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Chiral anomalies are calculated using an effective-Lagrangian technique introduced for anomalies

by Wess and Zumino and recently reformulated by Witten. Anomalous amplitudes for vector
currents decaying into three pseudoscalars are tested by comparison with Erq decay, g and
g'~m+m y, and strong decays of vector mesons. The agreement with experiment for EI4 is an im-

pressive verification of the anomaly in the vector current. For g and g decay, the results are excel-

lent, and for the strong decays, good. Since the electromagnetic and strong amplitudes have been
extrapolated to higher momenta with a final-state-interaction approximation, it is not surprising
that the agreement is less good here, where, indeed, further dynamical assumptions are needed. A
number of new predictions are made for hadronic decays of p', co', and P'.

I. INTRODUCTION

Even before QCD was established as the correct theory
of hadrons, aspects of its low-energy behavior were well
known: its chiral symmetry' is spontaneoUsly broken,
with the appearance of an octet of Goldstone-Nambu par-
ticles; current-algebra methods describe low-energy in-
teractions of these particles with each other and with
currents that participate in weak and electromagnetic in-
teractions; and these low-energy results can be convenient-
ly realized by effective Lagrangians whose tree diagrams
are equivalent to the current-algebra and PCAC (partial
conservation of axial-vector current) predictions of chiral
symmetry. All effective-Lagrangian realizations give
equivalent results at low energy, but among the more con-
venient are the nonlinear ones, in which the pseudoscalar
octet is unaccompanied by scalar partners.

An outstanding problem with these methods was the
one solved by Adler, Bell and Jackiw, and Bardeen, con-
cerning "anomalies" of the current algebra. Naive appli-
cation of current algebra led to the false theorem that ~
does not decay into two photons in the chiral limit,
whereas simple perturbation theory- at the quark level
yields a nonzero result from the triangle graph, in which
photons couple to two vertices and the pion (mediated by
the axial-vector current) to the third vertex. At the naive
effective-Lagrangian level this meant there was no vr yy
vertex when minimal electromagnetic couplings are intro-
duced in the Lagrangian. Adler, Bell and Jackiw, and
Bardeen showed how correct treatment of divergences in
the current algebra restored the perturbative result of the
triangle diagram. Meanwhile, %ess and Zumino showed
how the current-algebra anomalies were realized in an
effective-Lagrangian approach, but the scale of the anom-
aly, basically the strength of ~ ~2y, had to be put in by
hand.

Recently Witten has reformulated anomalies in the
nonlinear-effective-Lagrangian framework. Observing
that the naive effective action is too symmetric, forbid-
ding processes allowed by QCD (e.g. , K+K ~sr+~ mo),

Witten adds to the action a five-dimensional integral over
a volume whose surface is physical four-dimensional

space. This is the lowest-dimension operator that avoids
the spurious conservation law. Topological arguments re-
quire this extra anomalous term to be quantized, its
strength proportional to an integer n. This term, when
gauged, yields all anomalous couplings, including m ~2@.
Matching this last amplitude to the classical anomaly
then reveals n =X„where N, is the number of colors.

Witten's elegant formulation is apparently equivalent in
its results to the Wess-Zumino approach and has the mer-
it of simplicity and convenience. In this paper we develop
some consequences of Witten's Lagrangian and apply
them to several processes involving anomalies. The for-
malism developed will be useful in a variety of other cal-
culations, including ~ decays. The applications presented
test the anomalous parts of the vector current in weak,
electromagnetic, and strong interactions. The results are
generally in good agreement with experiment, and some
new predictions are made.

Here we should mention that at times we augment the
octet of currents and pseudoscalar mesons with a ninth
meson and a ninth current. Our predictions, it must
therefore be stressed, have two quite different levels of
logical status. Those involving only the octet currents and
mesons are bona fide low-energy theorems in QCD.
Those including the ninth pseudoscalar and the ninth
current are based on stronger symmetry assumptions in-
volving approximate nonet structure of meson amplitudes.

In Sec. II we present useful general results on
anomalous parts of currents and interactions in the Wit-
ten framework. In Sec. III we test the vector-current
anomaly in KI4 decay. In Sec. IV we test the anomaly in

g, rl' &m+n y dec—ay In Sec. .V we use a field-current
identity to relate strong decays of vector mesons into three
pseudoscalars to anomalies in the vector current.

Our philosophy is that the chiral nonlinear Lagrangian
describes threshold processes, that is amplitudes of van-
ishing pseudoscalar momentum. When necessary we ex-
trapolate these amplitudes to higher momenta with final-
state interactions, dominating two pseudoscalar channels
with vector mesons. No new scales or couplings enter the
problem, apart from the known vector-meson masses and
widths. The low-energy behavior is fully controlled by
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the effective Lagrangian involving pseudoscalars only.
Our result for Ei4 decay is a drainatic verification of

the anomaly in the vector current. The extrapolations
here are slight, with the vector-dominance model and
final-state enhancements playing no role. The result for
g~~+~ y decay, however, relies somewhat more heavi-
ly on these phenornenological ideas. When we come to
the purely hadronic decays, we must regard our results
largely as vector-dominance-model phenomenology, not
derivable from QCD fundamentals in any clear way, but
scaled by low-energy results of chiral anomalies.

Our results for anomalies complement the non-
anomalous-current work of Fischer, Wess, and Wagner
(FWW) and Fischer, Kluver, and Wagner (FKW). Our
paper is in the spirit of FWW, who also introduced final-
state interactions in terms of resonances. A different ap-
proach, concerning the status of the spin-1 mesons and
how their effects are incorporated in the decay ampli-
tudes, is considered by FKW. These authors add spin-1
mesons to the Lagrangian by a local gauge principle,
break the local gauge invariance by mass terms, adjust pa-
rameters according to some reasonable assumptions, and
then calculate amplitudes with spin-1 mesons and pseu-
doscalars on equal footing. The low-energy behavior is
then controlled by the sum of all these effects. While
these methods have a rich history in the development of
chiral Lagrangians prior to QCD, we prefer the simpler
approach, employing only pseudoscalars in the effective
Lagrangian, and describing vector mesons (and for that
matter any higher-spin and -mass mesons) as final-state
strong interactions, outside of the strict chiral limit.

In Sec. VI we comment on relations between F,
strong-interaction parameters, and the vector-dominance
model (VDM). Finally, in Sec. VII, we conclude with a
summary of our results.

II. GENERAL RESULTS

The effective Lagrangian for the interaction of the octet
m' of pseudoscalars is given in terms of the matrix

U =exp Air'2l

F„
We use the notation

To and T, behave differently against the transform
U~ U ', characterizing whether a process has an even or
odd number of pseudoscalars: ( —1) . To is a scalar
under this symmetry and develops amplitudes involving
only an even number (Nz) of pseudoscalars. Witten
points out that this is surely not a symmetry of QCD,
thus motivating the "anomalous" form T„which con-
tributes to processes involving an odd number of pseudo-
scalars. Here Q is a five-dimensional disk whose boun-
dary is normal four-dimensional space.

This action leads to the equation of motion

With this equation of motion one may show that con-
served right- and left-handed currents, generating
SU(3) )& SU(3), are

1 A,
'

JP 8 2 P 16 2 jM P 2 P

To extract useful information from these currents, we
form the vector and axial-vector combinations

Vp ——jp +Jp,
-L -R

~@=JISM
—Jp ~

and expand these in powers of n'. We designate terms
arising from To as "normal" and those arising from T, as
"anomalous. " The vector current has normal terms
which are even in the number of pseudoscalars and
anomalous terms which are odd in the number of pseu-
doscalars. In contrast, the axial-vector current has odd
normal terms and even anomalous terms. (However the
axial current has no bilinear term. )

Although we do not use it in what follows, the leading
contribution to the axial-vector current 2& is displayed
for normalization purposes:

A„= B„ir +O(m. ),

B„n'=m„', ( )=trace,

U„'=a„UU-', U„'= U-'a„U .

The effective Lagrangian is associated with an action
T =To+ T„where

F =186 MeV .

The leading contributions to the vector current are

d d d
Vp ——up+ Vp

—fggb1T 8 7T

F 2 2

Z;= —, J Z'x(a„Ua„U ') =, 1Z'x(U„'U„'-),

T, =A, d xe,jki (U; UJ Uk' U~),
Q

X,i
X,=3 .

240m

3 2 dg„fg„e„~~gP,m B~ir Bpm'+O(m). .
F m.

The first term Uz is normal and the second term Vz isd d

anomalous. We concentrate on the second term (but will
use the first in Sec. V to scale the strong decays). The
anomalous three pseudoscalar parts of the vector current
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mF 3

~'.(K+Kp +K'K p)+ ri„(m+op+2K+K p+'2K'K pa)'F.' v a

m. F 3
(g)

6 2l E vaP

V3

n F

The anomalous three-pseudoscalar piece of the electromagnetic current is

It is noteworthy that the following transitions are forbidden:

y3 y 8 JEM +~0~— —g 0~+

V'+' m EC E

In these transitions the KK system has isotopic spin I =1. The (KK)I ~ system has a G parity opposite to the KK ex-
change symmetry. Because of the antisymmetric tensor structure of the anomalous current, the KK system must thus
have positive G parity. But then these n(KK)1 ~ combinations have negative G parity, and cannot couple to the
positive-G-parity currents. Another way of saying this is that the anomaly terms do not develop second-class currents.
For the same reason V does not couple to three pions.

It is sometimes useful to extend these currents and particle states to a nonet structure. The augmented anomalous
terms are

Vp ——3( —,)' ~"
3

t2m„+n~ m p+~2(~„K+K p+n„+K~Kp )+m„(K~ Kp K~K p)+v 3r—j~(K~ Kp +K~K p)],
m F„

~2F 3

F

)g2 &&pvaP
Vp

' ——( —,
' )'~ ""

3
rl„'[2m Kp+ v2(m~ ~3q )Kp—],3

Vp ——( —,
' )' "

3
rI„'(V 3K +Kp +V 3K~K p) . '

3
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, —,
' (&,[&b, IX„[Ad,A,, ])])e„„pn m.„n'„n. op,

(12)
4 g-g

Z "I ~~.
5F~

With the notation

[~,~„']=(~~„' H—~„'),

we find

u„' ' =i(@2[m+, n„.] [K+—,K„]),

uz i ([——m, m~+]. + ,' [K,E—~+)+ —,
' [KO,K'„]),

(13)

u„' =i [K,~„+)+ [K+,n„)+ [K+,ri„], (14)

Here ri' is the SU(3) singlet.
We shall also have occasion to use the five-pseudoscalar

amplitude that develops from T, . The anomalous part of
the Lagrangian density to leading order in ~ is

This is in excellent agreement with the recent data of
Rosselet et al. ,' who report

H = —2.68+0.68 .

These authors analyze the experimental data and extrapo-
late to zero-momentum transfer, incorporating the K"
form factor and final-state interactions in their analysis.

There is another approach to EC~4 decay in which the
chiral Lagrangian scale (F ) is related to strong-
interaction parameters. Using the VDM via the field-
current identity

2

(19)
gv

we may relate the matrix element in Eq. (17) to the matrix
element of the source current for the corresponding vector
meson, at zero-momentum transfer,

2m +
(~~[ V'+" ~E+)= (~+~- ~K*„'+"~K+)

gal+

u„' =i [m,K~+—]— [K,~„]+ [K,ri„]~2

%e may use L, to calculate the X+X ~m+m ~ or
q~+ ~m m.+~ scattering amplitudes, with the result

(~+~ ~~4+"(K")~K+) . (2O)

The last matrix element is measured by the strong decay
K +~K+n+n . Following the method of Gell-Mann,
Sharp, and Wagner" (GSW), we compute this rate by a
vector-meson-dominated isobar model, shown in Fig. 1.
The result is

(~+~-
~

v„'+" ~K+)

—v 2 gp«gsc*p~ glc'@*Are*z~2 2'+
g~e mp —S „m~~ —Sg~

where + refers to K +—momenta and 1,2 to n+, n. mo-
menta, and X&pvap /cP P (21)

Tg(m)+m. z ~v]n.3+m.4 )

5&3 ~'F ' "
These amplitudes may be useful in interpreting rnultipion
production in peripheral reactions, e.g.,
E+p —+E+m+m. p with m exchange.

Let us now evaluate this estimate of the matrix element at
soft m and K momenta, and compare it with the predic-
tion of the effective Lagrangian [Eqs. (17) and (18)]. We
assume SU(3) coupling-constant symmetry for g~p and
gypp, and g, =gp ——gp . Then we find

(~+~-
~

v"+" ~K+)

III. K(4 DECAY

A direct test of the strangeness-changing vector-current
anomaly is afforded by the decay IC+—we+m+~ v,
measuring the matrix element

(m+n.
i

V~+'
i

K+ )—: e„„pP"P P~ . (17)
2H

mg

Using the anomalous current [Eq. (8)], evaluated in the
soft-momentum limit, we find

2II —2v 2

mx m F~

m, ' m .'
Setting this result equal to Eq. (21), we find

/
/

/
/

/

tt

H = —2.68 . FIG. 1. Pole-enhancement diagrams for KI4 decay.
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2 2
mp 1 mp

g cpm 2F 3 2
+

mKg stu
M

. 2 .
2 2

. 2
M —m2

M

Here b, is the triangle function (u =s ),

=10.7 GeV (23) m~

M

-2- -

2 2M —m)
(30)

The GSW-model result for g~~, obtained from co~3ir
decay, is 14.1 GeV '. Evidently this model does rather
well in predicting the I 14 form factor at low momentum,
but the effective Lagrangian does better. In the SU(3)-
symmetric limit Eq. (23) yields

m
2 3

(24)

a result to be discussed in Secs. IV and VI.
We shall often use the VDM below to extrapolate the

soft amplitude of the effective Lagrangian to higher mo-
menta. In the language of final-state interaction, the final
Em. and m.m channels resonate, resulting in an enhance-
ment factor

2
mp

mp —S+2

2m +

2m, —S+

2

(25)

multiplying the soft-pseudoscalar rate predicted by Eqs.
(17) and (1S). The factor is unity at the threshold

S+ =S + =0.
K

IV. EL'ECTROMAGNETIC DECAYS

g ~ST lT fp l7 ~7T

with anomalous terms
.EML, =ed'~

3 E~~~p(B~r/+ V 2B~Y/ )B~7r Bp1T A~

(26)

The classic two-photon anomalies (e.g., ir ~2y,
r/~2y) are readily reproduced by the effective Lagrang-
ian, as shown by Wess and Zumino, and by Witten.
Here we concentrate on the single-photon, three-
pseudoscalar processes

and I' is a ir+ir final-state interaction factor, taking into
account the p pole

mz im—&1 &(u)

m —im I (u) —uP P P

(31)

At u =0 this factor is unity so that the soft amplitude is
given by Eq. (27). The widths I z(u) are taken to show the
threshold behavior

3

I p(u) = (32)

r(i/~ir+ir y) =36 eV (experiment 41+ 1 eV),

I (r/'~ir+ir y) =62 keV (experiment 84+5 keV) .
(33)

If an —11 singlet-octet mixing' is allowed the results are
changed to

I (i/ —+ir+n. y ) = (cos8—v 2 sin8)2I „(8=0)
=45 eV,

Here p is the mm momentum in on-shell p decay.
In Eqs. (28)—(32) we have taken m &0, allowing ex-

plicit SU(3)XSU(3) breaking in phase-space and final-
state interaction. We are thus making the canonical as-
sumption that the amplitude G, defined in Eq. (27) for
massless pions, extrapolates smoothly to m &0.

We could now, in principle, test L, at low-pion momen-
ta (p =0) in the Dalitz plot, dispensing with the need for
extrapolating the amplitude to energetic pions. Here we
normalize the amplitude by requiring it to match the pre-
diction of L at low-pion momenta, and then calculate the
width using the p pole to describe the energy dependence
of the amplitude. The results are

. ~pvaP=i
2 3 (GvB r/+Gv B„r/')B~ir Bpn+Ap,

mF
(27) r(i/' ir+m y) =[cos8+(1/v 2) sin8] I'„(8=0)

=52 eV .

(34)

2
7

G M
(2n. )

(28)

With the masses of the particles in the decay defined as
M —+m ~+m2+m ~, I is the dimensionless integral

(M —m] ) (M —m] )I= f,dsf,drS(h)~.
(m$+m2) (m]+m2)

where we have used the currents in Eqs. (8) and (11).
If M is the decaying pseudoscalar mass, we have the

partial width

2

'rr 4~2F
(35)

Let us compare this with the VDM prediction. With

Considering the extrapolations involved, especially in the
amplitude, and the implicit assumption'

E„=F&——Fz, the agreement with experiment is good.
We close this section on electromagnetic anomaly tests

by deriving a relation which is of some interest in the fol-
lowing sections. The m —+2y anomaly coupling predicted
by the effective Lagrangian is
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2.EM & 0
p~+ T~~

gp

vp
p t (36)

n
/

/
/

/
/

/

n

n'
/

/
/

/

/

~n4

2

gmoyy ~ 2 gP'™'

3gp

However, in the previous section we found

2
Alp

g67P7T 2 ~ 3fl F~
Combining the two results, we find

2 2 4 2F~ gp

%e shaH return to this relation in Secs. V and VI.

V. STRONG DECAYS OF VECTOR MESONS

(37)

(38)

FIG. 2. Pole-enhancement diagrams for co decay into pions.

Thus we find

(rr+vr rr
~

V„~O) =g '(~+a. n. ~jp(ros) ~0), (41)

where j&(cps) is the source current for ro&, whose matrix
element is measured by the strong decay co8~3m. %e
thus relate this strong decay to the chiral anomaly,

(m+m vr
~
jp(a)s) ~0)=g~ (m+m ~

~

P'„~0)

We consider the following strong decays:

p~2rr (normalization),

co ~3w, / ~ 3', K*~K~7r,
p'~2m. (normalization),

p' —+EEm, p'~~my,

ru'~KKm, P'~KKn .

(39)

Here we follow the methods outlined in Eqs. (19) and (20).
The two pseudoscalars couple normally and the three
pseudoscalars couple anomalously to the vector current.

a P
gP I/«' ~3 PvcIPP g+P g

G~ ~+~ ~'~i ~~&p~+p~ p~'—

Here we have used Eq. {8). Using the results of Eq. (11),
we can make a similar determination of G + 0. For

COOPT 77 7T

ideally mixed co,P, we find

6g~.
«mr+~ m~g—

m w+n 4+ ~j /« ~+a «— —z~ 3

(43)

A. a)~3m, K —+Kmw

In the spirit of the VDM, we generally put gp
——g~ .

at zero-momentum transfer

In terms of this coupling G, the partial width for a vec-
tor meson decaying to three pseudoscalars is

(m+n
~ Vp ~

0) =gp '(m+m ~j&(P ) ~0),
6 M

3 (2m)
(44)

gp ~
Pp, Pp = (P—p Pp)~

gp

gp =gpss .

(40) where I is defined in Sec. IV. Here I is the integrated ma-
trix element enhanced by p poles in all m.m. channels, as
shown in Fig. 2, yielding the enhancement factor

mp impI p(S—+ )

9, mp impI p(S—+ )—S+
m '—im r,(S

mp impI p(S 0) —S—m p im p I p(—S+0 )

mp impI p—(S+0) S+0— (4S)

The final result is

I (ro~3m. ) =3.3 MeV . (46)

I (ro~3n)=3. 3 MeV, I ($—+3m)=0. 33 MeV . (47)

With 3.30 angular departure' from ideal mixing, the re-
sult is changed to

1=2g'up~Ãpr m

mp —S+
1+ 2

mp —S 0

+
mp —S+O

(48)

The experimental partial widths are' I (co~3~)=8.9
MeV and I {$ 3')=0.60 MeV.

%"e can compare with the Gell-Mann, Sharp, and
Wagner (GSW) theory, as follows. It yields, for the dia-
grams of Fig. 2, using the notation of Eqs. (42) and (43),

This amplitude at soft momenta (S+ ——S 0
——S+0——0)

matches the Lagrangian prediction, Eq. (43), if

2

(49)
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/
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«
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/

K
n' (pd

n'(pg

K
I

/
/

/
/

/

n'
I

/
/

/
/

/

K

K
/

/
/

/
/

/

K* "n' (p,)

no (p )

—0
K

/
/

/
/

I
«

Fx/F =1.2, then our prediction for K*~Knn is rough-
ly at its experimental upper limit.

B. p', P', /o' decays

We treat these decays similarly to co—+3~, but scaling
here to p'~2~ rather than p~mm. Thus, the absolute
predictions depend on the poorly known coupling g&
The final-state enhancement factors correspond to the dia-
grams of Figs. 4 and 5.

As earlier, we match low-energy behavior to the
effective-Lagrangian prediction. The final-state interac-
tion factors are (here we suppress width factors):

F(p' K+r/K or K noK )

n rK+
Q

+ +

no n K

FIG. 3. Pole-enhancement diagrams for E* decay into
three pseudoscalar mesons.

2
1 mx'

+4 m, '—S~

2
m~g

2m, —Sg

This should be compared with the updated GSW result,

g~~ ——14.1 GeV '. Assuming the extrapolation to low
momenta is correctly described by the GSW model, the
effective Lagrangian prediction is low by 35% in the am-
plitude.

A similar treatment of K' ~K n+n, K n n, and
K n. n is possible using the final-state enhancements of
Fig. 3. Here some remarks are in order which will also be
pertinent in p' decays (see below). The effective-
Lagrangian prediction for K' ~K n rr [via the cou-
pling of the strangeness-changing current to K nn, Eq. .
(8)] is zero because the identical pions need to be in an
overall symmetric state, whereas the tensor structure of
the anomalous-current coupling is antisymmetric, there
being no further dynamical dependence on kinematic vari-
ables other than that of the currents, Eq. (8). (Here we as-
sume the number of derivatives dictated by the anomalous
current. ) However, in the VDM process of Fig. 3, further
dynamical dependence is present. Here the amplitude also
has antisymrnetric tensor structure in the pion momenta,
but there is an enhancement factor that is antisymmetric
in S~ and S~, hence the amplitude is overall sym-

metric in exchange of the two symmetric pions. In this
case we use the antisymmetric enhancement factor and
scale the amplitude so that pole residues match the ampli-
tude of the other charge state, in which there is a rigorous
chiral symmetry prediction. Note in any case that this
amplitude is very small. The results of this procedure are

2m' +
16 mp —S~g

2
m~g

+
Em

2

2

mph'

Sg

F(p'~net) =
2

m&
2

mp —S

F(p' K n+K or K n K+)

2
m~g

m, —Sg2

2
m~g

2m ~ —Sg~

I

Qo

K {Ko)
/

/
/

/
/

~n~ (n )
Qo

K-(K')
/

/
/

n' (no)

Qo

K (Ko)
/

/
/

/
/

~0 (~ ) eo

K (K')
/

/
/

/
/ .K-(Ro)

2 2
m~g

F(/t/'~KKn ) =—
4

mph' Sg~ my+ Sg

(51)

I (K" ~K vr+n ) =15 keV,

I (K* ~K n n )=0.08 keV,

I (K ~K n n. )=31 keV,

I (K'~Kerr) =47 keV .

These are to be compared with the experimental limit'

I (K'~Knn)(35 keV (95%%uo C. .L. ) .

(50)

Qo'

K'

K (K')
/

/
/

/
/

- vr- (n~)
Qo

Tt'
/'

/
/

/
/

n

If SU(3)-breaking effects' are included in Eq. (50), i.e.,

FIG. 4. Pole-enhancement diagrams for po decay into three
pseudoscalar mesons.



KRAMER, PALMER, AND PINSKY 30

CO,
'4'

CO, A

Ko

K

CO, A

CO, 4

/
/

/
/

/
/

/

K+
n

K

/
/

/
/

/
/

o

CO, 4

CO, A

/
/

/
/

/
/

K

r(~' KK~)
I'(p'~KEm).
I (co'~KKrr)
I (co'~3m. )

The ideally mixed P' decays are predicted to be

2

I (P'~nK+K )=I'(P'~m K K )= 43 MeV,
4m

'K K'

FIG. 5. Pole-enhancement diagrams for co' and p' decay into
three pseudoscalar mesons.

I (po KK~)

I (pa~a. +~ )

r(p,' ~+~-~)
r(p,' ~+~-)

=1.18,

=0.1S,

r(p, ~+~-&)
=0.13 .

I (po~KKm)

Experimental results for p' branching ratios are sketchy. '

However, we do predict much less pm~ than is currently
reported.

The ideally mixed cu' decays are predicted to be
2

I (co'~3m ) = 926 MeV,
4m.

2

I (co'~K+K m. )=1 (co'~K K m. )= 21 MeV,
4m

2

I'(co'~n. +K K )=I (co'~n. K+K )= 42 MeV,
4m

2

I'(co' KKm ) = 125 MeV,
4m

The first four factors are unity at soft-pseudoscalar
thresholds. The last factor is necessarily zero there be-
cause 6 parity and the tensor structure require it to be an-
tisymmetric in the EE exchange. As before, we normal-
ize this amplitude so that pole residues match other
charge states in corresponding channels.

The p' decays are predicted to be
2

I (p'~K+K m )=1(p'—+K K vr)= 12.7 MeV,
4m

2

I (p'~K K m+)=1(p'~K+K m. )= 62.7 MeV,
4m

2

I'(p'~EKE ) = 150 MeV,
4m

2

I (p'~n+n g) = 19 MeV,
4~

2

I (p' m+m. )= — 127 MeV .
4m

We thus have the relative rates

2

I (P'~m+K K )=I (ct/'~rr K+K )= 86 MeV,
4~

(55)
2

I (P'~EKE) = 260 MeV,
4m

r(y KK~)
I (p'~EKE�)

We can attempt absolute limits by placing a bound on
gp'ew:

1.(~' 3~)+r(~ ~KK) & 1.„=166Mev,

2

&O. 16 .
4a

Thus we expect

I.'(p'~EKE) & 24 MeV,

I (p' +crerne)) &0—.03 MeV,

I (co'~2m) &20 MeV,

I (co'~3m) &150 MeV,

I (co'~KKn) &20 MeV,

I (P'~KKm ) & 41 MeV .

(57)

2~p g p'm'm gp'mm'

gGP Pv' 2 3 g cop&
gp ~ gp ~

which is small because gp is small.

The experimental status on co' and p' branching ratios is
sketchy, with some disagreements between experiments.
Our results suggest the ~' should be seen strongly in pho-
toproduction of pions yp~m. +w m X, consistent with re-
ports of the Omega Photon Collaboration. ' However,
they do not see a KKm. signal, in conflict with the DCI
e+e experiment data, ' which indicates a strong P sig-
nal in this final state. The analyses are in early stages
with limited statistics. We hope our amplitudes, which
indicate interesting zeros in p ~K m+E and E m E+
[Eq. (51)], are useful as we learn more about this interest-
ing energy region.

It is interesting to note why radially excited vector
mesons have such narrow widths despite the large phase
space, e.g., co'~3m & 1SO MeV. The coupling g„~ in our
model is given by
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VI. COMMENT CONCERNING RELATIONS
BETWEEN F, STRONG-INTERACTION

PARAMETERS, AND THE VDM

Io Sec. III we derived the relation

2
Alp

g coal 2~ 3
7T n-

(24)

by requiring the GSW amplitude to match the chiral-
Lagrangian anomaly at low-pseudoscalar momenta. (This
interesting relation perhaps helps explain the unusually
large scale of the dimensional coupling g„z —it is related
to the smallness of the chiral-symmetry parameter I' .)
In Sec. IV we used this result in connection with the
VDM to give g 0,' matching that result with the chiral-

~ yy'
Lagrangian determination then yielded

2 2 4 2E„gp ———,mp (38)

Here we derive Eq. (38) in another way, namely, by re-
quiring p exchange in ~m. scattering to reproduce, at low
energy, the amplitude predicted by the effective Lagrang-
ian. (For simplicity we consider a specific charge state
and do not project I =1, but the final result would be the
same. ) Restricted to pions the action of Eq. (3) yields the
four-point function

L= [(nB„m ) n. (B„m )—],3I'
(58)

and the scattering amplitude

+ +
—~P iP4

T(~) m.2 —+m.3 m.4 )= 2
(59)

where we have used the soft-pion condition

O=P3 =21iP2 —2P]P4 —21274 ~

2

The p-exchange amplitude for this process is

(pi —p2)V 3
—p4)

~p=gp ~ I,'—(S i+a»)'
(~, +~3)(p.+p4)

2 2

(60)
The leading soft-pion contribution is

P]p4 .
Alp

(61)
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FIG. 6. Pole-enhancement diagrams for m+m ~m+m

Matching the VDM [Eq. (61)] and effective-Lagrangian
prediction [Eq. (59)], we find again Eq. (38).

We note that Eq. (38) is similar but not identical to the
Kawarabayashi-Suzuki-Riazuddio-Fayyazuddin' rela-
tion. [Here we should mention that Eq. (38) can also be

derived by comparing m ~2y with y~3m, using vector
dominance. ' ] It is interesting to observe this difference
and question how stable this relation is, process to pro-
cess; if it were stable there would apparently be no need
for the effective Lagrangian: all results would be repro-
duced by the VDM. Happily, or unhappily, depending on
the point of view, this is not the case, as we now demon-
strate for the anomalous five-pseudoscalar amplitude. We
consider gm+~m+a+m. scattering, for which there are
only two VDM diagrams, as shown in Fig. 6. (The results
we shall derive are identical for K+K ~m+m m, for
which there are 11 diagrams. ) From VDM (Fig. 5) we
have the leading-momenta expansion

2 gP7777 j. 2 3 4
4 g p &pvaPPI PvPaPP~3 mp

(62)

Comparing this with the effective-Lagrangian result [Eq.
(16b)] we find they match if

4

g (63)

Using Eq. (24) we find

(64)

somewhat different from Eq. (38). It is clear that while
the VDM has the same tensor structure as the effective
Lagrangian at low energy, and thus is suitable for the
description of final-state interactions, it does not quantita-
tively lead to the same predictions as the more fundamen-
tal chiral Lagrangian. It is, however, possible that in-
clusion of tensor and axial-vector mesons could improve
the VDM and restore consistency between Eqs. (38) and
(64).

VII. SUMMARY AND CONCUSIONS

We have calculated chiral anomalies using an effective-
Lagrangian technique introduced by Wess and Zumino
and recently reformulated by Witten. A number of useful
results have been presented, including all three-meson
contributions to the anomalous part of the vector current.
These anomalies were then tested in KI4 decay, g aod
g' —+m+r/ y, and strong decays of vector mesons. The
agreement with experiment for J ~4 is impressive, for g
and g' decays, excellent, and for the strong decays, good.
Since the amplitudes have been extrapolated to higher mo-
menta with a final-state-interaction approximation, it is
not surprising that the agreement is less good for the had-
ronic decays, where, indeed, further dynamical assump-
tions were made, involving vector dominance. We expect
that our new predictions for decays of p', co', and P'
should be of interest as new experimental data becomes
available, not only io the absolute rate, but also in the
Dalitz-plot distributions, where we predict some zeros at
low momenta and at symmetric points in the decay distri-
butions.

ACKNOWLEDGMENTS

G. Kramer is grateful for the hospitality of the Physics
Department of The Ghio State University. We thank D.
McKay for helpful advice. This work is supported in part
by the Department of Energy.



98 KRAMER, PALMER, AND PINSKY 30

'On leave from II. Institute fur Theoretische Physik der
Universitat Hamburg.

For a review of the classical results, see B. W. Lee, Chiral
Dynamics (Gordon and Breach, New York, 1972).

~For a review and references, see S. Weinberg, Physica (Utrecht)
96A 327 (1979).

J. Schwinger, Phys. Lett. 248, 473 (1967); S. Weinberg, Phys.
Rev. 166, 1568 (1968); S. Coleman, J. Wess, and B. Zumino,
ibid. 177, 2239 (1968); C. Callan, S. Coleman, J. Wess, and B.
Zumino, ibid. 177, 2247 (1968).

4S. L. Adler, Phys. Rev. 177, 2426 (1969); J. S. Bell and R.
Jackiw, Nuovo Cimento 60, 147 (1969);W. A. Bardeen, Phys.
Rev. 184, 1848 (1969). For applications to y~3~, see S.
Adler, B. W. Lee, S. B. Treiman, and A. Zee, Phys. Rev. D 4,
3497 (1971);M. V. Terentiev, Pis'ma Zh. Eksp. Teor. Fiz. 14,
105 (1971) (USSR) [JETP Lett. 14, 68 (1971)];R. Aviv and A.
Zee, Phys. Rev. D 5, 2372 (1972).

5J. Wess and B. Zumino, Phys. Lett. 378, 95 (1971).
E. Witten, Nucl. Phys. 8223, 422 (1983).

~R. Fischer, J. Wess, and F. Wagner, Z. Phys. C 3, 313 (1980).
See also, G. Aubrecht, N. Chahrouri, and K. Slanec, Phys.
Rev. D 24, 1318 (1981).

R. Fischer, A. Kluver, and F. Wagner, Report No. SLAC-
PUB-2608 (unpublished).

For a review, see A. Donnachie and G. Shaw, Electromagnetic
Interactions ofHadrons, edited by A. Donnachie and G. Shaw
(Plenum, New York, 1978), Vol. 2.
L. Rosselet et al. , Phys. Rev. D 15, 574 (1977).
M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev. Lett.
8, 261 (1962).

Particle Data Group, Phys. Lett. 1118, 1 (1982).
Estimates of the variation of F„, F„,F, and F& from their
symmetry limit are complex and model dependent. H.
Mnnczek and D. McKay [Phys. Rev. D 28, 187 (1983)] re-

cently found 15—20% deviations.
I4M. Atkinson et al. , Phys. Lett. 1278, 132 (1983).
I5J. Buon et al. , Phys. Lett. 118, 221 (1982).

K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 225
(1966); 16, 384(E) (1966); Riazuddin and Fayyazuddin, Phys.
Rev. 147, 1071 (1966).
S. Rudaz, Phys. Rev. D 10, 3857 (1974). See also P. G. O.
Freund and A. Zee, Phys. Lett. 132B, 419 (1983). These
references were discovered after we had completed this work.


