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Supersymmetric kinks and the Witten-Olive bound
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The Witten-Olive bound on the kink mass in supersymmetric (1+1)-dimensional A.$ theory is shown

to be saturated under lowest-order [0(t)] quantum fluctuations.

Several years ago it was shown by Witten and Olive' that
topologically nontrivial classical field configurations (kinks,
soiitons, etc.) of supersymmetric field theories lead to a
modification of the supersymmetry algebra: certain surface
terms, usually ignored vis-a-vis the vacuum sector, appear
as central charges in the algebra. An immediate physical
consequence of this is a lower bound on the mass M(gk)
of the topologically nontrivial field configuration (kink)

gk (x ) in terms of the appropriate topological (central)
charge

where

1/2

(3)

and the last term is the boson-mass counterterm. Around
the classical vacuum (@)= p/A. '~', W can be rewritten in
terms of the shifted field q

—= $ —p/X'~',

2'= ~(B„q)'—p, 'g'+ ~y(ikJ2p' ,—)y —~Xv)' —pX'~'7i'

—(~X) ~ qQQ+ ~gp(rl , 2pq/—h
'~ ) (4)

—y(dS/d @)Q+ &p, 'S (@)] (2)

It was further pointed out by these authors that the above
bound is saturated at the classical [0(to) ] level.

Recently, Kaul and Rajaraman' and Schonfeld have reex-
amined an earlier claim by D'Adda and Di Vecchia that in

(1 + 1)-dimensional supersymmetric spinor-scalar theories
the lowest-order [0(t) ] quantum fluctuations do not con-
tribute to M(gk). It turns out that although the bosonic
and fermionic 0 (ll) fluctuations about the kink have identi-
cal continuum eigenspectra, the respective densities of nor-
ma1 modes are actually different, when periodic boundary
conditions are used, ' ' leading to a primitively log-divergent
0 (ll ) contribution to M(@k). This ultraviolet divergence is
renormalized away by the vacuum-sector counterterm,
resulting in a renormalization-scheme-dependent expression
for the finite 0(t) contribution to M(gk) in terms of the
renormalized mass 2p, .

One is thus led to address the question as to whether the
Witten-Olive bound (1) remains saturated at the 0(t) lev-
el. To this end, observe that T(Q), to this order, should
include the effect of quantum fluctuations around the classi-
cal kink configuration at the spatial boundaries. This fluc-
tuation contribution, computed using periodic boundary
conditions, has a logarithmic divergence which, however, is
canceled by the contribution of the mass counterterm to
T(@). The resulting expression for T(@) ensures the sa-
turation of the bound (1), as we now proceed to demon-
strate.

We consider the supersymmetric version of the theory in
1+ 1 dimensions. In the notation of Ref. 2,

The corresponding central charge that appears in the
modified superalgebra is given by

T = 2 dx(&qh/»)$($)

where

S(@)= dW/d$ (8)

With S(@) given by Eq. (3) and @k
——@k(x), one obtains

!T, != (~) ~ (p, /X), showing that the bound in Eq. (1) is

classically saturated.
The semiclassical quantization of the kink in this model

has been discussed in Refs. 2-4. A proper evaluation of the
difference in the density of normal modes of the bosonic
and fermionic fluctuations around the kink yields the fol-
lowing result for the 0 (lr) contribution to the kink mass':

Equation (4) has been written in terms of renormalized (not
necessarily physical) parameters; the scalar-mass counter-
term is assumed to be 0(t) and therefore does not contri-
bute classically. Note that in this manner of writing the fer-
mion and scalar masses are degenerate classically (with
respect to the supersymmetric classical vacuum (q) =0),

mc ~c 21/2
b f

The theory in Eq. (2) admits the well-known kink solu-
tion

@k(x ) = (p, /X' ') tanh(px/2'~')

which has the classical energy

Mk —= M'(y„) = (~)'~'(p, '/z)

fO OO

Mg=M(@k) =Mg+t —(p/2' ) „(dk/2n)(k +2p, ) ' + J25p, (p/A. )
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Following Ref. 2, we take

hp, =ttk(B + C)

where

(10)

Since our aim is to compute the expectation value of T(@)
between one-kink states, viz. , (k I T(g) lk), through 0 (t),
we must retain all contributions to Eq. (18) which are of
this order. It is thus convenient ro redefine S(@), taking
into account the effect of the mass counterterm, as

B =
2 J (dk/27r ) (k~+ 2p, 2)

s(4) = ( —,) )' '(@'—p'/)). ) —hp'/(2)). )' ' (18)
and C is a renormalization-scheme-dependent finite con-
stant. Note that the form (10) for hp, suffices to eliminate
all vacuum-sector divergences. In the kink sector we now
obtain

Mk (p ) = Mk (p ) + 2'i tt p C (12)

The ambiguous quantity C can be eliminated from the ex-
pression for Mk(p, ) by recasting (12) in terms of the com-
mon physical fermion/boson mass m, as obtained from the
poles of the respective renormalized one-loop propagators:

It follows that

IV(g) = (~)).) ' '(~@'—p, 'y/X) —[hp'/(2)() ' ']@ . (l9)

However, since (kI((t)lk) and (kl( (t)lk) are O(t), it
is possible to neglect the counterterm contribution to the
second and third terms of the RHS of Eq. (17). Moreover,
to this order it suffices to use the "small fluctuation" ap-
proximation which amounts to neglecting terms O($ ) in
Eq. (17). Thus, to O(t), one obtains

mb = mf —= m = 2p, +t) [2C +12p, 3 (p, )]
where

(13) —,
' (k I T(y) Ik) = —(~)' '(p, '/) ) —2"'p, hp, '/X

+ 2'"p, &k lg'(t) lk), (20)

This leads to the following expression for Mk..

M„(m ) = ~ (m /X) —3ttm 2 (m )

The topological central charge T(@) is defined as'

T(4)) =2[IV(@(+ )) —IV(@(— ))1

(15)

(16)

Now write @(,xt) = @k(x) +(( tx), where g(x, t) are the
fluctuations of the bosonic field around the classical kink
solution Pk(x). Clearly, as x +~, the classical kink
solution @k(x) goes to one or the other classical minima of
the scalar potential, $k(+~) = +p, /)). ' . But since ((x, t)
must obey periodic boundary conditions, g(+~, t)
=g( —~, t) —= ((t). With these substitutions, we obtain

T(@)= 2[ IV(p/Z' '+ g) —IV( —p/)). ' '+ () ] . (16)

2

~ (p') -=( J",(k'-2&')-'[(k —p)' —2&']-' . (14)(2' ) '
where hp, is given by Eq. (10).

The next step is the computation of (k Ig (t) lk). Ob-
serve that, to O(tt),

&k I('(t) lk) = »m»m (k I T {g(x,t)g(x't') j lk)
xt ~xt

lim lim tt Gs (xx';tt')
+oo l Ixt ~xt

(21)

where Gs(xx';tt') is just the bosonic propagator in the back-
ground kink field, which satisfies

[a + V"($k) ]Gt)(xx';tt') = —i h(x —x') h(t —t') (22)

where V(pk) = 2S (gk) is the classical scalar potential for
the kink field. Gs(xx';tt') can be expanded in the usual
manner in terms of the eigenfunctions of the eigenvalue
equation for the bosonic fluctuations $„(x,t). Recall that
these latter satisfy

Taylor expansion of the right-hand side (RHS) of Eq. (16)
about + p/X'i yields , + V"(4k) (.= ~.'8. .

dx
(23)

—T(Q) = [ IV (p/)). ' ') —8'( —p/)). ' ') ]

+ [s(p/) "')—s( —p/) 'i') ]g

+ [s'(p/) "')—s'( —p/&'") ]('+o ((') . (17)

For the case of the kink solution, the fluctuation eigenspec-
trum consists of a zero mode, a discrete state at
cu(= (~)' 'p, , and a continuum corresponding to frequencies
ru(k) = (k +2p, )'i, 0~ k (~. Thus we obtain9

I

(s —t') &&( )&&( ) +( f d~
Jt dk(N )

—
)(p)ke (s —t ) &'

cu —cv„+i e co —cuk + Is
(24)

where the sum (integral) over n (k) runs through discrete (continuum) frequencies, p(k) is the density of continuum
modes, and N„k are normalization constants given by N„k ——fdx Ig„kl'.

Next we proceed to take the appropriate limits; it is trivial to see that

Gt)(xx;tt) = i g(N, ) ' Jt I g, I'/(0)' ~, '+i e) +i Jt JI dk(Nk) 'p(k)leak(x) I'/(~' ~.'+ t~)
n

(25)

Now, in the limit x +~, the discrete modes („(x) 0, while the continuum mode gk(x) exp[i[kx +
2 ha(k))]. If

we normalize the continuum modes in a box of length L, we obtain, in the limit L ~, Nk=L, p(k) =L/2rt, thus
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yielding

(k lg'(t) lk) = lim tGs(xx;tr)

= it [d'k/(2m. ) '] (k' —2p, '+ i e )

Recall that

B =i [d k/(2') ](k —2p, +is)

which implies

Substitution into Eq. (21) gives us the result

(26)

(27)

(28)

It follows immediately from Eqs. (7), (12), and (28) that

m, (&) = —,
' l(k I T(@)lk) I, (29)

to 0(t).
Thus, the Witten-Olive bound has been shown to be sa-

turated for the (1+1)-dimensional X$ theory under
lowest-order quantum fluctuations. The question of validity
of this result for general S(d ) and also the issue of alterna-
tive boundary conditions will be reported elsewhere. '

Note added. After this work was completed, we received a
report by C. Imbimbo and S. Mukhi [Ecole Normale Su-
perieure, Laboratoire de Physique Theorique, Report No.
84/04 (unpublished)] in which T(P) has been computed
for general S(@) using slightly different techniques, and a
result identical to ours has been obtained. We thank S. Mu-
khi for sending us their report prior to publication.

We thank R. Rajaraman for extremely valuable discus-
sions.
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