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The KX inverse scattering problem is solved for a model which assumes that the A(1405) is an

elementary particle rather than a virtual bound state of the KN system. This model points to a con-

sistent explanation of the kaonic-hydrogen data and the KX scattering results. It is found that the
KX interaction form factor determined from the real part of the e1astic KX phase shifts has reason-

able behavior and a range that is consistent with that of the KiV interaction.

I. INTRODUCTION

Recent experiments ' on the x-ray deexcitation spec-
trum of kaonic hydrogen have focused considerable atten-
tion on the low-energy ES interaction. The strong in-
teraction is expected to affect the kaonic-hydrogen spec-
trum; however, only the 1s level can be shifted by a
detectable amount. The energy shift and width are direct-
ly related to the Coulomb-corrected isospin-averaged
scattering length of the KN system by the equation

a+I—=2o' pr &c ~

2

2

TABLE I. The isospin-averaged scattering length of the KX
system. The first two entries are obtained from kaonic-
hydrogen energy-leve1 shifts, the last two from analysis of KX
scattering data.

a, (fm)

0.10+Oi
0.65+0.68 i

—0.67+0.64i
—0.73+0.64 i

Experiment

Energy shift
Energy shift
KX scattering data
KX scattering data

Reference

where p„ is the K p reduced mass, a is the fine-structure

constant, and fi=c =1. If the Coulomb corrections are

neglected, the two measurements of energy shift and

width, which do not agree with each other, lead to scatter-

ing lengths which are both in sharp disagreement with the

value determined from the KX scattering data (see Table

I).
Although further experimental results are needed to

firmly establish the energy shift and width of the ls level

of kaonic hydrogen, there have been several theoretical in-

vestigations to explain the apparent discrepancy. Deloff
and Law argued that Coulomb corrections to the K p
scattering length could reduce the strong-interaction ef-
fect in kaonic hydrogen to bring about agreement. How-

ever, we showed that such an anomalously large Coulomb
effect, when it is present, affects not only the scattering
near zero energy but also at energies substantially dif-
ferent from the threshold energy. Since at medium ener-

gy and below threshold isospin is known to be a good
quantum number, it is not likely that the anomalous
Coulomb effect by itself will explain the discrepancy.

In view of the fact that the KX scattering data for
k~,b & 100 MeV/ care not well known, the scattering data
and kaonic-hydrogen results are not necessarily contradic-
tory. A strong energy dependence of the scattering ampli-
tude at low energy so that the amplitude at zero energy is
very small, or has the opposite sign than that given by KX
scattering data, could accommodate both the scattering
data and the kaonic-hydrogen results. A physical model
which yields such behavior of the scattering amplitude is
based on the premise that the A(1405), which lies 27 MeV
below the EX threshold, is an "elementary" particle rath-
er than a composite bound state. Previous analyses' '"
favored the composite interpretation; however, according
to the quark model of hadrons, the A(1405) consists of
three quarks, and its dynamic origin derives from the in-
terquark forces rather than the KX interaction. ' Hence
the A(1405) is as "elementary" as the nucleon. The recent
calculation of Kiang, Kumar, Nogami, and van Dijk'
leads to the desired strong energy variation in the scatter-
ing amplitude while it also predicts the mass of the
A(1405). This work, which incorporates the KN,
A(1405), and m.X channels, predicts the medium- and
high-energy scattering data as well as the energy of the
A(1405). Figure 1 shows the KN elastic cross section in
the isospin I=0 state as a function of c.m. energy. At
low energy the few data that do exist have large errors.

In this calculation the scattering amplitude for small
positive energies has the opposite sign of that obtained
from the analysis of Chao et al. ' and Dalitz et al. The
sign of the scattering amplitude is in principle determined
from the Coulomb-nuclear interference. The experimental
situation is not sufficiently clear, however, to unambigu-
ously determine this sign. In previous analysis the sign
has not been determined in a model-independent way.

In order to gain further insight into this approach of
explaining the kaonic-hydrogen and KX scattering data,
we consider the inverse KX scattering problem, again as-
suming that an elementary A is coupled to the EX sys-
tem. The scattering amplitude is such that its strong vari-
ation near threshold is similar to that obtained in Ref. 13
in order to fit EX scattering, kaonic-hydrogen, and
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er the I =0 state with the two channels, i.e., XN and
A(1405). The Hamiltonian for the system is9

a=ao+a
where

IIp m——~N N+mpA A+ J d kcokakag

and

Hs=gp A N J d kukak+N A J d kukak

)0-
—GN N d kd k ukukakak,3 3 (4)
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FIG. 1. The I=0 EN elastic cross section vs c.m. energy.
The solid curve represents the results of the model calculation of
Kumar (Ref. 14); the dotted curve is the result of the parametri-
zation of Chao et al. (Ref. 15).

II. FCN SCATTERING

Before outlining the inverse scattering method we re-
view the direct approach and set the notation. We consid-

A(1405) data. The coupling to the bare A [corresponding
to the A(1405)] will introduce a Castillejo-Dalitz-Dyson
(CDD) zero in the scattering amplitude just below thresh-
old. Since the A(1405) is an isospin I =0 state, most of
the variation of the scattering amplitude occurs in this
isospin state. The kaonic-hydrogen energy-level shift is
proportional to the real part of the IC p scattering length
which is a mixed isospin state. The real part of the I = 1

scattering length is very small. Since there are no reso-
nances or bound states near threshold in this isospin state,
we do not expect unusual behavior in the I =1 scattering
amplitude. We therefore study only the I=0 state. We
will neglect the mX channel although the formalism can
easily be extended to include it. '

Although our long-term interest in this problem derives
from gaining an understanding of the experimental re-
sults, our purpose at this stage is to obtain a qualitative
explanation of the experimental data including the
kaonic-hydrogen results. This description can be made
more precise in subsequent calculations by the inclusion
of additional channels of the K p system.

In Sec. II we review the direct XN scattering problem
for the modified Lee model. The inverse scattering prob-
lem for this model is solved in Sec. III. The results of a
numerical calculation are given in Sec. IV followed by a
summary and conclusions in Sec. V.

and is normalized so that up ——1. uk is a function of k;
hence only S-wave scattering occurs.

The on-shell scattering amplitude for elastic KN
scattering is

f( k) = —e'ssin5
k

~k Uk

1 —kkIk

where

1 go

4m 4—COk

and

(5)

dk kIk=-
Qlk'(cok —cok 16)—'

h=mo —m~ .

We use units so that p = 1, where p is the kaon mass.
Since we are investigating the low-energy behavior of

the scattering amplitude, we employ nonrelativistic
kinematics for the nucleon. Furthermore we assume no
absorption occurs. In the real EN system there is absorp-
tion since KN can transform into m.X. However, in the
isospin I =0 state, no inelastic channels other than the
A(1405) open in the energy region of interest; the thresh-
old energy of the mX channel is around 1330 MeV. %'hen
the inelasticity is a smoothly varying function of energy,

where m~, mp are the nucleon and bare A mass [corre-
sponding to the A(1405)], and cok ——(p +k )'~ with p
the kaon mass. The noninteracting part of the Hamiltoni-
an is in the static approximation for the nucleon and A.
Recoil can be taken into account in a straightforward
manner, i.e., by replacing co~ by co~+@ /2m& in the ener-

gy denominators. In this model the Schrodinger equation
leads to a simple solution because the form factor uk is
the same in both terms of the interaction Hamiltonian.
The interaction involves two processes, the nucleon kaon
transforming into A or vice versa and a direct nucleon-
kaon interaction of the separable kind. The form factor
uk is related to the more convenient function Uk by the
equation

uk =(2m) +2cok uk
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FIG. 2. Phase shifts calculated using a modified Lee model
with Yamaguchi form factors when parameters were chosen (in
units of p); @=0.56 6 = —0.011 8=20 and gp=0. 469.

a nonrelativistic scattering problem with a separable po-
tential. The only difference is that the potential strength
is a specified function of energy arising from the presence
of the bare A. The usual method of the inverse scattering
problem will apply here if we take special care with the
zero and pole of the denominator of the scattering ampli-
tude. ' '

The scattering amplitude can be written in the form
2

f(k)= (11)
D k+ie

where

2A, (m dkk vk
D(z) =1- k' —z'

Consider D as a function of the complex variable s =z .
Then

one expects no rapid variation of the elastic scattering am-
plitude on account of inelastic processes' and consequent-
ly the neglect of the inelastic channel will not qualitatively
affect the conclusions.

If the parameters of the interaction and uk (or uk) are
specified, the phase shift can be determined, A,(s) = 1

4m.

&Ago+ 6—s

~ dkk2Uk2
D (s) = 1 ——A,(s) J k —s

with

(13)

(14)

k cot5(k) =

where

~k —Jk
—1

Uk
2

ce dk k Uk~

k' —k D(k +is) D(k i—e}=—2iA(k—)kvk (15)

and 6=2@(h—p). The analytic properties of D(s) on
the first, or physical, sheet of the s plane are such that the
inversion procedure follows in a straightforward manner.

D(s) has a branch cut along the positive real s axis,
with a discontinuity across the cut so that

The function A,k has the form

1 go
(10)

k
2p

where b, '= b —p. Choosing parameters b, ', S,go ap-
propriate for the EN system and a Yamaguchi form fac-
tor uk =y /(k +y ), we obtain phase shifts as a function
of momentum (see Fig. 2). This graph illustrates the gen-
eral features of the behavior of the phase shift as a func-
tion of energy.

The scattering amplitude has a CDD zero' at negative
energy arising from the bare A below threshold. It gives
rise to the strong variation of the phase shift with energy
around threshold. Levinson's theorem for a scattering
amplitude with a CDD pole of a system with a bound
state, ' i.e., 5(0)—5(oo}=0, is satisfied. Although one
might consider this type of strong variation of the scatter-
ing amplitude over a small energy range to be unphysical,
the position of the "bare" A just below the threshold gives
rise to such a scattering amplitude.

III. INVERSE SCN SCATTERING

Comparing Eqs. (5) and (11), we obtain the phase of
D(k +i@), i.e.,

D(k +is)= ~D(k +is)
~

e (16)

D(s) has zeros at negative real values of s corresponding
to bound states. We let one such zero occur at s = —kb,
then the condition for bound states is the existence of pos-
itive real values of kb that satisfy the equation

1 2@go 1

4~ 6+kb —f dk k uk /(k +kb )

There can be no, one, or two bound states depending on
the values of 9' and A,(0). The energy-dependent coupling
constant gives rise to a pole at s =5 of D(s). We will as-
sume that there is one bound-state zero as well as the sim-
ple pole on the first Riemann sheet of the cut s plane.
Since the A(1405) occur below the KN elastic threshold,
we take 6 to be real and negative.

We define the function

Within the context of this model, we investigate the in-
verse scattering problem, i.e., given the phase shifts and
the mass of the bare A and the physical A(1405) mass, we
determine the form factor vk (or uk). The scattering am-
plitude, Eq. (6), has a similar form as that obtained from

A (s) = D(s) .
s —kb

s+kb s+5
A(s) is an analytic function in the cut s plane without
any zero. Since

~

A(s)
~

~1 as
~

s
~

~oo, we can apply
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Cauchy's theorem to the function lnA (s) when the con-
tour is an infinite circle with a detour about the branch
cut as shown in Fig. 3,

s —kb s —ki, d (s)
A (s) = D(s) =

s+kb s+kb s —5
(25)

1
g

lnA (s')ds'
lnA s=

27TE & s —s

1

y
~ lnA (k' +i@) ln—A(k' —ie) dk'

2m k' —s

Since

(19)

and using Cauchy's theorem for the function lnA(s) as
before. In the case that there is no bound state andlor no
pole in A,(k ) we merely set kb ——0 and/or 6=0 in Eq.
(24} and we have the correct equation. Thus given the
phase shifts at all positive energies, the position of the
bound state, and the pole in A,(k ), we are able to deter-
mine the form factor uk. The form factor in coordinate
space is

lnA(k' +i@) ln—A(k' —ie)

=2i[~8(kb k' )——pro( —b, —k' )

+Im lnD(k'+i~)],

oo

U (r) =
2 J sin(kr)Uk k dk .

2m r

By considering D(s) as a function in the cut complex s
plane with nb zeros and nz simple poles inside the con-
tour of Fig. 3, we obtain

we evaluate A (k +i@) in Eq. (19) to obtain

lnA(k +i@)

k —k P f 5(k')dk' .5(k) (21)
+k2 ~ 0 k2 k2

1 D'(s)
ds = fib —pip

2mi D s

which leads to I.evinson's theorem, viz. ,

5(0)—5( oa ) = (ni, np )i—r .

(27)

(28)

where we have used the result that

ImlnD(k +ie)= —5(k) .

From Eq. (15) we get

IinD(k +i@)=—k(k )kvk

(22)

(23)

Using this result when we have substituted the expression
Eq. (18) for A(k +i@}in Eq. (20), we obtain the final re-
sult,

) k+kb
A,(k )Uk ——— sin5(k)

P p" 5(k')dk'
&(exp

The equation is valid also when 6 & 0. This can be shown
by defining

IV. RESULTS

We calculate the form factor U(r) using as input the
real part of the elastic phase shifts in the I=0 isospin
state, obtained from the K-matrix parametrization of Dal-
itz et a/. These authors use an effective-range expansion
form for the X matrix and have made a careful search of
the parameters so that the E matrix fits the known exper-
imental data with the exception of the energy shift of
kaonic hydrogen. We choose the effective-range expan-
sion of Dalitz et al. rather than the zero-range expansion
of Chao et al. ' since the phase shifts corresponding to
the latter's parametrization do not satisfy Levinson's
theorem because a zero-range interaction is assumed. We
take the interaction to be of finite range. Since the K ma-
trix includes the ~X channel in the I =0 state, we deter-
mine the elastic EX amplitude and corresponding com-
plex phase shift from the K matrix. The real part of the
phase shifts are shown in Fig. 4, curve I. They display

Im s

I80

(00

20

200 300
kL (MeV/c)

FIG. 3. The cut s plane and contour used to apply Cauchy's
theorem to the function lnA (s).

FIG. 4. Real part of phase shift as a function of laboratory
momentum. Curve I is obtained from the E-matrix parametri-
zation of Dalitz et al. (see Table 1, sixth column, of Ref. 6).
Curve II is curve I modified by factor (1+e —2e ),
where a =50.00 and o.=25.06 (in units of p).
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typical behavior of phase shifts due to an interaction sup-

porting one bound state, i.e., 5z (0)—5z ( m ) =m.
In our calculation the CDD zero modifies Levinson's

theorem so that with one bound state, 5(0)—5(ao)=0.
Furthermore, in order to fit the kaonic-hydrogen energy
shift, the scattering amplitude at zero energy should be
small or of opposite sign than at laboratory momentum of
100 MeV/c or higher. In order to fit both the higher-

energy data and the kaonic-hydrogen data we define the
phase shifts to be used in the inverse scattering calculation

I I I I I I I I I I I

5(k) =(1+e "—2e ")5 (k)

where 5~(k) are real phase shifts obtained from the E
matrix of Dalitz et al. The factor (1+e "—2e ~") is
introduced so that, by an appropriate choice of parameters
a and o, the phase shifts 5(k) are zero at zero momentum
and at momenta greater than 100 MeV/c are approxi-
mately equal to the phase shifts obtained from experimen-
tal data. In the momentum region from 0 to 100 MeV/c
not much experimental data is available, and the data that
do exist have large errors associated with them. Thus the
phase shifts 5(k) simulate experimental results including
the scattering and the kaonic-hydrogen data. The graph
of 5(k) for a typical set of a and o is curve II in Fig. 4.
The parameters a and o. are adjusted to yield the ap-
propriate scattering length as well as the rise of the phase
shifts from zero to low momenta.

The phase shifts 5(k) approach zero slowly as k goes to
infinity. In order to enhance computational efficiency the
phase shifts are adjusted so that they approach zero more
rapidly for k &10 by means of a diffuse cutoff. The
phase shifts in the energy region in which experimental
data are available are not affected by the high-energy cut-
off. In summary, the phase shifts 5(k) used in the inverse
scattering problem are obtained by modifying the real part
of elastic EYX phase shifts at low and at very high energy
without affecting them in the energy region for which
they are experimentally determined.

The phase shifts 5(k) defined by Eq. (29) and the ener-

gy of the bound state kb /2@=27 MeV are used as input
in the inversion problem. In order that the energy depen-
dence of the phase shift near zero energy is the result of
energy variation of A, (k ) rather than variation of uk, we
define 8 using Eq. (24) for k =0. Thus kt, , b„5(k), go,
and a, the scattering length, are given, and the form fac-
tors uk and u(r) are determined.

The resulting form factor in coordinate space is shown
in Fig. 5. It consists of a short-range part, with a range
less than 0.2 fm, and a weaker portion with a range of ap-
proximately 0.4 fm. This is consistent with an under-
standing of the KX interaction in terms of two-pion ex-
change and exchange of heavier particles.

The small wiggles in the form factor for r ~0.5 are due
to the high-energy cutoff of the phase shift. If a sharp
cutoff is used, the form factor will have zeros and have
the shape of a diffraction pattern. For a more diffuse cut-
off, e.g. , we divide 5(k) by 1+exp( —0.5k+5), the dips
are filled in and the bumps are smoothed out. The overall
decay of the form factor for increasing r is not qualita-

FIG. 5. Form factor as a function of r with 9'=19.14,
g =0.2126, 5 '= —0.0115, a, = 1.626, +=50.00, o.=25.26 (in
units such that p = 1).

tively altered by changing the diffuseness of the cutoff.
In any case, regardless of the cutoff the "experimentally"
determined phase shifts are not affected.

The form factors for a set of phase shifts which lead to
a scattering length of 0.10 fm, instead of 0.65 fm, is iden-
tical, to two significant figures, to the one shown in Fig.
5. However, the value of 8 is now 8=18.6. This is
consistent with the constraint that the threshold behavior
of the phase shift is largely determined by the energy vari-
ation of A,(k ).

There are still two degrees of freedom in the model; 5
and go are not known a priori. However, in order that
the bound state be an elementary particle, the coupling
constant go is small, and consequently

~

b,
~

needs to be
small so that the scattering amplitude rises rapidly above
threshold. In calculating the form factor it is important
to choose the parameters of A,k so that the small value of
the scattering length is due to a small value of A,o. Other-
wise the inverse scattering method is still valid, but one
obtains form factors in k space which are unity when
k =0 but become very large at values of k for which the
scattering amplitude is not, small.

V. CONCLUSION

Employing phase shifts derived from the I =0
matrix parametrization of the IYN scattering process, we
are able to determine the source function by the inverse
scattering method. We find that although there is a
strong variation in the scattering amplitude as a function
of energy, the source function has no unphysical proper-
ties. It is a smoothly varying function that has a suffi-
ciently short range to make it consistent with the strong
KX interaction. The interpretation of the A(1405) as an

elementary particle does not lead to undesirable proper-
ties, and yet it allows one to fit simultaneously the
kaonic-hydrogen and scattering data.

Since the coupled-channel inverse scattering problem
has also been solved, ' this approach can be generalized to
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include the mX channel. Alternatively one can introduce
an inelasticity parameter in the elastic channel to account
for absorption by other channels and determine the in-
teraction form factor using the inverse scattering tech-
nique. ' In either case the interaction is obtained directly
from the scattering data.
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