths generated in the
Monte Carlo sequence.

It is beyond the scope of this paper to generalize the
work of Ref. 19 to three-dimensional quantum mechanics.
We examine here the simple case of a linear potential
V(r) =kr. For a linear potential the wave function at the
origin is a constant independent of n and therefore (E)
can be evaluated in one dimension (the radial one). In the
actual case we do not have the infinite 5 states to con-
struct M(T). In the charmonium case we have only 4
and O'. Using 4 and 4" only we can construct a truncat-
ed M,M„. In the limit T~ ao M( T) is dominated by the
lowest-energy states and we have

M(T) ~ M„(T) .
T~ 00

(29)

For heavier quarks (b, t, . . . ) we would have more reso-
nances below threshold, more states contributing to M„,
and therefore a larger region of overlap between M(T)
and M«(T). In Fig. 5 the shaded area represents M„(T)
constructed from the experimental parameters of 4 and

The charmonium states have been studied
phenomenologically using a linear potential in Ref. 21.
Using the parameters of Ref. 21 we constructed the
theoretical M„(solid line in Fig. 5) corresponding to the
linear potential. The black points in Fig. 5 correspond to
the Monte Carlo evaluation of M(T). Notice that as T
increases M(T) approaches M«(T).

V. CONCLUSIONS

In the present work we searched to establish relations
between the quark-gluon world of QCD and the actual

30 s I i I i I i I s I s I
' 0 T(GeV-" )

FIG. 5. M„(T) and M(T) as functions of T in the case of
charmonium. Shaded area represents M„(T) constructed from
the experimental parameters of 4 and %". Solid curve

represents M„(T) corresponding to a linear potential, while

closed circles correspond to the Monte Carlo evaluation of
M(T).

hadronic world. We examined the idea of duality' and
we found out that it is not simply a conjecture but a true
statement: at large energies summation of bound states
and parton model give identical results. Our proof is
based on the observation that the cross section for
e+e ~hadrons in potential models is directly related,
through a Laplace transform, to the Feynman propagator.

In Sec. III we derived FESR's which provide a direct
relation between masses and leptonic widths of heavy res-
onances on one hand and QCD parameters on the other
hand. Our derivation rests upon the essential hypothesis
that at large energies perturbative QCD is a valid theory.
The amazing success of FESR's in the bb case is a strong
indication that perturbative QCD (including only a,
corrections) does describe the bb system. In the cc case
our analysis indicates that for a full description of charm
systems we have to introduce nonperturbative terms
(gluon condensate). It is worthwhile to point out the
values we obtained for the quark current masses. If we
accept that the quark constituent mass is one half the
mass of the vector meson and if we further argue that the
mass difference between constituent mass and current
mass is around 300 MeV (as it is for u and d quarks),
then we end up with m, =1.2 GeV and m=4. 4 GeV.
These are precisely the values we have obtained from the
FESR.

In Sec. IV we constructed, from available experimental
data, a quantity M„(T) which for large values of T is re-
lated to a Green's function. For the simple case of the
linear potential we have shown that a Monte Carlo study
is feasible. Clearly it is desirable to extend our analysis to
three dimensions, so that any interquark potential can be
examined and work along these lines is under way.

Recently it has been pointed out that the approach
outlined in Ref. 6 involves a variational approximation
and consequently the value extracted for the gluon-
condensate parameter is not trustworthy. We would like
to remark that our derivation of the FESR's does not in-
volve any approximation. Therefore our FESR's supple-
mented by the gluon-condensate term, can be used in the
charmonium case to determine the value of the gluon-
condensate. An analysis along these lines has been carried
out by Miller and Olsson, " using power moments rather
than exponential moments, and a reasonable value for the
gluon condensate has been obtained.
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