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Baryon distribution in relativistic heavy-ion collisions

Cheuk- Yin Wong
Oak Ridge locational Laboratory, Oak Ridge, Tennessee 37830

(Received 9 February 1984)

In order to determine whether a pure quark-gluon plasma with no net baryon density can be
formed in the central rapidity region in relativistic heavy-ion collisions, we estimate the baryon dis-
tribution by using a Glauber-type multiple-collision model in which the nucleons of one nucleus de-

grade in energy as they make collisions with nucleons in the other nucleus. As a test of this model,
we study first nucleon-nucleus collisions at 100 GeV/c and compare the theoretical results with the
experimental data of Barton et ah. The results are then generalized to study the baryon distribution
in nucleus-nucleus collisions. It is found that in the head-on collision of two heavy nuclei (3 & 100),
the baryon rapidity distributions have broad peaks and extend well into the central rapidity region.
The energy density of the baryon in the central rapidity region is about 5—6% of the total energy
density at a center-of-mass energy of 30 GeV per nucleon and decreases to about 2—3% at a
center-of-mass energy of 100 GeV per nucleon. The stopping power for a baryon in nuclear matter
is extracted.

I. INTRODUCTION

Recently, there has been much interest in relativistic
heavy-ion collisions at an energy of many tens of GeV per
nucleon in the c.m. system It was suggested that in en-
ergetic reactions involving large nuclei, a large number of
baryon-baryon collisions take place in a small region of
space and at about the same time (in the center-of-mass
frame). With each baryon-baryon collision producing a
large number of hadronic particles, the total energy densi-

ty in the central rapidity region is high and may exceed
the critical energy density for a phase transition between
ordinary confined matter and the unconfined quark-gluon
plasma. Experimental searches and investigations of the
quark-gluon plasma will provide a new insight in quark
confinement and the evolution of the early universe.

Previously, the initial energy density in the central rapi-
dity region was estimated using different models. ' ' A
phenomenological Glauber-type multiple-collision model
gives quantitatively reasonable agreement for the multipli-
city in the central rapidity region. The energy density in-
ferred therefrom is high. For example, for the head-on
collision of U on U at 30 GeV per nucleon in the
center-of-mass system, the maximum energy density is
about 10 GeV/fm . The initial energy density goes as
A '~ 8'~ for the collision of two nuclei with mass num-
bers A and 8, and is rather insensitive to impact parame-
ters.

As the fraction of baryons in the early universe was
small, it seems desirable to design a heavy-ion collider
such that at the available bombarding energies when the
energy density in the central rapidity is high enough for a
quark-gluon-plasma phase transition, there is no net
baryon density there. Whether this is possible depends on
the baryon distribution. Recent investigations from
nucleon-nucleus data reveal that the average downward
shift of the projectile-baryon rapidity is quite large. In
Ref. 9, however, the widths of the distribution were not

estimated. The choice on the optimal bombarding energy
depends not only on the average rapidity loss but also on
the width of the momentum distribution of the baryons.
A small width would allow the two fragmentation regions
to separate from each other when the bombarding energy
is high enough, thereby allowing the formation of a pure
quark-gluon plasma. On the other hand, a large width
will make it impossible to have a pure quark-gluon plas-
ma without some baryon impurities.

Not much is known about the baryon momentum dis-
tribution in highly relativistic heavy-ion reactions. A pre-
vious analysis' made use of only mean loss per collision
and imposed the constraint that in the laboratory frame a
projectile nucleon could not be slowed down below the
speed of the center-of-mass frame. The latter constraint
does not arise from energy-conservation conditions and
may not be realistic. The use of only average loss per col-
lision without folding the width of the distribution is not
a good description because of the large width in the
momentum distribution in nucleon-nucleon collisions.

We shall study the baryon distribution" using a
Glauber-type multiple-collision model' ' in which a nu-
cleon in one nucleus makes many inelastic collisions with
nucleons in the other nucleus, the probability of a col-
lision being given by the thickness function and the
nucleon-nucleon inelastic cross section. The nucleon may
change its identity during its passage through the nucleus,
but its baryon number remains unchanged. The relation
between the G-lauber multiple-collision expansion and the
high-order Feynman diagrams in a hadron-nucleus col-
lision was first demonstrated by Gribov and studied fur-
ther by other authors. ' ' The multiple-collision model
is a reasonable description if the range of nucleon-nucleon
interaction is short compared with the spacing between
nucleons. In the laboratory frame, the latter quantity is of
the order of 2 fm, while the range of nucleon-nucleon in-
teraction is about 0.7 fm and decreases with increasing en-

ergy. It appears that a multiple-collision model may be a
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reasonable concept. Indeed, the use of the Glauber model
gives the correct nucleon-nucleus absorption cross section
and its 3 dependence. ' ' A Glauber model, with the ad-
ditional assumption of no secondary collision of the pro-
duced particles but no adjustable parameters, gives a total
multiplicity consistently within 30%. ' ' A multiple-
collision picture of the Glauber type appears to have ap-
proximate validity in describing the gross features of the
reaction process. However, there are complications when
we try to use the model to examine the finer details of
high-energy nucleus-nucleus collisions. In these collisions,
most of the particles are produced outside the nuclei,
while energies of the baryons are apparently degraded in-

side the nucleus. How are the energies of baryons degrad-
ed as they pass through the other nucleus, and how does
the degradation affect the production process? How does
one account for 30%%uo difference in total multiplicity and
change of shape of the rapidity density? ' ' ' Different
assumptions will lead to different model results. In the
multichain model the momentum distribution of the
colliding baryons comes from a coherent but unknown
partition of the energy among the collision chains. In
Ref. 24, it is given by a postulated probability function
P(A, ) =aA, ', where a is a free parameter and found to
be -6. In some other work on the multichain model,
the momentum distribution is parametrized in terms of an
equal partition of the beam momentum among the arms
of the chain. However, there are many approximations in
the numerical calculations which make their conclusions
uncertain. Some recent theoretical work ' studied

pA ~pX data in terms of a basic degradation function in-

volving an adjustable parameter and postulated a relation
of A between the invariant pA cross section and the
mass number A.

As the production of most of the particles occurs out-
side the nucleus while collisions occur inside the nucleus,
it appears that by causality the production of particles
from one collision is affected by the latter collisions.
However, as we observe in the laboratory frame, the large
mean separation between nucleons in nuclear matter and
the small range of nucleon-nucleon interaction makes it
plausible that for a given collision, much of the influence
on energy degradation and the particle production pro-
cesses from later collisions along the chain is small. To a
first approximation, then, this small influence can be
neglected. One has then a multiple-collision model in
which each baryon-baryon collision produces particles and
degrades energies as if the collision occurs in free space.
In this phenomenological model, all the baryon-baryon
collisions are independent, and their effects are in-

coherently superimposed. If the baryon-baryon data are
known, there will be no free parameters; all the informa-
tion must come from the relevant nucleon-nucleon (or
baryon-baryon) experimental data. This model does not
include coherent effects such as arising from the interfer-
ence due to later collisions, the mean-field
hydrodynamical-type compression, the formation zone
of Landau and Pomeranchuk, inside-outside cascade,
the formation of the quark-gluon plasma, etc. This
multiple-collision model with no free parameters can serve
as a reference model (a benchmark, so to speak) whereby

any coherent or other effect, if it exists at all, may mani-
fest itself as systematic deviations of the experimental
data from model predictions. It is important to test this
reference model in cases where there are experimental
data available, not only to judge the degree of approxi-
mate validity of the model, but also to see if there is any
need for the introduction of additional corrections or
modifications due to coherent or other effects. In this pa-
per we shall focus our attention on the longitudinal-
momentum distribution in terms of the Feynman scaling
variable x. The transverse-momentum distribution is ap-
proximately an exponential or a Gaussian with a mean
transverse momentum of about 0.3—0.4 GeV/c (Refs. 31
and 32).

In our studies of the nucleus-nucleus collisions, we are
very much aided by a remarkable feature of the nucleon-
nucleon inelastic differential cross section. ' In terms of
the Feynman scaling variable x, the inelastic cross section
der/dx is approximately a constant. This is to say, a nu-
cleon after an inelastic collision can be found within the
whole range of fractional momentum with about equal
probability. In terms of x, the width of the momentum
distribution after a nucleon-nucleon collision is very wide

'indeed. This simple feature simplifies the theoretical
analysis. Furthermore, the differential cross sections are
known to obey Feynman scaling. That is, the approxi-
mate constancy of der/dx is independent of the nucleon-
nucleon bombarding energy if the energy is sufficiently
high. Thus, in the discussion of nucleon-nucleus collision,
because of Feynman scaling, we do not need to follow the
energy of relative motion of each baryon-nucleon col-
lision; it suffices to follow the x distribution by folding
the x distributions of all previous baryon-nucleon col-
lisions. With some simplifying assumptions, it also allows
us to treat the projectile nucleons separately from the tar-
get nucleons in nucleus-nucleus collisions.

As a point of calibration of our model, we study first
the differential cross section in nucleon-nucleus collisions
and compare the theoretical results with the experimental
data of Barton et al. The results are then generalized to
study the baryon distribution in nucleus-nucleus col-
11slons.

This paper is organized as follows. In Sec. II we review
the experimental data on nucleon-nucleon collisions and
examine the remarkable feature of an approximately con-
stant der/dx as a function of x. We shall assume that
der/dx is a constant and obtain the momentum distribu-
tions in x and in rapidity y for nucleons after n nucleon-
nucleon (or baryon-baryon) inelastic collisions. They are
given in analytic forms in Sec. III. We study in Sec. IV
the implication of these momentum distributions on the
stopping-power law of baryons traversing nuclear matter.
In Sec. V we show how the momentum distributions are
modified due to energy-momentum-conservation con-
straints. These results, combined with the probability for
having collisions of different frequencies, allow one to cal-,
culate the inelastic differential cross section in nucleon-
nucleus collisions. We compare the theoretical results
with the experimental data in Sec. VI and find good
agreement. Treating a nucleus-nucleus collision as the
collision of an ensemble of spatially correlated nucleons
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with a nucleus, we obtain in Sec. VII the rapidity distribu-
tion of baryons in a head-on nucleus-nucleus collision of
equal-mass nuclei. We discuss the effect of Fermi motion
on the distribution in Sec. VIII. In Sec. IX we relate the
resultant rapidity distribution to the spatial density of
baryons at the proper time of 1 fm/c when the produced
particles begin to emerge. Numerical results are given in
Sec. X for two different bombarding energies. In Sec. XI
we discuss the implication of the present results on the
question of energy requirements for relativistic heavy-ion
collider s.

and

s =(a +b)~ Q 5)

X=1—
2$2 4p 2

The elastic cross section has the form

(2.7)

A(s, a, b )=s +a +b 2—(sa +sb +a2b2) . (2.6)

For the elastic nucleon-nucleon scattering, the invariant
quantity t =(b —c) is related to x by

II. MOMENTUM DISTRIBUTION
IN NUCLEON-NUCLEON COLLISIONS

do g Bt (2.8)

Q2 $2
P1+ ~ 0~ +Pl

471 4P j

(2.1)

and

In either the nucleon-nucleus collision or the nucleus-
nucleus collision, the basic process is the nucleon-nucleon
collision. Experimental information on nucleon-nucleon
collisions reveals much about the degradation of the ener-

gy of a baryon when it collides with another baryon. It
forms the basis for all subsequent discussions.

In a nucleon-nucleon collision, the incident nucleon can
be scattered elastically or inelastically. At high energies,
the inelastic scattering, with the production of a large
number of particles, is the predominant mechanism for
slowing down the incident nucleon. The elastic scattering
has a negligible effect in energy degradation. This can be
demonstrated quantitatively in the following way. We
consider the collision of a +b ~c +d with b the incident
(beam) nucleon and c the detected particle. We use the
notation that the momentum has the same label as the
particle. That is, the energy-momentum four-vector of b

is ( bo, b r, bz) and the energy-momentum four-vector of c
is (co, c T,cz). In the infinite-momentum-frame represen-
tation, the energy-momentum four-vectors b and c can be
rewritten as

The average x after an elastic scattering is therefore

x= fxe 'dt/f e 'dt=1+
2

1

B(b 4pi —) (2.9)

At an incident laboratory momentum of 100 GeV/c the
slope parameter is B—12 (GeV/c) and we have

1 —x =0.00053 . (2.10)

Thus, the average fractional loss of momentum due to
elastic scattering is small indeed.

The fractional loss of momentum due to an inelastic
scattering is, however, very substantial. In an inelastic
scattering, a large number of particles are produced with a
plateau in the central rapidity region which extends to
y —+3 in the center-of-mass frame ' (for collisions
with ~s-50 GeV). These particles carry away a sub-
stantial amount of energy and momentum, and the energy
momentum of the incident baryon is much degraded. The
degree of degradation is measured by the pp~pX cross
section as a function of x and pT. The pT dependence
varies slightly with the value of x. In the present study,
we shall focus our attention on the x dependence of the
momentum distribution by considering the differential
cross section integrated over the transverse momenta pT.
The cross section ' d o /dx for inelastic collision at
pi, b ——100 and 175 GeV/c is shown in Fig. l. As one ob-
serves, except for a small region around x —1.0, the cross

c +CT C jcTC= XPi+ , c T,xp)—
4xP) 4P )

(2.2)
100

where x, the Feynman scaling variable, P+P~P+X o 100 GeV/c
175 GeV/c

Cp+Cz

I p+I; ' Q.3)

is the (longitudinal) momentum fraction of the detected
particle c with respect to the (parent) beam particle b and

b =b p
—b . The momentum fraction x is independent

of the coordinate frames. The momentum parameter p&,
however, depends on the choice of the coordinate system.
In the center-of-mass frame, pi is given by
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pi =[s+b a+A(s, a, b )]/4M—s,
where the covariant quantity s is

(2.4)
FIG. 1. Cross section do. /dx for the reaction pp~px after

integration over the transverse momenta pT. Data are from
Ref. 31. Note the approximate constancy of the cross section.
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section is quite flat. There are small kinematically forbid-
den regions very close to x ==1.0 and 0 (which we shall
neglect for the moment but shall go into some detail
later). There is also a small contribution of protons near
the region x =0 from proton-antiproton pair production
which we do not need to consider. The result of Fig. 1

suggests that it is reasonable to make the approximation
of a constant pp —+px differential cross section that is in-
dependent of x:

w ( x„ i,x„)=8(x„ i —x„)8(x„)/x„ (3.2)

The functions w and D'"' are normalized according to

f w(x„ i,x„)dx„=fD'"'(x„)dx„=1 . (3.3)

D' '(x) =5(x —1) (3.4)

Initially, the source momentum distribution is a 5 func-
tion

do -20 mb .
dx

(2.11)
and the momentum distribution after n collisions D'"'(x)
can be integrated out to give

The differential cross section do/dx for finding other
baryons is expected to have the same feature; that is,
der/dx is approximately independent of x. The probabili-
ty distribution w (x ) for finding a "leading-particle"
baryon with momentum fraction x after an inelastic
nucleon-nucleon or a baryon-baryon collision can be ap-
proximated by

w(x)= f dx ==1 .
dx o dx

(2.12)

This means that in an inelastic collision between a baryon
and another baryon, the fractional momentum of the
resultant baryon x ranges through all possible values
which occur with equal probability. On the average, the
momentum fraction x after one inelastic collision is one-
half of its original value. The loss of momentum after an
inelastic collision is so much larger than the loss of
momentum after an elastic collision that we can safely
neglect the elastic collision in our consideration of the
baryon momentum distribution. Henceforth, the terms
nucleon-nucleon collision and baryon-baryon collision
shall mean nucleon-nucleon inelastic collision or baryon-
baryon inelastic collision, respectively.

As is well known, when energy is sufficiently high, the
cross sections obey Feynman scaling such that when ex-
pressed as a function of x, the invariant cross section is
approximately independent of energy (or at least only very
mildly dependent). This remarkable feature, together
with the constancy of the differential cross section
do/dx, makes it simple to obtain the spectra of baryons
in p-A or A-A collisions.

D'"(x)=8(1—x)8(x) (3.5)

n —1

8(1—x)8(x) .
(n —1)!

(3.6)

x„=(-,' )" . (3.7)

Therefore, on the average, the x value of a baryon de-

creases by a factor of —,
'

every time the baryon makes an

inelastic colhsion.
Besides the Feynman scaling variable x, there is a com-

plementary rapidity variable y defined by

Co+Cg
y = —,ln

co —cz
(3.8)

where c is the detected particle (proton in this case).
Therefore x and y are related by

The distribution function shows that as the number of
collisions increases, the probability of having a small
value of x increases by a power of [—ln(x)]. Although
D'"'(x) becomes very large near x =0, the integral (3.3)
nevertheless converges. For a given value of x, the
distribution is a Poisson distribution in n with

(n —I ) = —ln(x). It is interesting to note that this distri-
bution is similar in form to the distribution of neutron en-

ergies in the slowing down of neutrons in a reactor. 37

The distribution function (3.6) produces the following
average value of x after n collisions:

III. MOMENTUM DISTRIBUTION AFTER MANY
NUCLEON-NUCLEON INELASTIC COLLISIONS

lnx =y —y;+In(mz /m),

where

(3.9)

In this section we shall assume first Feynman scaling
and no kinematic constraints on the value of x. The
momentum distribution of the incident nucleon after n in-
elastic collisions D'"'(x„) is related to that after (n —1)
inelastic collisions D'" "(x„ i) by

D'"'(x„)=fdx„ iD'" "(x„ i)w(x„ i,x„), (3.1)

where the function w (x„ i,x„) is the probability for find-
ing a "leading" baryon with a final Feynman scaling vari-
able x„after a nucleon-nucleon or a baryon-baryon inelas-
tic collision if the initial scaling variable is x„&. From
experimental data of nucleon-nucleon collision (2.12), the
normalized probability distribution w (x„ i,x„) can be ap-
proximated by

mT ——(m +cT)2 2 1/2 (3.10)

m is the mass of detected particle c, and y; is the rapidity
of the incident particle. As cT is of the order of 0.400
GeV/c and In(mT/m) =0.083, it is reasonable to neglect
henceforth the term of 1n(mT/m) of Eq. (3.9) in high-
energy collisions where the range of y is of the order of
10—20. The Feynman scaling variable x gives an expand-
ed representation of the region near x =1, but is rather
compressed near the region x =0. On the other hand, the
rapidity variable y gives an expanded representation of the
region around x =0, but is rather compressed near the re-
gion x=1. It is necessary to use both variables to provide
a good representation for the entire region.

From the distribution function D'"'(x), we obtain the
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and

D'"(y) =&(y —ya ) (3.1 1)

distribution functions as a function of the rapidity vari-
able y as

dE 1—
8n

E.

E=MTcoshy„,

and the stopping-power equation (4.2) becomes
' 2 1/2

(4.3)

(4.4)

() e (ya —y)D'"'(y)= e(y~ —y) for n )1, (3.12)
(n —1)!

where y~ is the beam rapidity. The distribution function
is normalized according to

fD'"'(y)dy =1 (3.13)

For n & 2 the rapidity distribution has a peak located at

(3.14)

dE
dz

pao in

PlT

E (4.5)

where po is the (proper) nuclear-matter number density
(-0.14 nucleons/fm ). The degradation length A, is there-
fore

2 1/2

In terms of the longitudinal coordinate z, the stopping-
power equation is

and a full width at half maximum of V'n —1. The aver-
age value of y after n inelastic collisions is

dE
=poinEdz (4.6)

3'n =yg —n . (3.15)

Therefore, on the average, the rapidity variable of a
baryon decreases by unity every time the baryon makes an
inelastic collision [cf. Eq. (9.8) of Ref. 37]. The width of
the distribution increases as v'n —1. The greater the
number of nucleon-nucleon collisions, the greater are the
shift and the width of the distribution. One expects there-
fore that as the nuclear mass increases, the shift and the
width of the distribution also increase.

IV. NUCLEAR STOPPING POWER

Equations (3.7) and (3.15) relate the average values of
x„and y„ to the number of baryon-baryon collisions. The
quantity x„ is frame independent. Although y„depends
on the frame of reference, the difference y„—yg for Eq.
(3.15) is independent of the frame of reference. These two
equations can be considered the relativistic stopping-
power equations for a baryon traveling in nuclear matter.
In differential forms, these stopping-power equations are

and

= —(ln2)x„
8n

(4.1)

(4.2)

The stopping-power equation for x„ is not as useful as the
stopping-power equation for y„because of the large width
for the x distribution. For example, after one collision,
the x values are distributed uniformly over the entire
range of x; in contrast, the corresponding width in y is
still quite narrow in y compared to the whole range of y.
We shall restrict our discussion to the stopping-power
equation for y„.

~e can compare the differential form of the stopping-
power law (4.2) with that for the bremsstrahlung of elec-
trons. For that purpose, it is convenient to work in the
frame in which the nuclear matter is at rest. By defini-
tion, the energy of the baryon at the rapidity y„ is

At high energies in the laboratory system, the term in the
square brackets is very nearly unity. The energy loss of
the baryon per unit length is proportional to the energy of
the baryon and the degradation length is 2.3 fm. This de-
gradation length is much shorter than the value of 17 fm
obtained with very different concepts and approxima-
tions.

The stopping-power equation for an electron in a medi-
um is given by

dE(z)
Gz

po~radE ~ (4.7)

V. MOMENTUM DISTRIBUTION
WITH KINEMATIC CONSTRAINTS

The discussions in the preceding sections assume that x
(and y) can assume all possible values in the closed inter-
val [0,1] (and [—ao,yz]) without constraint. In reality,

where o.„~, the total radiation cross section, becomes near-
ly energy independent as the electron energy becomes
much greater than the rest mass. A comparison of (4.5)
and (4.7) shows the similarity which strongly suggests
that the particle-producing mechanism and energy degra-
dation in nucleon-nucleon collision is a bremsstrahlung-
type process. The incident nucleon interacts with the ra-
diation field of QCD and also with the other nucleon.
The latter interaction alters the speed of the incident nu-
cleon. Subsequent deceleration leads to radiation which
materializes into mesons.

Although the equations of stopping power are similar,
there is a difference in the bremsstrahlung of electrons
and the nucleon-nucleon collision. In electron brems-
strahlung, the production of one energetic photon in an
electron-atom collision is most probable and the produc-
tion of two or more energetic photons is a rather rare
event. The ratio of the cross section for the production of
n energetic photons to a single energetic photon goes as
(e /Pic)" '. In contrast, in a nucleon-nucleon collision,
the average multiplicity of produced energetic particles is
about 10 for a center-of-mass energy of vs -30 GeV.
This difference is due to the small coupling constant in
QED and a much larger coupling constant in QCD.
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xI
xU

1/2
mcTa
P1

(5.1)

In the above equation, the negative sign is for the lower
limit xL and the positive sign for the upper limit xU. The
quantity a is

the values of x or y are constrained by the requirement of
energy and momentum conservation. The case of no
kinematic constraint is of interest only in the extremely-
high-energy limit where the region under consideration is
far from the region affected by the constraint.

In the collision process of a +b —+c+X with
m, =mb ——m, =m, it can be shown that the energy-
conservation condition becomes a quadratic equation in x.
The range of x values allowed by the energy-conservation
condition is xI &x &xU where xl and xU are given by

D'"'(x) = 1 1

1 —xL (n —1)!
x —XL—ln
1 —XL

w(x» |,x» ) =8(x» |—x» )8(x» —XL )/(x» &

—XL, ) ~

(5.5)

The corresponding probability distribution in y; after a
baryon-baryon collision for a baryon with initial rapidity

y; 1 incident on a target with target rapidity yz- is

exp(y; —y; i)
w(y -1» )=

1

' '
8(y —yT)8(y; 1

—y;) .
1 —exp yT y—

(5.6)

From Eq. (3.1), for the case of a single incident proton
with an initial sharp momentum distribution 5(x —1), the
momentum distribution of the baryon after n inelastic
collisions is

(n —1)

mcx= 1+
4p

2

2 2 . 2
—2

1+ 1+
m X min m (5.2) X8(1—x)8(x —xL ) . (5.7)

and

2
mcT m

4p, ' (bo+b, )i,b

mcT
2

(5.3)

with p| given by Eq. (24) and X;„the minimum value

of X for the unobserved particle(s) X. In the case of
p| »(m or X;„)which we shall assume, we have D(»)(y) e

3' —Pg
1

,~r «» (n —1)!
e~—e—ln
&a &T

X8(y, —y)8(y —yT) .

The corresponding distribution for y is
(n —1)

(5.8)

X m)~
—2m +mcTxU=1-

4p
2

(5.4)

All the distribution functions are normalized according to

f w(x„„x„)dx„=fw(y„,y„)dy„

= fD " (x)dx = fD " (y)dy = 1

The lower bound of x, as given by Eq. (5.3), corresponds
approximately to a nucleon completely stopped in the lab-

oratory frame. That is, in the laboratory frame the
detected baryon c has zero momentum and has approxi-
mately the target rapidity yT.

Although there are two limits on x, the effects of the
constraint due to the two limits are quite different. The
difference between x U and unity is approximately
m»m/2pi which is much smaller than unity for col-
lisions in the region of many tens of GeV per nucleon (in

the c.m. system). The corresponding difference in rapidi-
ty is a very small fraction of a unit of rapidity. The situa-
tion is very different for the other limit. Although the
lower limit xL, is a small fraction of unity, the difference
between xL, and 0 corresponds to an infinite difference in
the rapidity variable y. For these reasons, we shall not
distinguish the upper limit xU and unity but shall keep
the lower limit xL as given by Eq. (5.3) so that x is con-
fined by xL &x & 1. The corresponding rapidity variable
y is then limited by yT &y &y;, where y; is the rapidity of
the incident baryon.

The experimental differential cross section do. /dx as a
function of x is approximately a constant. Therefore, the
probability w(x» r, x„) for finding a leading baryon with
a final Feynman scaling variable x„, after a nucleon-
nucleon or baryon-baryon inelastic collision if the initial
scaling variable is xn» is

VI. MOMENTUM DISTRIBUTION
IN NUCLEON-NUCLEUS COLLISIONS

In the reaction pd~bX where A is the target nucleus

with mass number A and b is a baryon, the inelastic cross
section dot' /dx can be obtained by probability argu-
rnents. We introduce the thickness function' for the col-
lision of a beam nucleus 8 with a target nucleus 2 as

T(b)= f pq(b~, z)p~(bz, z~)t(b —bz —b~)

Xd b~dz~d b~dz&, (6.1)

where pz (or similarly pz) is the normalized density dis-

tribution for the nucleus 3 (or B) and t (b ) is the normal-
ized thickness function for nucleon-nucleon collision. The
spatial coordinates bz, zz (or similarly bz, zz) are mea-
sured with respect to the center of the nucleus A (or 8).
The functions p, T, and t are normalized as

fpz(r )dr= fpz(r )dr= fT(b )db= f t(b )db=l .

(6.2)

It is easy to see that in the infinite-energy limit the results
of Eqs. (5.7) and (5.8) reduce to the previous results of
Eqs. (3.6) and (3.12).
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The probability for the incident nucleon to make an in-
elastic collision with a target nucleon is given by the prod-
uct T~(b)o;„, where o;„ is the nucleon-nucleon inelastic
cross section and is ' 31.3 mb. Thus, in any encounter be-
tween two nuclei with mass numbers A and B, the proba-
bility for the occurrence of n inelastic nucleon-nucleon in-
elastic collisions at an impact parameter b is given by

do-&A

dx

A —n n+i
=2 P2+ g 3 A n D'"'( )f . ( —1)'

n=o i=o -" . - ' "+'

where

(6.9)

where p is related to the root-mean-square radius of A, we
obtain

P(n, b ) = [T(b)o;„]"[I T(b)—o;„]" .", (6.3) f=o;„/2mP (6.10)

which is normalized according to
AB

QP(n, b )=1 . (6.4)

For heavy nuclei, the thickness function is closer to the
shape of (R b)'~—, and can be approximated better by

T(b)=(3/2vrR )(R —b )'~ 8(R b)— (6.1 1)

where R is the sum of the radii of nucleus 2 and B. The
differential cross section is then

Note that in the above normalization we include the case
of no inelastic collision n =0 because the defining event
involves any encounter between nucleus A and B.

In this section we shall specialize to the case of
nucleon-nucleus collision with B =1. From the probabili-
ty for the occurrence of n inelastic collisions [Eq. (6.3)]
and the momentum distribution after n collisions D'"'(x),
the differential cross section do. ~ /dx for the process
pA ~bX in the collision of a nucleon with a nucleus of
mass number A is

do~
2 R2g g" A A n-

n in=o i=0
gn+i

XD'"'(x) ' .n+i +2

where

f=3o;„/2mR.

(6.12)

(6.13)

d
r

=fdb g D'"'(x)[T(b)o ]"
n=o

X [1 T(b)~ ]A —8 (6.5)

d +NC

dx
=fdb[1 —T(b)o;„]"5(1—x) . (6.6)

fhe rest of the summation in Eq. (6.5) represents the cross
section for the proton having suffered at least one inelas-
tic collision and can be called inelastic collision cross sec-
tion do,N/dx

de = fdb g D'"'(x)[T(b)o;„]"
dx

In the above equation, the summation runs from n =0 to
n =A. The n =0 term represents the cross section for the
proton going through or passing the nucleus without an
inelastic collision and can be called noninelastic (or no-
collision) cross section do Nc/dx:

T( b ) = fp~(»z~ )dz~ .

We represent the density function by

(6.14)

The above results may perhaps be appropriate in the re-
gion of x where the contribution comes mainly from the
incident nucleon having suffered more than one or two
collisions, because either approximation gives an adequate
description of the central density. However, in the region
near x = 1, where the contribution comes mainly from the
incident nucleon having suffered one or at most two col-
lisions, the cross section depends very sensitively on the
tail of the density distribution. The Gaussian approxima-
tion has a large surface thickness and leads to too large a
differential cross section do/dx near x =1, while the
sharp-cutoff density has no density tail and leads to too
small a differential cross section near x =1. For these
reasons, we shall not use the results of Eqs. (6.8)—(6.13).
Instead, we shall obtain do/dx numerically using Eq.
(6.5) and a thickness function obtained numerically from
nuclear density. Because of the small size of the nucleon
compared to the nucleus, it is reasonable to approximate
pB and t by 6 functions to obtain

)& [1—T(b)o;„]" (6.7) pa(b, z~)=
2 2 in1+exp[[(b +z~ )'~ R„]/aI—

With the knowledge of D'"'(x) as given in the preced-
ing section, Eq. (6.5) can be integrated when T(b) is
known. For the simple case of T(b) represented by a
Gaussian function

where po is chosen to satisfy the normalization condition
(6.2), R~ ——roA' and a is the diffuseness parameter.
Numerical results for do. /dx are obtained as a function of
x. We can then obtain xdo. /dx which is the invariant
cross section integrated over the transverse momenta:

b2
T(b) =

z exp
2' P' 2P'

(6.8) do' fEd o'd~d= d
P' (6.16)
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Experimentally, the invariant cross sections Ed tr/dp
for pA ~px reactions are measured for a few values of pT
and the integrated cross section xdo/dx is not available
except for pp~px. ' To compare with experimental
data, we shall assume that in the range of interest,
0.3 &x & 1.0, these two cross sections are related by a con-

, stant

1000

500—

200—

p+A ~ p+X

pt =0.3 GeV/c

v

d 0E
3 PA ~PX

dp pT ——0.3 G~V/~

=x X [0.5 (GeV/c)-'],
pA ~bX

(6.17)
100—

Pb

Ag

Cu

where the numerical factor is chosen to fit proton data.
Implicit in the above calibration is the assumption that
the pT dependence and the proton fraction among baryon

products is independent of the mass number and the
momentum fraction x. This is a reasonable assumption as

the transverse momentum distribution in this range of x
is only a weak function of x and the mass number, and

the mass dependence of the cross sections pA —+pX and

pA ~nX are the same.
To calculate the cross section xdo /dx for baryon prod-

ucts, we used the parameters ro ——1.25 fm and

a =0.5234 fm. The theoretical results thus obtained give

good agreement with the experimental data (Fig. 2). The
data for Pb for small values of x may seem higher than
the theoretical curve, but the data need confirmation as

the shape of the differential cross section for the

pPb~pX reaction at 24 GeV is different. ' There, the
differential cross section at x =0.167 is lower than that at
x =0.75 by about 30%, in closer agreement with the
theoretical curve. The present comparison is admittedly
crude, but extensive experimental data are still lacking.
The important feature of the theoretical results is that,
due to multiple collisions, as the mass number increases,
the increase in cross section for small values of x is much
faster than the increase near x —1. The mass dependence
of the cross section in different regions of x is thus ap-
proximately reproduced. We note from Eq. (3.7) that the

1

average value of x is reduced by a factor of —, per col-

lision. Thus, the cross section in the range 0.3 &x & 1 is

mainly associated with one or two inelastic nucleon-

nucleon collisions during the passage of the nucleon

through the nucleus. This explains why the transverse
momentum distribution in this range of x is only a weak
function of the mass number and that the ratio of the
multiplicity near the projectile fragmentation region for
pA reactions R(pA/pp) is about 1. It also leads us to
understand the importance of the description of the nu-

clear density near the surface in analyzing the data in this
region of x. A sharp cutoff model or a cylindrical nu-

cleus as used in Ref. 25 may lead to misleading results.
In spite of the approximate agreement, one notes that

there are systematic deviations of the data of Barton et al.
from the theoretical curve and from the data of Eichten
et al. These deviations call for further experimental and
theoretical work to check whether there may be a need for
corrections to the simple model.

AJ0 50—

E

CL 20—
ba

UJ

Pb
Ag
Cu

~ Al
~C
o p (100 GeV/c)
o p (175 GeV/c)
a p (70 GeV/c)

0

FIG. 2. Comparison of experimental and theoretical (solid
curves) invariant cross section for pA ~pX at 100 GeV/c and

p, =0.3 GeV/c.

VII. MOMENTUM DISTRIBUTION
IN NUCLEUS-NUCLEUS COLLISIONS

We shall make use of the results of the preceding sec-
tions to obtain the momentum distribution for nucleus-
nucleus collisions. We can focus our attention on a tube
of projectile nucleons arranged in a row impinging on the
target nucleus. For the first projectile nucleon, the treat-
ment is just like a nucleon-nucleus collision. For the
second projectile nucleon, the nucleon makes collisions
with target nucleons many of which have already suffered
a collision with the first nucleon and have a rnomenturn
distribution with an average rapidity shifted from that of
the target rapidity (by about by = 1.0 per collision).
Feynrnan scaling gives differential cross sections which do
not depend much on the relative energy between the col-
liding baryons or the energy of the target nucleon. How-
ever, the rapidity of the target nucleon enters in the
kinematic constraint of the momentum distribution after
the collision. Specifically, from Eq. (5.8) the projectile
nucleon must have a rapidity greater than the rapidity of
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where Sz(bz) is the normalized thickness function for nu-
cleus 8,

Sg(bg)= fp(btt, ztt)dztt . (7.2)

With the approximation of a small nucleon size, the func-
tion S~(b~) is equal to the thickness function Te(bz) for
a single target nucleon interacting with the projectile nu-
cleus. In a nucleus-nucleus collision at an overall impact
parameter b, we can write the projectile-baryon distribu-
tion before collision in a physically more transparent way:

=~f dbsT, (b, )5(» —1)

the target nucleon which may be nonzero due to prior col-
lisions. The momentum distribution is thus compressed
into a slightly smaller region.

For the collision of nuclei at many tens of GeV per nu-
cleon in the center-of-mass system, the range of rapidity is
much in excess of hy=1. 0. In the evaluation of the
projectile-baryon distribution it is reasonable to neglect
the shift of the rapidity of the target nucleons even after
they suffer a collision. The projectile nucleons also collide
among themselves. The shift of rapidity due to such col-
lisions is small compared with the range of rapidity and
can be neglected. With these simplifying assumptions, all
the projectile nucleons along the tube are alike and de-
graded in energy in the same manner. We can treat them
as an ensemble of spatially correlated but independent nu-

cleons initially located at their local impact parameter bz
and having a momentum distribution 5(x —1). The
projectile-baryon distribution dN /dx before collision is

(x)=&fdbttStt(btt )5(x —1), (7.1)
dx

It is easy to see that the integral of (7.4) with respect to x
gives the total projectile baryon number 8, as it should.
We note in passing that Eq. (7A) includes the term n =0
where D' '(x) =5(x —1), representing those nucleons
which pass through the target nucleus without an inelastic
collision. In terms of the rapidity variable y, the momen-
turn distribution in y is given similarly by

(y)=&f dbtt Ttt(bg)

A

D'"'(y) [T~(b+ ba )oinl"
n=0

X [1—T~(b+ ba)o.]" (7.5)

Equation (7.4) or (7.5) gives the baryon distribution for
the projectile nucleons. The baryon momentum distribu-
tion for the target nucleons can be obtained by reversing
the role of projectile and target:

dy
(y) =~ f d b~ T~(b~ )

X g D'"'(y)[T~(bz —b)o;„]"
n=0

X [1—Ttt(bg —b)o;„] (7.6)

dN~ dNtN dNNc

dx dx dx
(7.7)

or

All the above baryon distributions can be separated into
two parts as

„[T~(b+ha)o. ]"
n=0

dN dNiN dNNc

dy dy dy
(7.8)

X [1—&g ( b + bg )o;„] ", (7.3)

where the nth term in the summation represents the prob-
ability for a nucleon with impact parameter bz to make n
collisions with the target nucleons. The summation over
n gives unit probability. From our discussions in previous
sections, we know that given an initial momentum distri-
bution 5(x —1), the momentum distribution, after n in-
elastic collisions, is D'"'(x) as given by Eq. (5.7). There-
fore, by multiplying the nth term in the summation in Eq.
(7.3) with D'"'(x) in place of 5(x —1), we obtain the
momentum distribution after the projectile nucleus passes
through the target nucleus

where the subscript NC denotes the term n =0 in Eqs.
(7.3)—(7.6) for those baryons suffering no inelastic col-
lision, and the subscript IN denotes the rest of the sum-
mation for those baryons suffering at least one inelastic
collision.

VIII. NUCLEON FERMI MOTION

Nucleons in a nucleus have a momentum distribution
characterized by the Fermi momentum of the nucleons.
This momentum distribution gives a modification to the
results we have obtained in the preceding section. It is of
interest to examine quantitatively how they are modified.

In the frame in which the nucleus is at rest, the nucleon
momentum distribution is given by

(x)=Sf dbttTtt(btt)

2
cy

dP =Xexp
20'

'I

cz d c Tdcz

20-' EO
(8.1)

A

X g D "~(x)[T~ ( b + be )o,.„]"
n=0

where o-100 MeV/c. The component c, can be written
in terms of x and cT.

X[1—Tg(1+be)o;„]~ (7.4) [m (1—x )+cT ] .
2mx

(8.2)
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In order to obtain the momentum distribution in x, it is
necessary to integrate over the transverse momentum cz.
In the integration we can neglect terms of order c2. /m
in comparison with terms of order cz as the former is of
the order of cr /m of the latter. We then obtain

4N~cr x m (1—x )P(x) = exp
x +1 Sx o

(8.3)

(x —1)
exp

20~
(8.4)

The distribution peaks at x = 1 with a width of
cr„=cr/m =0.1; it is reasonable to approximate the above
by a normalized distribution centering at x =1 with a
width o.„:

We have chosen the unit that the speed of light c is equal
to unity. The (proper) density at z is defined as the densi-
ty in the frame in which the particles at z are at rest
(longitudinally). Upon averaging over the transverse over-
lap area M, the proper density at z due to projectile
baryons can be shown to be

(9.4)
dXp' '(z) = [y (z)] .

dy

Both the rapidity distribution dN /dy and the overlap
area M depend on the impact parameter. We limit our
attention on the case of head-on collision with b =0 and
at the proper time ~= 1 fm/c when the produced particles
begin to emerge. ' The baryon density due to the projectile
1s

dN dN , , 1
(x)=f, (x')dx' . exp

dx dx 2'Ircr~ X

(x /x' —1)
2ox

where x can exceed unity. The momentum distribution of
projectile baryons in x in a nucleus-nucleus collision is
then

p' '(z)=
2 [y(z)]/1 fm .

WRY

There is a similar density due to the target nucleus:

dN"p'"'(z)= [y(z)]/1 fm .
nRg

(9.5)

(9.6)

and the corresponding distribution in y is given by

(8.5) And, the total baryon density is the sum of these two den-
sities:

dN dN , , 1(y)=f, (y')dy'
dy 21rcr~

exp(y —y') —1 '
Xexp — exp(y —y') .

20~

p(z) =p'"'(z)+p' '(z) .

X. BARYON DISTRIBUTION
IN NUCLEUS-NUCLEUS COLLISIONS

(9.7)

(8.6)

It is clear from Eq. (8.5) that nucleon Fermi motion af-
fects mainly the distribution near x=1. For the region
x «1 the effective width is xcr„which becomes very
small and the folding distribution is like a 5 function.
Therefore, the distribution away from x =1 is not much
affected by the nuclear Fermi motion.

IX. BARYON SPATIAL DENSITY

z =w sinh(y —y ),
where ~ is the proper time

(t2 2)1/2

and y~ is the rapidity of the equal-velocity frame

y = —,
'

in[exp(yz ) —exp( —y~ )]=y~/2 .

(9.1)

(9.2)

(9.3)

From the rapidity distribution, we can get the baryon
spatial density if all the baryons emerge from the collision
at the same time. This corresponds to assuming a zero
width for the initial nuclei. It is a good approximation if
one is considering those regions of rapidities far from the
rapidity of the parent nucleus such as in the central rapi-
dity region. A particle with the rapidity y will be found
at the longitudinal coordinate z in the equal-velocity
frame, i.e., the projectile-nucleon —target-nucleon center-
of-mass frame):

With the formalism presented in the preceding sections,
we calculate the baryon momentum distribution dN /dy
for head-on collisions of two equal nuclei. We shall
display the distributions only for the projectile baryons as
the target baryon can be obtained by a simple reflection
with respect to the central rapidity axis.

The reaction products can be divided into a no-collision
(NC) part and an inelastic (IN) part. The former corre-
sponds to those projectile nucleons which pass through
the target nucleus without an inelastic collision. They
have a sharp momentum distribution centered around the
beam rapidity and modified by Fermi motion. Their frac-
tion diminishes as the mass number increases. We list in
Table I the number and the fraction of projectile nucleons
which do not make an inelastic collision in passing
through the target nucleus in a head-on collision.

The momentum distribution of the inelastic projectile
baryons in a head-on collision of two equal nuclei is
shown in Fig. 3. In Fig. 3(a) the quantity
(dNgq/dy)/TTR„ is exhibited as a function of y —yz for
a center-of-mass energy per nucleon of E'=30 GeV per
nucleon and for various nuclear masses. At regions far-
away from the beam rapidity the quantity
(dN&N/dy)/wRz divided by 1 fm gives the proper densi-
ty at the proper time ~=1 fm/c at which time the pro-
duced particles begin to emerge. One finds from Fig. 3
that for light nuclei, the distributions center around the
beam rapidity with narrow width. As the mass of the col-
liding nuclei increases, the peak of the projectile-baryon
distribution moves to a lower rapidity. For Pb on Pb, the
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TABLE I. Number and fraction of projectile nucleons which suffer no inelastic collision in a head-on
collision of two equal nuclei.

Projectile

4He
12C

16O

Al
"Cu
108A

208pb

238U

Target

4He
12C

16O

Al
"Cu
108A

208pb

238U

Number of projectile
nucleons which suffer

no collision

2.160
4.540
5.351
6.979
9.842

11.694
13.946
14.416

Fraction of projectile
nucleons which suffer

no collision

0.540
0.378
0.334
0.258
0.156
0.108
0.067
0.061

peak shifted to y —y~ = —2.3, in rough agreement with
the average shift of rapidity estimated previously. How-
ever, the width of the projectile-baryon distribution is very
wide. It extends well to the target rapidity region of
y —yz ———8.31. The increase in the distribution in these
regions arises from the large number of nucleon-nucleon
inelastic collisions a nucleon suffers in traversing the oth-
er nucleus.

In Fig. 3(b) the same quantity (dX,&/dy)/mR~ is ex-
hibited as a function of y —y~ for a center-of-mass energy
E*=100 GeV per nucleon. By comparing these results
with those at E*=30 GeV per nucleon, one finds that the
distributions for He+ He and ' 0+' 0 are not changed
at all. The distributions for Cu+ Cu and Pb+ Pb
are hardly changed for rapidity y —yz) —4; they are
modified mainly in the region y —yz & —4. For these
medium and heavy nuclei the distributions are stretched
more into the lower rapidity region and the accumulation
near the target rapidity y —y~ ———10.72 is less than the
corresponding accumulation at lower energies.

Of particular interest is the baryon spatial density in
the central rapidity region (Table II). It has contributions
from both the projectile nucleus and the target nucleus.
For E*=30 GeV the baryon density pz in the central ra-
pidity region and r= 1 fm/c is about 0.04 baryons/fm
for ' 0+' 0, 0.14 baryons/fm for Cu+ Cu, and 0.28
baryons/fm for Pb+ Pb. For the higher energy
E =100 GeV per nucleon, the total baryon density in the

central rapidity region and r=1 fm/c is about 0.02
baryons/fm for ' 0+ ' 0, 0.08 baryons/fm for

Cu+ Cu, and 0.22 baryons/fm for Pb+ Pb.
For comparison, the initial energy density e of hadron

matter in the central rapidity region for head-on collisions
of two equal nuclei each with a mass number A is

@=0.06M (0.48lnE*+0. 37) GeV/fm (10.1)

where E', the center-of-mass energy per nucleon, is in
GeV. If all the matter become deconfined quark-gluon
matter, the net baryon fraction is given by
pzmzc /(e+pzmz. c ). This impurity fraction is about
0.05—0.06 for E*=30 GeV per nucleon and is about
0.02—0.03 for E*=100 GeV per nucleon (Table II).
These are the impurity levels of baryons one has to con-
tend with in the design of accelerators for relativistic
heavy-ion collisions.

In other regions of the rapidity variable, one can super-
impose the projectile distribution and the target distribu-
tion to obtain the total momentum distribution. For light
nuclei, the central rapidity region is much lower than the
peaks in the projectile rapidity region or in the target rapi-
dity region. However, with the increase in the mass num-
ber, the distribution in the central rapidity region has
about the same magnitude as does the distribution in the
other regions. The composite distribution becomes rela-
tively flat and the baryon impurity is approximately the
same over the whole region.

TABLE II. Net baryon-number density pz and quark-gluon-plasma energy density e at the centra
rapidity point for two different bombarding energies. The fraction of net baryon energy density
p&mTc /(e+pqmTc ) is given in the last column.

c.m.
Bombarding energy

per nucleon

(GeV)

30

Nuclei

16O+ 16O

"Cu+ "Cu
208pb+ 208pb

(baryons/fm )

0.0418
0.139
0.282

(GeV/fm )

0.837
2.18
5.04

pram Z C
2

6+pgm TC
2

0.049
0.061
0.054

16O+ 16O

"Cu+ "Cu
208pb +208pb

0.0200
0.0855
0.217

1.08
2.81
6.49

0.019
0.030
0.033
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FIG. 3. The projectile-baryon rapidity distribution for head-
on collisions of two equal nuclei at two different bombarding en-
ergies: (a) at E*=30 GeV per nucleon and (b) at E = 100 GeV
per nucleon. The central-rapidity point is indicated by an ar-
row.

XI. SUMMARY AND DISCUSSION

In a nucleon-nucleon collision at high energies, the elas-
tic scattering process has little effect in degrading the en-

ergy of the incident nucleon. The degradation arises from
inelastic scattering with the production of a large number
of particles. Interestingly enough, the resultant baryon
has a momentum fraction which is approximately uni-
formly distributed over the whole range of momentum
fractions. On the average, about half of the initial
momentum is lost in each inelastic collision.

The basic distribution from an inelastic nucleon-
nucleon collision allows us to trace the momentum distri-
bution of nucleons in a nucleon-nucleus collision and a
nucleus-nucleus collision. We follow the multiple-
collision model of Glauber which was found previously to
give a good description of the multiplicity distribution in
the central rapidity region. We made the further as-

sumption that baryon-baryon collisions degrade momenta
and produce particles as in free space in order to have a
reference model to compare with experiment and to make
simple estimates. Results for nucleon-nucleus collisions
compare well with the experimental data of Barton
et al. However, there are some differences in the region
of small x which need to be further investigated experi-
mentally and theoretically, as experimental data from a
different group at a lower energy give a different shape
and magnitude. '

The width of the momentum distribution increases with
the number of collisions. The momentum distribution for
collisions of heavy nuclei is therefore very broad. It is not
enough to know only the average rapidity shift of a reac-
tion as the width can be broader than the shift for heavy
nuclei. Furthermore, the kinematic constraint from the
energy-conservation condition gives rise to an accumula-
tion of nucleons of one nucleus around the rapidity of the
other nucleus when the thickness of the colliding nuclei is
great enough to slow down the incident nucleons substan-
tially.

Looking at the baryon distribution results, one finds
that except for light nuclei, the total baryon density in the
central rapidity region is of the order of the equilibrium
nucleon matter density. This total baryon density de-
creases slightly as the bombarding energy increases. In
addition, the number of hadrons produced increases
slightly as the bombarding energy increases. Thus, the
fractional baryon energy density in the central rapidity re-
gion decreases from about 0.06 to about 0.03 as the bom-
barding energy increases from E'=30 to 100 GeV per
nucleon.

Our result indicates that in the energy range of
E"-30—100 GeV per nucleon, there is a few percent
baryon impurity in the central rapidity region due to the
broad distribution arising from multiple collisions. A
quark-gluon plasma with this amount of baryon impurity
can still be of interest and may allow a closer extrapola-
tion to quark-gluon plasma of even smaller baryon frac-
tions for cosmological studies.
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