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The spectral asymmetry is evaluated for a family of Dirac operators interacting with a topological
background field and defined on an open infinite space. For these operators the spectral asymmetry
is given by an integral over a local quantity that relates only to the homotopy properties of the back-
ground field. g-function regularization is employed and a possible simple pole in the limit where the
regulator is removed is shown to vanish. The spectral asymmetry can be computed in a closed form
in specific models. This is exemplified in various cases involving solitons, vortices, magnetic mono-

poles, and instantons as background fields.

I. INTRODUCTION

Various index theorems' have been applied to the
analysis of both the classical and quantum structures of
field theories. In particular the index of a Dirac operator
has been used extensively to obtain relationships between
the analytical and topological aspects of these theories.
Typically, an index theorem relates the number of zero
modes of a Dirac operator to a number that characterizes
the background-field topology and hence it can yield use-
ful information on the quantum field theory if the classi-
cal structure of the theory is known.

An important application of index theorems arises in
the study of instantons, where the Atiyah-Singer index
theorem' is used to enumerate the number of independent
parameters that are needed to characterize the most gen-
eral multi-instanton configuration with a given Pontryag-
in index. ' Another widely studied application, with
consequences both in particle physics and condensed
matter physics, arises from the analysis of fermion num-
ber fractionization in field-theory models with a conju-
gation symmetry such as charge conjugation. In these
models the fermion number of a topological soliton is re-
lated to the number of zero modes of the pertinent Dirac
Hamiltonian, which in turn can be obtained by the use of
an index theorem. However, in the absence of a conjuga-
tion symmetry, as in the field-theory models studied in
Ref. 6, the use of index theorems to analyze fermion' num-
ber fractionization is inadequate and a more profound ap-
proach is necessary. In the general case the fermion num-
ber

N = —, I d x([Pt, lb])

is a transcendental function of the parameters of the
theory and is mathematically related to the Atiyah-
Patodi-Singer g invariant' of the pertinent Dirac Hamil-
tonian, formally

X= ——,g= ——, g sgn(A, „),
~p

+1 for A)0
sgnA, =.—1 for A&0,

(1.2)

where A,„are the energy eigenvalues. In the presence of a
conjugation symmetry the positive and negative eigen-
values are paired, and only the zero modes can contribute
to (1.2). But in the general case where no such symmetry
exists, all eigenvalues contribute. In particular if the
Dirac Hamiltonian operates on an open infinite space so
that the spectrum admits a continuum part, this continu-
um must be included in a properly regulated form of
(1.2).'

In the mathematics literature, ' the Atiyah-Patodi-
Singer i) invariant in (1.2) is usually defined as the s~0
limit of the spectral asymmetry"

ii(s) = g sgn(Ak)
~

A,
) (1.3)

If the operator under consideration has a continuum spec-
trum, the summation in (1.3) becomes an integral over the
continuum portion.

The properties of q(s) have been studied extensively on
compact manifolds with and without a boundary, and it
has been established that g(s) is in general a meromorphic
function of s with a finite s ~0 limit.

The purpose of this paper is to analyze the spectral
asymmetry i)(s) of a Dirac operator which is defined on
an open infinite space of arbitrary dimensionality. We
consider operators that are of the general type studied in
Refs. 5 and 8—10 and we shall prove that for these opera-
tors i)(s) is given by an integral over a local quantity.
This integral relates only to the topological (=global)
properties of the background and can be readily evaluated
in specific models. In the s ~0 limit we obtain an expres-
sion for the fermion number (1.1) and (1.2) which agrees
with the previously derived results ' ' and in a
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conjugation-symmetric limit our formula for (1.2) repro-
duces the results derivable from index theorems.

While the original motivation for this work is in the
study of fermion fractionization, our formalism should
also have applications in other field-theory problems.

Indeed, if we interpret (1.3) as a moment problem for the
spectral density function, we can solve for its odd part
provided g(s) can be evaluated. ' q(s) is also closely relat-
ed to the Riemann g function of the Dirac operator which
is known to contain much information about the quantum
theory, ' and while it has not yet been clarified what in-

formation is contained in q(s) [except for the connection
to the fermion number (1.2)], we expect that our formal-
ism and results will be useful especially in connection with
anomalies, effective actions, and index theorems. '

We shall evaluate the spectral asymmetry g(s) for vari-

ous different Dirac operators. We shall also establish
close relationships between problems that are traditionally
considered distinct —in particular we obtain the Atiyah-
Singer index theorem, ' the Callias index theorem, '" and
the index theorem studied by %'einberg' as special cases
of our formalism.

In Sec. II we introduce the operators that we study and
give a formal derivation for an integral expression of the
spectral asymmetry. Our technique here parallels that
used by Callias' in the context of index theorems. Sec-
tions III—VI are devoted to various applications that are
chosen to illuminate the use and different aspects of our
formalism, and concluding remarks in Sec. VII summa-
rize our results.

II. CALCULATING SPECTRAL ASYMMETRY

Here ~ is a positive constant, D an operator of the form

(2.2)D =iP;8;+Q(x),
and D the Hermitian conjugate of D. The P; are con-

stant matrices that satisfy

Pi Pj+Pj Pi =2~ij1
(2.3)

P;Pq+Pj P; =25,~1 .

We write (2.1) in the form

(2.4)

where

The spectral asymmetries that we are interested in arise
from D-dimensional Euclidean-space Dirac operators that
are of the general form

r

(2.1)

The matrices (2.5) satisfy the algebra

II;,I"
I =25; 1, II ', I;I =0,

(2.7)

and the operator H anticommutes with I'

I H, l 'I =0 . (2 8)

As a consequence

H 2 H2+~2) ~2

and all eigenvalues of H„

(2.9)

(2.10)

are nonzero. Since H„ is a Dirac operator it has both pos-
itive and negative eigenvalues, and in general its spectrum
is asymmetric around A, =O. We wish to evaluate the
spectral asymmetry of H„(Ref. 16)

g„(s)= g sgn(A, „)
~
iL„~ (2.11)

We expect that (2.11) is a meromorphic function on the
complex-s plane with isolated simple poles on the real
axis. An apparent pole occurs at s =0, but for the class
of models studied here the residue of this pole vanishes.
Hence q„(s) is regular at s =0 and we can define

lim g„(s) .
s ~0+

(2.12)

then

(2.14)

H(I 'g)= E(I'Q) . — (2.15)

Hence only the zero modes of H can contribute to the
sc~O+ limit. For F. =0 the eigenvalue equation for H,

0 D t('+
(2.16)

becomes

Formally, (2.12) is a measure of the difference between the
number of positive and negative eigenvalues of the opera-
tor H„,

(2.13)
A,„)0 A,„&0

We are also interested in the x~0+ limit of the spec-
tral asymmetry rI„(s). In this limit H„becomes H. From
(2.8) it follows that the spectrum of H is symmetric, ' i.e.,
if

0 P; 1 0
I c

i
(2.5)

DQ =0, Df/+ ——0, (2.17)

and since the zero modes of D and Dt are eigenmodes of
pC

r'g+ =+/+ (2.18)
0 g(x)

K(x) =
t( )

(2.6) we conclude that in the ~~0+ limit (2.12) yields the in-
dex of H
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ljm rl„= —index(H)
K~0+

=Dim I( er(D ) —Dim Ker(D) . (2.19)

We now show that the spectral asymmetry density in
(2.22) is a total divergence. For this we first observe that

We shall now explain how g„(s) can be evaluated. We
first introduce the Mellin transform

sgn()[[, )
~

y[
~

'= —cos s— duomos 2 ~ s
0 $2+~2

This yields

=2 00 Agg

21„(s)=—cos s—g duomo
' . (2.21)

+CO

We change the order of summations and get
r

2
rl„(s)=—cos s-

7r 2

c=i—trx I' -y
o. H+icr

where we have defined

o (~2+K2)1/2

Now consider

(2.23)

(2.24)

00

X j dxx fd'-xtr x
' x).H +co

tr x iI'8;I ' . —I' — iI'0; y
1, 1

H +io. H +i o.
(2.25)

(2.22) Using (2.4), (2.7), and (2.8) we find that this equals

1 c 1trx H —E x+icr —io I' . —I"' . H —E y+io —io yH+io. H+io.

1 c=2)srtr x (" y +tr [E(y)—)t'(x)] x (" y)H+io. H+io. (2.26)

We then obtain the trace identity

trx y = -- + trxiI'I' y + tr Ex —Ey x I' . y
K

(2.27)

We recognize that for D even, (2.27} is formally equivalent to the standard axial anomaly equation for a Dirac operator
H„defined in a D-dimensional Euclidean space. ' Consequently, when we consider the y~x limit of (2.27) we need to
discuss two cases separately. First, if background gauge fields are not present or the space dimension D is odd the y ~x
limit of the left-hand side in (2.27) yields the integrand of (2.22) while the second term on the right-hand side vanishes

since there are no anomalies in this case. The integrand becomes

tr x x = -8'tr x iI'I' x
K

(2.28)

However, if the space dimension D is even and background gauge fields are present, the second term in (2.27) in general
does not vanish in the y~x limit. Since (2.27) is now formally equivalent to the ordinary D-dimensional axial anomaly
equation' in the representation (2.5) of the I matrices, in order to preserve manifest gauge invariance we must include
the appropriate axial anomaly term in the y~x limit of (2.25) and (2.26).' In this way we get from (2.27) the integrand

H„ +anomaly
HK +co 2o H +io.

Substituting (2.28) and (2.29) into (2.22) we get

(2.29)

r),(s)=—sos s—J dssst ' 2Tts+ tj) dS'tr x il"(" . x)2 ~ -+- H+Eo
(2.30}
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Here TD is the Pontryagin index of the background gauge
fields that arises from the space integral of the anoinaly
term in (2.29). Since the surface term also relates to the
topological (=asymptotic) properties of the background
fields, we conclude that rt„(s) itself is a topological quanti-
ty in the sense that it is invariant under local variations of
the background and (as we shall see) vanishes if the back-
ground field has a trivial topological structure.

We observe that if the space dimension is even and the
background is a pure gauge field so that the explicit sur-
face terin in (2.30} is absent, the limit s —+0+ yields the
Atiyah-Singer index theorem

g„=—index(H) = TD .

L =P(ij3 —4 —iay )g (3.1)

and we treat the scalar field @ as a classical background
field with a soliton profile,

y+ =4( oo )&4( —oo ) =y

The (1 + 1)-dimensional Dirac algebra

(3.2)

(y')'=1
(3.3}

is represented by y =o', y
' =i o. , and y =y y' =o

where the o's are the Pauli matrices. The Dirac equation
1s

Notice that i)„ is now independent of a. A nontrivial it

dependence can only arise from the explicit surface term
in (2.30). This term is present only if the space is open.
In such a case the spectrum of H„has both a discrete part
and a continuum part, both of which contribute to g„.

In the following sections we shall evaluate (2.30) in
various field-theoretical models. In Sec. III we consider
the open-space problem of a (1 + 1)-dimensional
fermion-soliton system. In this case there are no
anomalies and ii„(s) arises entirely from the surface term
in (2.30). In Sec. IV we exemplify the Atiyah-Singer in-
dex theorem by evaluating (2.30) for a four-dimensional
spinor in an instanton background. In Sec. V we analyze
the (3 + 1)-dimensional fermion —magnetic-monopole sys-
tem. In the s ~0 limit we reproduce the known ' results
for the fermion number (1.2) and in the s —+0, it~0+
limit of (2.30) yields the Callias index theorem, " and in
Sec. VI we study a (2+ 1)-dimensional fermion-vortex
system as an example of the case where both the anomaly
contribution and the surface term in (2.30) are present.

III. A (1 + 1)-DIMENSIONAL MODEL

iy —y 4 iiiy —P(xt) = i —f(xt) .5 ~ 0 ~ i

X Bt
(3.4)

%e separate the time variable by

P(xt) =P(x)e' '

and write (3.4) as an eigenvalue equation for g(x)
r

D 0+
H f= t ~

EP. ——

Here D is a first-order differential operator

D =———@(x)a
Bg

(3.5}

(3.6)

(3.7)

I'= —iy', I' =y
The trace identity (2.28) then becomes

(3.8)

and D is the adjoint of D. We wish to evaluate the spec-
tral asymmetry of H„.

In order to apply (2.30) we identify

In this section we consider a (1+ 1)-dimensional field
theory involving a scalar field 4 and a spinor field ij'j. We
assume that the spinor part of the Lagrangian has the

and the spectral asymmetry is now

(3.9)

m Q7j„($)=— cos s dcoco 2 2
tl' ce

2 CO +K H +io.

Consider

eo —tr —~ y (3.10)

t +- y'

1 dk 1
=tr +oo, 0 +ao =2 +oo i 2 ~

+oo = 2f+—
i y'8 —@+iy cr 8 —@ —o 2~ k +y+ +o.

(3.11}

Substi«ting this into (3.10) we obtaiil the spectral asymmetry
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1 0'+
YJ ($)= cos s dcoco

P K2+ 2
( 2+ 2+ 2)1/2

1 —s 2+s
cos s—~ 'B

2K 2

(~ 2+ 2+ 2)1/2

1 1 —s 3 f+ 1 1 —s 3
X

(~ 2+K2)1/2 2
'

2 ' 2 '
~ 2+K2 (y 2+K2)1/2 2

'
2 '

2
' 2+ 2 (3.12)

=1 f+
arctan

'Il' K
—arctan

K
(3.13)

Here B is the beta function and 2F& is Gauss's hyper-
geometric function.

We now discuss various limits of (3.12). In the s~0+
limit we get

where

D .gp+ kgk+AP 1 kAk

and D is the Hermitian conjugate of D.
Equation (2.23) reads

y

(4.6)

(4.7)
and in the K~0+ liinit we obtain the index of H

index(H) = ——,
'

[sgn(y+ ) —sgn(y )] . (3.14)

index(H) = ——,
'

sgn[y+], (3.15)

i.e., a half-integer. This simply means that the continuum
part of the spectrum extends to zero and contributes to
the index.

This result agrees with that given in Refs. 3 and 14.
If either y+ or qr vanishes, (3.14) is ill defined. How-

ever, if. e.g., p =0, (3.13) yields formally

and the trace identity (2.27) has now an anomaly contribu-
tion. We observe that the right-hand side term in (4.7)
satisfies the four-dimensional axial anomaly equation'

—8"tr x y~y xl 1

2 H +io.

1 1=io tr x y x —
2

tr[*F&"F&"]. (4.8)H+io.

Combining (4.7) and (4.8) we obtain the trace identity
(2.29),

IV. SPECTRAL ASYMMETRY
AND THE ATIYAH-SINGER INDEX THEOREM

We shall now use our technique to evaluate the spectral
asymmetry ri„(s) of the four-dimensional Dirac operator
(one flavor)

K id" tr x y"y . x + tr['F&"F&']5 1 1

2o H +io g~2

(i y"d"+y"A"+Ky')g„=A,„p„. (4.1)
(4.9)

F&"=d"A ' d'A" i [A—",A "]-
and represent the Dirac algebra (2.7),

Iy",y"I =25", Iy', y"I =o, (y')'=1,

(4.2)

(4.3)

The background gauge field Af T' is a Hermitian matrix
that takes values in the Lie algebra of a simple compact
Lie group G. We normalize

We substitute this into (2.22) and use the fact that the
space integral of the first term on the right-hand side of
(4.9) vanishes. This yields for (2.30)

1 m.
g„(s)=—cos s— deco ' [2T4]

2

0 1 0 —Eo.~ k

I,o

by the following Hermitian matrices

where

=cos s—K T4,
2

(4.10)

1 0
0 —1

(4.4)
T4— 1 d4tr[+FP~FP~]

16m
(4.11)

Equation (2.10) then becomes
T

a
~A"= Dt p =~nf. (4.5)

index(H) = —T4

which is the four-dimensional spinor index theorem.

(4.12)

is the Pontryagin index of the background field. Setting
s —+0+ we obtain 21„=T4 independent of K. Hence
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V. MAGNETIC MONOPOLES
AND THE CALLIAS INDEX THEOREM

We consider a (3 + 1)-dimensional Dirac equation for a
fermion interacting with a background Yang-Mills-Higgs
system:

Hp(xt) =[ia 8"+akA p(—m i—Icy +4)]ttr(xt)

D

where

D =iokak+akA "+i(m +e)

We separate the time variable as in (3.5) and obtain

Ii'+
(5.3)

(5.4)

= —id P(xt) . (5.1)

Here A"=A,"T is a static Hermitian gauge field based
on a compact simple gauge group G, assumed to be purely
magnetic so that 2 =0, and @=y'T' is a static Hermi-
tian Higgs field. The following representation of the
Dirac algebra is convenient

0 —i 0 0"
p yo k pyk

(5.2)
0 1

5

0

and D is the Hermitian conjugate of D. We shall now
calculate the spectral asymmetry (2.30) with the present
technique. For this we define I '=iPy and we also iden-

tify a"=I ". The trace identity (2.28) then becomes

(5.5)

Notice that there are no anomalies in three dimensions.
We substitute (5.5) into (2.22) and get

1
r/„(s) =—cos s— dctI co

0 ~&+~2 8 = oc
L

IdS'tr x y'y' . xH+io (5.6)

It is sufficient to evaluate the integrand in (5.6) in an asymptotic expansion where we only keep terms of order 1/x .
For a magnetic monopole we can assume that, for

i
x

i
~ cc,

F'"(x)=O 14(x)=O(1), A (x)=O

and [D,4] vanishes exponentially. Hence

(5.7)

1 1 p
y (g —m 4 iy cr—)—~ p

H+io D +(m+4) +o.
1 ~ ~

+ [yk yt]Fkt y (8—m 4 iy—ocr}—+ (5.8)
D'+(m +4 )'+o' 4 D'+(m +@)'+cr'

where we have dropped terms smaller than 1/x, and we have also defined D =i d"+A . We substitute (5.8) into (5.6)
and evaluate the trace over y matrices. The result is

4 m 1
'rite(s) = cos s f dco co f dS tr x x 8' m+4

c0 +~ ~=" [—t} +(m+4) +co +tc ]' (5.9)

Here B'= ,
' tE'J"FJ" is the ma—gnetic field and the trace is over the group indices, and in the s~0 limit this agrees with the

expression for the fermion number evaluated in Ref. 9.
The formula (5.9) allows the computation of q„(s} for a wide class of models. As an application we shall study the

Dirac equation for an isospin-T particle in the field of a static system of SU(2) magnetic monopoles. We evaluate the
trace in (5.9) in the unitary gauge by first dividing the surface integral into integrations over two patches. Inside each
patch we perform a nonsingular gauge transformation which aligns the Higgs field 4=p'T' along the 3-direction in iso-

spin space. The T' are now the generators of isospin rotations that satisfy

[T,T ]=i@ T, , T'Ta= T(T+1),
and we choose T to be diagonal with eigenvalues ( T, T —1, . . . , —T). Evaluating the trace in (5.9) we get

(5.10)

4 m. , ~ d3k T 1q„(s)=—cos s— deuto ' dS'B3 g 2 2 j(m +j q )
'rr 2 0 cet +Ic (2~) patches . T [k +(m +jtp) +& +& ]
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where y =y'y'. We use the gauge-invariant result

dS'B'3 ——f dS'8,' =4~zV,

where N is an integer. Integration over d k in (5.11) then yields

(5.12)

2X m. "d, K j(m+jy)'g„s = cos s dc' co
p ~2+Kz [~2+Kz+(m +j~)2]l/2

(5.13)

This should be compared with (3.12). Integration over de gives the spectral asymmetry

1 —s 2+s
'g~(s)= cos s K 8

2 2
'

2
m+jq 1 1 —s 3 (m+jy)

[K +(m +j p) ] 2 2 2 K +(m +j g)
(5.14)

Various limits of (5.14) can now be discussed. In the
s~0+ limit we get

D is the Hermitian conjugate of D, and yl and yz are the
real and imaginary parts of the Higgs field. We define

ri„=—X g j arctan2 . m+Jg
7T J K

(5.15) (6.5)

which gives the fermion number (1.2) in the present case,
and the K~0+ limit yields the index of H

1 0
pC (6.6)

(5.16)—index(H) = [T ( T + 1 ) —a(a+ 1)]X,
where a is the largest value of j which is less than m/qr.
The result (5.16) agrees with that found by Callias. '

and we wish to calculate the spectral asymmetry zi„(s) of
0„. For this we first introduce the following 4&&4 ma-
trices:

VI. A (2+ 1)-DIMENSIONAL
SUPERCONDUCTOR MODEL

In our previous examples the spectral asymmetry ri„(s)
has arisen either from the anomaly term of the surface
term in (2.30). We shall now consider an example where
both the anomaly term and the surface term are present.
This can only happen in an open even-dimensional space
since in odd dimensions anomalies are absent.

The spectral asymmetry that we shall consider arises
from a (2+ 1)-dimensional, two-component fermion field
interacting with background gauge and Higgs fields ac-
cording to the Lagrangian' ' '

0 i 0 cr
~2—i 0 ' 2 0

I 3
0 —o.3

We also define the chirality operator

These matrices satisfy the algebra (2.7) with

(6.7)

(6.8)

I- =4(l & eA )4 gA 0—'+ g—4'—m*4, —(6.1)

where g,'=Czgi with C the charge-conjugation matrix.
The Dirac equation that follows is

lapp= —la akim ea Akf —g+O' I/—J

&oq 0
I =I'r'= —lOg

With these definitions we then have

(6.9)

with a" ( k = 1,2) being the pair of Pauli matrices (o', o ).
For static solutions this reduces to

H„=H +KI'

0 D 0+
II/= t ~

——0,

where f+ and f are now real spinors and

D =(—a, +in az)+e( —Az ioA,)—.

+g( —o yl —o'yz),

(6.3)

(6.4)

= l r'a, +ir'a, +irVJr' A,e+ge+Kr', (6.10)

where

c=r q, +r ~ (6.11)

Consider now the trace identity (2.27). Since H„ is a
two-dimensional operator with background gauge fields
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we can expect an anomaly contribution to arise in the
x —+y limit. Furthermore, since background Higgs fields
are also present we expect that the Higgs fields give a
nonanomalous contribution in (2.30).

We shall now evaluate the anomaly contribution. The
anomaly cannot depend on the Higgs field, hence it is
enough to consider the operator

a'= —a2+er Fi2 —er'ra'A'

2 e rc rA i/i +e 2A 2 (6.14)

1 ~ c 1tr x I' x = —iotr x I' x, 6.13
H+io jf 2+~2

where

II=i ei+i I'e"r'eAi .

We first write

We then use in (6.13) the identity

r =-,'(1+r ) ——,'(1—r')
to obtain

(6.15)

1—io~

~ ~—ci +eF i.ea—2B'A' 2iea—qA'c}'+e A; +cr
1 x . (6.16)—c) eF— ieozB'—A' 2i—eo2A'd'+e A; +o

We now use the identity

1=—,
' (1+cr2)+ —,

' (1 cr2—)

to find

(6.17)

(6.18)

where i9=iy'8&+iy c}z and y', y, y =y'y is a 2&&2 representation of the two-dimensional Dirac algebra. The two-
dimensional axial anomaly equation'

—8'tr x y'y . x =io tr x y . x + e'~F'i
2 i m+e +io. i +e +io .4m.

(6.19)

together with (6.18) gives finally

~ ~

1 1 1trx I' x = 8'trx
H+, ~ 2cr i9+eA+io

x —i —e'JI"J .
i 9 eA +i cr —2'. (6.20)

The anomaly contribution to q„(s) is obtained by substituting (6.20) into (2.23} and evaluating (2.30). The first term on
the right-hand side of (6.20) does not contribute and we get

'
cos s—K-' d'xe'JF'~.

2m 2
(6.21)

We shall now evaluate the nonanomalous contribution to the spectral asymmetry rl„(s). For this we consider

tr x I'I' x (6.22}

which now appears in the surface integral of (2.30). It is sufficient to evaluate (6.22) in an asymptotic expansion where

we only keep terms of order 1/
~

x
~

. For a vortexlike background we can assume the following asymptotic behavior for
)x i~a)..

4(x)=O(1), A'(x)=O 1
(6.23)

1 1

8+g qP—+r c8+g ip +—cr

1 1—2ig I 'e'~r'eA J@
2 2 g@+

Q2 +g 2/2 +g 2 Q2 +g 2f)2 +g\2

and y =y& +y2 approaches a constant exponentially while I' vanishes exponentially. We obtain

1

H+i 0.

(6.24)
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where we have deleted terms that vanish faster than 1/~x
~

as
~

x
~

—moo or that have already been accounted for in
(6.21). We substitute (6.24) into (6.22) and evaluate the trace over I' matrices. Retaining terms of order 1/

~

x
~

we have

trx I'I' x = —4ig Dy'y x xb
' a b 1

H+io' ( —Q +g qP+o )
(6.25)

where

(D'y)' =8'qr'+ 2eA V'by~ (6.26)

is the covariant derivative of the Higgs field. (Recall that the charge of the scalar is twice that of the fermion. ) We sub-
stitute (6.25) into (2.30) and evaluate the remaining integrals. Combining the result with (6.21) we then get for the spec-
tral asymmetry il„(s) the expression

il„(x)= cos s—a ' I d xe'iF'J
2' 2

g m ~ '
1 —s 3+s

2 cos s
gP+K

In the s~0+ limit this yields

2

2n 2n g 2p2+~2 ~(g 2q)2+ pP) i~2

1 —s
1 2 f dl e'~(D'y)'q)b

g tP +K
(6.27)

(6.28)

and in the ~~0+ we obtain

g= ' Jd' iF' 'gdt—,2' 2K
(6.29)

the index of the operator H. This result agrees with that
found in Refs. 15 and 21.

VII. DISCUSSION

We have derived a general expression (2.30) for the
spectral asymmetry ii(s) of a class of Dirac operators, and
used our result to evaluate this spectral asymmetry in
various field-theoretical models.

The spectral asymmetry ii(s) is closely related to the
Riemann g function of the Dirac operator, and in the
s —+0 limit il(s) provides a natural generalization of the
concept of an index for a Dirac operator; in a particular
limit where conjugation symmetry retains, the s —+0 limit
of our formula (2.30) reproduces various well-known in-

dex theorems such as the Atiyah-Singer index theorem
and the Callias index theorem.

The examples that we have discussed have several com-
mon features. While the integrand of the surface integral
in (2.30) is in general a nonlocal quantity, only a local part
survives in the large-R limit and contributes to the sur-
face integral. Consequently the evaluation of the surface
integral is quite straightforward. In some models the in-
tegrand of the surface integral has an a priori divergent
part, but for all models that we have discussed this diver-
gent part does not survive the traces over the 1" matrices

I

and the internal-symmetry matrices. Hence the only
divergent quantity we actually encounter is the one arising
from the axial anomaly equation in the y —+x limit, but
this divergence vanishes when we insist on gauge invari-
ance.

Even though our analysis is restricted to a particular
class of Dirac operators, we expect that some of the quali-
tative features persist for more general operators. In par-
ticular we conjecture that the spectral asymmetry quite
generally relates, in addition to the explicit coupling con-
stants in the Hamiltonian, only to the global homotopy
properties of the background fields.

It would be very interesting to extend our analysis to
gravitational backgrounds. The connection between the
spectral asymmetry of a Dirac Hamiltonian and the fer-
mion number of the background would then reveal the ex-
istence of gravitational objects with a nontrivial fermion
number.
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