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Chiral-symmetry breaking in a composite model with scalars based on lattice gauge theory
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In a composite model, based on the SO(3) gauge group, in which there are both fermion and scalar

fundamental fields, we determine whether there is spontaneous breaking of chiral symmetry and

look for the mass gap between the ground state and the one composite-fermion state. The chiral

symmetry is realized in the strong-coupling lattice Hamiltonian with the fundamental fermions be-

ing massless and fundamental scalars being massive. This calculation is based on the mean-field ap-

proximation to the state wave functions. Similar to the calculations of Quinn, Drell, and Gupta in

models without scalars, we also find that the chiral symmetry is spontaneously broken, and the com-

posite fermions are massive. The extension of our calculation to SO(X) cases is shown to be

straightforward.

I. INTRODUCTION

In the context of strong-coupling lattice gauge theories,
Quinn, Drell, and Gupta' (QDG) have shown that the
chiral symmetry is spontaneously broken and composite
leptons and quarks, which are made out of fundamental
fermions, are always massive. They argue that in going to
the continuum limit there can only be two alternatives,
either the chiral symmetry is realized in the Nambu-
Goldstone mode with massive leptons and quarks, or
there is a phase transition at some finite coupling. In the
first case, the masslessness of leptons and quarks cannot
be achieved, whereas in the second case the desired prop-
erty of confinement and asymptotic freedom is lost.

Our goal in this paper is to extend this no-go scenario
to the type of composite models in which the fundamental
matter fields involve both scalars and fermions. Due to
the limitation of our technical tools, we can only deal with
those models having SO(N) as their gauge groups. A gen-
eralization to SU(N) groups awaits future efforts.

We shall first briefly review the QDG scenario, then go
to an SO(3) model and demonstrate that the no-go
scenario can be extended to the case involving fermion
and scalar fundamental fields. We then argue that this

I

can be straightforwardly extended to SO(N cases. Al-

though we are not able to cover the no-go scenario to all
models of this type [in particular, the SU(1V) cases like the
Fritzsch-Mandelbaum model or the Abbott-Farhi
model j, the implication is already interesting. Some dis-
cussions are given at the end.

II. THE QUINN-DRELL-GUPTA NO-GO SCENARIO

As mentioned previously, Quinn, Drell, and Gupta con-
sider the composite models in strong-coupling lattice
gauge theories. They use the long-range form of the lat-
tice gradient operator (the SLAC gradient), which for an
infinite-volume lattice is

(2.1)

in order to explicitly maintain chiral symmetry without
the fermion "doubling" problem. Consider the problem
of a simple hypercolor gauge group, say SU(N, with fer-
mions (preons) assigned to some set of representations 8
with dimension dtt and number of flavors f~. The Ham-
iltonian in the Ao ——0 gauge is given by

g g'E'+, g g [Tr(U'U'U"U")+H. c.]
hIIkS plaqIIettes R

R a=I
3 ~P)~

it( j )a„g U ( j ',P )QR( j +lp) (2.2)

where the lattice spacing a is the only dimensionful quantity and a& is the Dirac matrix goya. For a strong-coupling ef-
fective Hamiltonian we separate H into

Ho gg E and V=H Hc—— — (2.3)
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and perform degenerate perturbation theory in the sector of flux-free states. This requires that the fermion states at
every site is a gauge group singlet. By retaining the terms only up to order 1/g, which corresponds to acting with V

twice, exciting a flux then annihilating it, gives
'2

=1 ta ~ &b ~ ab
l 1

H ff g g 4R ( J )ap&R( J +IV O'Rp( j +II )a,WR ( j ) +0
g' ~ -, ,

where

(2.4)

Uz ( U„) =Xz 5 5&+ nonsinglet pieces

and g Cz l is the energy denominator from Ho corresponding to a string of length 1 in representation R —R.
Notice that the Hamiltonian has a nearest-neighbor symmetry

S„„=g [SU(4f, )U(1), ] .
R

The U(l) charge is

QR( j )=4( j )4( j ) —A'( j )A( j )=4~( j )|('~( j ) —2fzdR

Qz =- g Q~ ( j»

(2.5)

(2.6)

where

z. aa
J& J& J& ~ aa bR4( J ) = xayazaPR( J )» tt'R = dtaa8

and b and d are two-component spinors. The generators of the SU(4f~ ) are

Q~(j )=Pit(j )M"A(j » Qz = g Q~(j » (2.7)

where M are the (4f~ X 4' ) Hermitian unitary matrix representations of SU(4f~ ). By performing a Fierz transforma-
tion and using Eqs. (2.6) and (2.7), we can rewrite (2.4) in a compact form

Qg( J )Qg( J +lP )+x g (9"")'+'Q„(J )Q~( J +lP )

k
(2.8)

where

a M"a =g""M (ri""=+1)P (2.9)

are among the degenerate set of possible ground states
that minimize the energy density

and g is a normalization factor. Since the interactions fall
off rapidly as (I) 3, the odd-neighbor terms (t =1) pro-
vide the dominant part of H, fr. The smaller terms (l =2)
provide the symmetry-breaking perturbations. The odd
terms are of the form

&'gQ~( j )Q~( j+(2n+1)P)

+QR( j )QR( j +(2~+1)P)
and hence are antiferrornagnetic in character, tending to
antialign SU(4' ) )& U(1) spins on sites separated by odd
numbers of lattice spacings. The even-l terms tend to
reinforce or compete with this antialignment depending
on whether the sign g" is negative or positive. By using
the mean-field ansatz with two overlapping sublattices
(see Ref. 4, and more specifically the simplified version in
Ref. 5), QDG showed that the states that develop an ex-
pectation value for I =yo, that is, for the operator

p( j )p( j )=(—1)" y *gt( j )@gal( j ), (2.10)

volume
(2.11)

III. THE GROUND-STATE STRUCTURE
IN AN SO{3)LATTICE (GAUGE THEORY

Now we extend the above no-go scenario to composite
models involving ferrnions and scalars as fundamental
constituents. We begin with the model where the hyper-
color SO(3) is the gauge group, both fermions and scalars

Any infinitesimal mass term added to the Hamiltonian
will select this chiral-symmetry-breaking state about
which the mass acts as a perturbation.

QDG also showed that by acting on any site of the lat-
tice with a composite fermion operator on the chosen
ground state, there will be a mass gap created and of order
1/g . Hence the composite leptons and quarks are mas-
sive. This conclusion does not change for any choice of
fermion representation content and gauge group for four-
component fermions. And the no-go scenario of QDG as
stated at the beginning of this paper follows.
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are assigned to the fundamental triplet representations.
The Hamiltonian in the continuum limit is given by

H, = —
4 G~„GI'"+f DP +(D~P ) (D"P~)

+I'0 0+~, (4 (3.1)

with A, &0. Notice that the Yukawa term Pgf is not al-
lowed due to the assignment of the representations. The
quartic coupling between scalars and fermions is purpose-
ly avoided by assuming that the scalars and fermions in-
teract only through the gauge fields.

Although the Hamiltonian H, thus constructed
preserves chiral symmetry, one may suspect that when

P~ obtains a nonzero vacuum expectation value the fer-
mions may still acquire masses through the box diagram
and its higher-order iterations (see Fig. 1), as a result the
chiral symmetry of the system will be broken explicitly.
We argue that this worry is unnecessary, because the con-
tributions of these diagrams have an explicit dependence
on the fermion mass m (see Appendix A). Since we as-
sume m =0 in the first place, these contributions should
vanish.

Let us now consider a lattice Hamiltonian, which
preserves chiral symmetry and it will reduce to Eq. (3.1)
as the lattice size a ~0. Recall that in the standard con-
struction of the Hamiltonian in a lattice gauge theory, one
assigns the matter fields on lattice sites and the gauge

2 ~ ~ N-I
(b)

FIG. 1. (a) The box diagram that could give rise to an effec-
tive P PPg term; and (b) its higher-order iterations.

fields on the links connecting the sites. Within the SLAC
long-range gradient formalism, ' the present Hamiltonian
in the Ao ——0 gauge can be written as

g —,g (E ) — g [Tr(UUUtUt)+H c]..
links plaquettes

+Q p (j )a„
J ~~)P

j +(I—1)p
U &( j ',p ) p~( j +lp)+. H. c.

j (1—l)p
U &( j ',p) p ( j+&p)+D(0)p ( j )p ( j )+H.c.

+g ~ (j)~(j)+go'p (j)p(j)+ [p (j)p(j)]'+Hc.
J

(3.2)

Notice that the term D(0)p ( j )p ( j ) comes from the spatial derivative of the scalars at the same site. Numerically
D (0)=H in three spatial dimensions. The scalar momentum m ( j ) is defined as

i7r ( j )=[a( j )/2]'~ [—a+ ( j ),a ( j )]

so that

[m- ( j ),pg j ')]=5 g( j —j '
) .

(3.3)

(3.4)

All the fields and parameters in Eq. (3.2) have been properly redefined in such a way that the lattice spacing a is the only
dimensional quantity.

In the strong-coupling limit, we neglect the plaquette terms and separate the rest of the Hamiltonian into two parts:

Ho= Q 2~g E E and V=Ht Ho . —
Q

(3.5)

Since E ( j,p ) measures hypercolor flux excitations, the ground state of Ho corresponds to that sector of the Hilbert
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space, which does not involve flux excitations. So we are looking for perturbative effects due to V. Rewrite V as

V= V~+ V, + Vf,
where

V =—g m. ( j )m (j )+D(o)p (j )p (j )+go'p ( j )p (j )+, [p (j )p (j )]'+Hc.
J

1

1)f j +(/ —1)P

(~ ) g U II( j,p) 'p ( j+Ip)+H. c.
3 =3

Vf ———g g (j )aq
1 ( —1)'

) I ~rg

j +(I—1)p.
U p( j,P) P( j+IP)+H.c.

j =3

Since we are working in the strong-coupling limit, we retain the perturbative Hamiltonian only up to the second order.
In other words,

(3.7)

H' '=g (Vf + Vg +2Vf V, )
I

I2
( j )a„p( j +lp)fp( j+lp)a„g ( j )+H.c.

+, pt ( j )p~( j+Ip)pp(j +Ip)p ( j )+H.c.

+, g ( j )a„p( j+lp hfdf{ j+lp)pt( j )+H.c.

After a Fierz transformation, H,ff can be expressed as

( j )~ ( j )+[D(0)+pa ]pt ( j )p ( j )+, [pt ( j )p ( j )]'+H.c.
3

+ g, Qf( j )Qf( j +Ip)+X g (II~")'+'Q ( j )Q„( j+lp)+H. c.
ag Cz, „4l k=i

J ~II@

I5
——,I[/ ( j )p ( j )][/ ( j+Ip)p ( j+Ip)]+H.c. I

——~[[E ( j )a„'+'I" ( j+lp)+H. c. ]CK Q (4

(3.8)

+ ( j )=p ( j )f ( j )=—P( j ) P( j ) (3.9)

is the creation operator for the composite fermions.
Lct lls conlpalc ouI H ff in Eq. (3.8) with the H,ff in (2.8). The U(1) && SU(4) charges in Hf are identical to those in

Eq. (2.8). But, in addition to the H, terms, there are two main differences between the two effective Hamiltonians:
Flrstq tllclc RI'c zcloth oldcl (111 1/g ) co11'trlblltlolls H to Heff duc to 'thc scalR1 f1clds 111 oui case Tllls plays a do111

inant role in the construction of the ground-state bosonic wave function. Second, Hf, corresponds to the kinetic energy
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term which moves the composite fermion from site j +IIs to site j . While the kinetic term in QDG's case is of order

1/g, our kinetic term is of order 1/g and can in principle compete with the potential terms in H/. Next we proceed to
construct the ground state of the system.

A. A general trial state for the vacuum

We anticipate that the trial state for the ground state or the vacuum should take the general form

)0)= g C tt g(21+1)' (00~1m;I, m)—4't~' %P'~ ~0)
l (aP) m

CI (@(a)t'.@(P)t)
~
0)

f, Ia,P)

(3.10)

where the SO(3} scalar product is defined and where 4's are functions of boson field operators with I,m being the SO(3)
hypercolor labels and (a) some additional labels, and 4 s are the corresponding hypercolor conjugated functions of fer-
mion field operators. Summing over m above amounts to taking the scalar product in the hypercolor space to ensure hy-

percolor singlet states. The C 's are numerical weight factors for different assignments of I, Ia,P].

1. The boson wave functions

The first-order Hamiltonian for the scalar part has the form [cf. Eq. (3.6)]

H"'= —g m (1 )n- ( j )+D(0)P ( j )P ( J )+Iso P ( j )P ( j )+ [Pa( j )P (1 )] +H c.

Our present problem may be mapped to the nonrelativistic
quantum-mechanics problem with

proach (see, for example, Ref. 7), let
T

d'or'
+—'ma'r'+

2m 4f
(3.11)

CO
u =r +'exp — r f(r)

2
(3.16)

In partjcular all we need is to make the identification
and denote z =moor Subst. ituting Eq. (3.16) into (3.14),
we get

and

a + I+——z + — —+— f=o.df df 3 E I 3

dzz dz 2 2') 2 4

(3.17)
p2=n m (3.12)

2a'"= + —,
' mcus'r'

2m
(3.13)

Later we shall determine the range of A,o such that our
perturbation approach can be justified.

Next we proceed to discuss the solutions for H"' of Eq.
(3.13). The radial part of the Schrodinger equation for
H'" is given by

Now we consider the case where Ao is sufficiently small,
so that we may make use of the perturbation approach
and describe the complete set of the orthonormal wave
functions for the tensor products of P, in terms of eigen-
functions of the Hamiltonian:

z z + (p+1 —z)+qw=0.d w dw
dz'

Comparing Eqs. (3.17) and (3.18), one obtains

f(z) =Lq (z) and E = (2q +I + 2 )co

(3.18)

(3.19)

Denote z =(Do+po )'~ P . For o. ur present complete
orthonormal set of bosonic functions, we write

4' '=—4'e'-z' exp ——L'+'
( }Yt (8,$},2

(3.20)

Recall that the associated Laguerre polynomial satisfies
the differential equation

+ + 2pQ) r 0=EQ1 d u I(I+1)
2p dr 2pr

where the full wave function is

(3.14)

where the overall constant can be specified through nor-
malization of the states.

2. The ferrnion wave functions

Yim(~ 0»u(r)
r

(3.15)

which satisfies H"'@=EN. Following the standard ap-

To describe fermion states we must take into account
the 2 degrees of freedom for spin —,

' and make the
particle-antiparticle distinctions. Denote the field opera-
tors for the creation of fermions by b+ ~,b ~ and for
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the antifermions d+ and d . Here the subscript
m takes the value m = —1,0, 1, since all these particles
are in I =1 triplet states. Note also a particle in the m

state is color conjugate to an antiparticle in the —m state.
The resultant color content of the products of fermionic

field operators can now be defined through the usual pro-
cedure of the Clebsch-Gordan additions. More explicitly
one would write

(n+ n ) (n+ n )= g ital, m gl, +, (lm
I lim), l2mz), (3.21)

llew)
l,m,

finite gap away from Ep. In other words, we have now
arrived at a sufficient condition which ensures a finite gap
between Ep and El for l &0. To reiterate, this is
achieved when A,p is kept in the range such that

b.p & (1—g )co (3.25)

with q being some arbitrary finite fraction.
Now we proceed to make a quantitative estimate on the

range of A,p. First we calculate the approximate ground-
state energy based on the variational technique. We
choose the form of the ground-state wave function for the
harmonic oscillator to be that for the trial wave function.
We get

with

(n , n )

l(m ( Il~ I Ill~ tl

and a similar definition for the antiparticles. The general

trial state of Eq. (3.10) is now defined through (3.20) and

(3.21).
B. The inclusion of the A.or term

(0
i

H"'
i
0) =

with

f"d.-p -P" H()-p —P.
4 4

r dr exp ——r
2

(3.26)

Now we return to the full expression of H"' [cf. Eq.
(3.11)j by adding in the Apr term, as a perturbation to the
previous treatment.

By invoking WKB approximation for the harmonic os-
cillators (see Appendix B), we have, for l =0, the phase
condition without the A.pr" term

H''= —=- r + r+- r1 d i d co ~0

r2 dr dr 4 4f

H' "exp Pr'—
4

(3.27)

v'Zm fdr(E, ——,
' maPr')'"=

3'
gives Ep ——

2

and for l & 0, the phase condition
' 1/2

v'Zm fdr E ——,mo) r- l (l + 1)
Zmr

(B4)

zP+~ —P ri+ 'r' exp —Pr'
4l 4

(3.28)

By use of the mathematical identity
' (n+ &)/2

f Pr 1 2
r "dr exp

o 2 2 p

Ep =Ep +Ap and EI' =EI +4)

They satisfy the corresponding conditions

VZm fdr(E0 —'mco r A,pr )'— —

(3.22)

(3.23)

gives El =Ep+lri) . (810)

Now we proceed to consider the effect of including the
A.pr term. Denote the eigenvalues we are looking for by

(3.29)

Eq. (3.26) becomes
r

Qj 5k 0(H'") =—P+ + =f(P) .
4 p 6P2

(3.30)

Now let us allow p to be a parameter. The minimum
value of (H'") is obtained by minimizing f(p). As a
rough estimate on Ap, we solve for (H'") iteratively. To
zeroth order in A,p, the stationary point occurs at p-co, so

V'Zm fdr Ep ——,mco r — —A,or
l(l+1)

2mr

(3.24)

(i) )
3co 0

Scan

The condition of Eq. (3.25) now gives

Ao & —,(1—g)o)~ .

(3.31)

Application of the mean-value theorem on Eqs. (3.23)
and (3.24) reveals the following crucial properties for the
energy shifts. For Ap&0, the 5 s are all positive quanti-
ties and are monotonic functions of A,p. Since EI —Ep
=lo)+b, l —60, so long as Ap is maintained with some fin-
ite value below u, Eg for I ~0 would always be at least a

(3.32)

It is important to point out that while from Eq. (3.26) on-
ward we have used the perturbative method to estimate
the quantitative range of A,p, our argument in arriving at
the finite-gap conclusion is independent of the perturba-
tion theory.
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A. The mixing angle in the ground state

We shall simplify our ground-state structure by trun-
cating away all the 4&i, +1 components for l&2.
Meanwhile we introduce a mixing angle 0 to parame-
trize the relative weight between the No. +0 components:

I
Q & =[coseeot. cot+ since ti. e'ti]

I
0&

=
I
Qo}+ IQi} . (4.1)

Note that the normalization for these states are (Q
I

Q&

=(Q.
I
Q.&=&Q,

I
Q, &=1. I.et us d.fine

& Qo
I Hf I

Qo &
=cos18Efo ~

&Qi IHf I
Qi & =sin 8Ef1,

(Qo
I
H, I Qo}=cos 8E,O,

(Qi
I
H, I

Qi & =sin 8E, 1,

(4.2)

( Qo
I Hf, I

Qi &
= (Q,

I Hf, I
Qo &

=cosO slnOEfg

Notice that all Ef s E„'s, and Ef, are at least of order
1/g inherited from their corresponding Hamiltonians.
Recall that

(Qo IH'"
I Qo& =cos 8EO,

& Q,
I

H'"
I Q, & =sin'8E, ,

(4.3)

wllcl'c Eo ai1d Ei ai'c givcll accordiilg to Eq. (3.22), aild
the energy gap between Eo and Ei is finite (of order zero
in 1/g ).

Putting everything together we have

8'= (Q
I H, rf I

Q &

=&Q I(H"'+H"')
I

Q&

=cos 8(EO+Efo+E,o)+sin 8(Ei+Ef1+E»)
+2COSOsin&Ef, .

Minimize this vacuum expectation value by varying 9,

IV. CHIRAI. -SYMMETRY BREAKING
AND COMPOSITE FERMION MASS

Recall that the full effective Hamiltonian H, fr includes
H"' and H"', where H"' is of order 1/g'. The fact that
the eigenvalues of H"' are separated by finite gaps sug-
gests that the I =0 component in the ground state

I Q&
[defined in Eq. (3.10)] dominates over other components.

or

9-0 l

g
(4.6)

If we were to include the I & 2 contributions in Eq. (4.1) it
could be shown that our conclusion of (4.6) still prevails.

and

(QOIHf I
Qo&=cos 8Efo-02 1

g

(4.7)

1
(Q, IHf I

Qi&=sin 8Efi-0

Since the part of the Hamiltonian H, rr which deals with
chiral-symmetry breaking is Hf [see Eq. (3.8)], we see
from Eq. (4.7) that the part of the vacuum which dom-
inates this breaking situation comes from

I
Qo&

—:cos84o.+0
I
0& where %0 corresponds to creating all

possible fermionic hypercolor singlets in SO(3). On the
other hand,

I
Qi &, which consists of fermionic hypercolor

nonsinglets, will contribute only up to order 1/g .
In the context of ouI' plesent discussion, we remind the

reader of an important point: In QDG's argument for
chiral-symmetry breaking, they consider the case where
there are only colorless fermionic states present, that is,
the state

I
Qo& =

I
%'0}. (Note for / =0 chiral-symmetry

breaking is independent of the scalar contribution. ) Their
chlral-symmetry-breaking coIlcluslon 1s arrived at
showing that a certain nonchiral symmetric ground state
gives the lowest energy expectation value Efo. At the
same time the chiral-symmetric trial states give expecta-
tion values at least of the order 1/g higher. For our
case, from Eq. (4.7) one sees t:hat the

I
Qi & state contribu-

tion is suppressed by an additional factor of I/g~ and can
be ignored. So our conclusion of the spontaneous break-
ing of chiral symmetry now follows in the same way as
that of QDG.

C. TI1e coIDposite fermion mass

In the case of QDG, the "potential energy" for creating
a composite fermion from the mean-field state is positive
and of order 1/g2:

1&Qz & I &
I
&+Q~I" &

I
-0

J

(4.8)

B. Chiral™symmetry breaking

Now that 8-0(1/g ), we know that cos 8
-O(1—1/g ) and sin 8-0(1/g ). Thus

Gn the other hand, the "kinetic energy" terms that move
composite fermions (made of three or more fermionic
preons) from one site to another are able to reduce the
mass gap but only to leading order 1/g . Hence one can-
not alter the mass-gap result by making a zero-momen-
tum superposition of local composite fermion states. We
now turn to our case.

The evaluation of the composite fermion mass for our
case is complicated by two additional effects. First the

(4.5)

tan28= ——
(E1 Eo ) + (Ef 1 Efo) +—(E, i E,o)— —
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even
l+J

odd
k~j

(4.9)

whe« Inn &»d
I Q0 & a« the even- and odd-»te me»-

field ground states, respectively, and F =p t.
1I t.—

In momentum space, introduce

i
W(k ))=—+exp(ik j )F {j ) i Q),

presence of the composite fermion kinetic term Hf„
which as we shall see gives rise to an &(1/g ) effect.
Second, even more importantly, the presence of the scalar
term which gives rise to an 0 (1) effect.

(i) General considerations involving composite fermion
operators

Define a composite fermion state as a composite
creation operator acting on the mean-field ground state:

F'{~ )in)=iF(~ )) Q in, ( )) ff in. (k)),

iP(k=O))=(gi. fi)(cos8@o Vo+sin8@i 4i) io)

=sin8
i
Qo') +cos8

i Qi ), (4.15)

where
i
Qo') —=40" %0'

i 0) and
i Qi) =@i IP'i i

0).
The superscript states are not properly normalized (see
Appendix D). Denote some normalization factor
IV„={~(k=O)i~(k=O))-',

Np(P(k=o) iHf i
~(k=o)}-0

8
(4.16)

whereas for Hf„

IV~(P (k =0)
i HfP (K=o) )=sinz8Efo+cos28Ef', ,

with Efo defined to be equal to NF(QO'
i Hf i

Qo'), and is
of order 0(1/g'), Ef, equal to X,{n',

i Hf i n; &, also of
order O(1/g ). Then

0& iki & —.
Q

(4.10) NF(W(k =0)
i Hf, i

W(k =0)) -sin8cos8Ef,

&&5( j +lp —m')+H. c. ]

=2 cos( k IP ) .

Clearly, the maximum value corresponds to k =0, i.e.,

i~(k=o))=QF'(1) in) . (4.12)

This turns out to lower the expectation value of H,~~ the
most. So the i%(k=o)) state is appropriate for the
evaluation of the mass gap.

(ii) Evaluation of the mass gap
The Hamiltonian of the kinetic terms is Hf, and can be

expressed in terms of the composite fermion operators

The expectation value of the kinetic term defined by the
momentum state ls gIven by

(P (k ) iFt( j )F( j +Ip ) iW(k ))+H.c.

Iexp[ —ik (m —m')]5(rn —j )

(4.17)

To arrive at Eq. (4.17), note that for the expectation value
of the second term on the right-hand side of (4.13) upon
averaging over the spin orientations of the composite fer-
mions, this term vanishes. So in our case of kinetic ener-

gy is also of order 1/g and cannot help to close the mass
gap for the composite fermion state.

Now we come to the second effect mentioned earlier.
The fact that there exists a H'" part in the total Hamil-
tonian and that H"' is of zeroth order in 1/g expansion
tells us that the mass gap for the composite fermion state
is of zeroth order in 1/g . To be more specific,

IVF(P (k=o)
i
H,ff i

P (k =0)-sin 8EO'+cos 8Ei,

and using the notation of Eq. (3.22), we have

(Q
i H, ff i Q) -cos 8(ED+ho)+sin 8(Ei+6i) .

Thlls fo leadlilg ordel iil 1/g

6@'=Ay(~ iH,g i
~)—(Q iH, ff i

Q)

ag Cp
(4.13) -cos 8(E i' —Eo—ho) -0(1) . (4.18)

where the first term on the right-hand side, F,F,„corre-
sponds to movings between nearest neighbors, and the
second term corresponds to hoppings between next-to-
the-nearest neighbors. These are all along the p direction.

In Appendix D we find that

(yt. yt)(g t.@t) g l t.
qual

t

(4.14)
{ftft){@t qft) 4 lit + lit +@ lit g/ llt +@lft iP M$

In the last step me have used E~'-Eq+h~. Note In gen-
eral to zeroth order in 1/g, for fixed I the corresponding
energy eigenvalue for

i Qi) is the same as that for
i
Qt'}.

We thus conclude that, in the case of SQ(3) composite
model involving both fermionic and scalar preons, the
chiral symmetry is also spontaneously broken and the
composite fermions (leptons and quarks) are massive in
the strong-coupling lattice calculation.

D. GeaeraIIzation to other cases

Again, keeping only I ~ 2 terms then the state

i
W( k =0)) is approximately equal to

(i) Extension to the case with Higgs phase
For Do+go &0, the minimum of the expectation value
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Hp H——+(Do+go )P + (4.19)

$2= U =, with
(
a

)
=—(Do+go ) .

2k 0
(4.20)

With the usual redefinition of the dynamical fields

P=P —U, we have

Hp F'——+2~a
~ P +4&OUQ +&OP" (4.21)

The absence of / ~0 components in the ground state can
be ensured when

. 1/2 —1

2 4 2 1 5
5n+ 12 3

(4.23)

(ii) Extension from SO(3) to SO(1V)
So far for definiteness, we have considered the SO(3)

case, which is locally isomorphic to SU(2). Our con-

Now we can apply the procedure as before to evaluate
the energy of the trial ground state as a function of the
parameter P. After a similar manipulation„we arrive at

1/2

Eo ———,al 1+A,o
4 2 1 5

(4.22)co'" 12''

X —I 8 I
Qr r Br

(4.24)

where I. is the generalization of the total angular
momentum and it operates on angular variables with

L I'i (', }(n )=l(l+N —2)F((' )(n ), (4.25)

where n is an arbitrary unit vector in the X-dimensional
space.

Dcfllnc t11c 1cdllccd radial function by

(4.26)

The present SO(Ã) theory can now be associated with ra-
dial equation:

siderations can, in a straightforward manner, be extended
to the general case of SO(Ã. A particular case which
might be of physical interest is to assign the fermions and
the scalars and their correpsonding antiparticles to the ir-
reducible representations of SO(6), which contains SU(3)
as a subgroup. Here we mill be looking at a theory which
has a symmetry slightly larger than that of QCD and it
has additional scalars.

Bander and Itzykson have shown that for SO(N the
corresponding Laplacian operator is given by

1 dlu 41 (1+%—2)—(X—1)(X—3) i 2 z ~or
2+ + 2@M P' + Q=EQ

2p dr Spr
(4.27)

The %KB approximation can again be applied to solve
for the energy eigenvalues. Once again one concludes that
as long as the parameter A,o is kept below a certain value,
the nonhypercolor-singlet (l &0) components in @i and

%i are appropriately suppressed in the ground state. In
turn the no-go scenario advocated in Ref. 1, is also applic-
able here.

V. FURTHER REMARKS

So far we have demonstrated that the QDG no-go
scenario extends to the composite models based on SO(1A
groups. Note that our result follows rather trivially once
one recognizes the smallness of the mixing angle 0. On
the other hand we find that without the explicit calcula-
tions of the eigenvalues Ei and Eo, it would be difficult
to argue a priori about the smallness of 8 and thus the
breaking of chiral symmetry.

Unfortunately we are not able to enlarge the scope to
those models based on SU(N local gauge groups, be it
either having both scalars and fermions assigned to the
fundamental representations (as the Fritzsch-Mandelbaum
model), or having right-handed and left-handed fermions
transform differently under the gauge group (as the
Abbott-Farhi model), or other constructions. But the
message we get from the previous sections is quite clear.
For composite models based on QCD-like non-Abelian
gauge theories, the chiral symmetry is very hard, if not
impossible, to be retained. There is, however, an excep-

tion suggested by Banks and Kaplunovsky, who use a
variant of a Kogut-Susskind gradient which is only possi-
ble for groups with real representations, such as 0( n), and
with a single flavor of fermion. But these theories would
give massive composite fermions when treated using any
of the standard lattice gradients.

An interesting alternative is given by Buchmuller, Pec-
ccl, and Yallaglda, ' ln wlucll tllc llglltncss of lcptolls aild
quarks is not supposed to be protected by the chiral sym-
metry of a "normal" Yang-Mills gauge theory. Rather,
the light composite leptons and quarks are quasi-
Goldstone fermions arising from the spontaneous break-
ing of a global symmetry in a supersymmetric theory. In
this framework they treat the weak interactions as residu-
al interactions of the quasi-Goldstone fermions. The sim-
plest preon model realizing this global symmetry break-
down leads to the supersymmetric extension of the stan-
dard model of electroweak interactions. So this model
can be viewed as a supersymmetric generalization of the
model of Abbott and Farhi. But there are shortcomings
in this supersymmetric model. Namely, there is only one
family of leptons and quarks realizing in the coset space
U(6)/U(4) X SU(2) that they suggest. Thus the main
theoretical motivation for lepton-quark substructure,
namely, the family (or generation) replication and the fer-
mion mass spectrum, is far from being addressed. Despite
the fact that no realistic composite model has been ad-
vanced thus far, the notion that quarks and leptons are
composite particles remains to be intriguing.
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APPENDIX A: THE ABSENCE OF f /PAL

TERM IN EFFECTIVE HAMILTONIAN

(2k —1)„[y"(p+ g+ m )y"](2k —q)„

[(k —q)2 —M )[(p+q) —m ]q"
(Al)

We argue that the Hamiltonian H, will not develop an
effective P PfP term. Since we assume that P and g can
interact only through the gauge fields, the lowest-order
contribution is the box diagram in Fig. 1(a). The scatter-
ing amplitude in the U(1) case is

where k and p are the momenta of the scalar and the fer-
mion, respectively. The quantity q is the hypergluon
momentum, M and m are the scalar and fermion masses,
respectively. The resulting terms in the effective Hamil-
tonian are given by

QTr(I'i A2)p QADI (A2)

The candidate mass term is P /Pi)'j, with its coefficient
given by the trace of A2,

(2k q)p T—r(y"y'm)(2k q), —
fTra, ~ d'q

[(k —q) —M ][(p+q) m]q—

=4m d q . (A3)
[(k —q) —M ][(p+q) —m ]q

We see that TrA2 depends explicitly on the fermion mass
m. Since we assume m =0 to begin with, this box dia-
gram does not contribute to an effective PtPPg term.

Next we look at the higher-order iterations, which is di-
agrammatically shown in Fig. 1(b). The corresponding
coefficient for its contribution to the mass term is propor-
tional to TrA&,

Trpb ~ fd q, d qb i( )Tr[y '(pi+m)y '(p'p+m) ' y
" '(pb i+ )y ]. (A4)

Notice that the mass term should be associated with
even charge-conjugation configurations, so N must be
even. This in turn tells us that there are an odd num-
ber of (p +m) terms inside the trace. As a result the
only term which is independent of m [i.e.,
Tr(y 'p'iy 'p2. y 'pb iy )] should vanish. All
other expansions depend at least on one power of m, and
should be zero when I =0. So we conclude that the term

P Pff should never occur in the effective Hamiltonian.

APPENDIX B: %'KB APPROXIMATION
FOR THE HARMONIC-OSCILLATOR PROBLEM

In this appendix we illustrate that the WKB approxi-
mation does indeed reproduce, at least approximately, the
spectrum of Eq. (3.19). We shall illustrate the effect of
the perturbative terms in this context.

1. &KB approximation for the ground-state energy

Consider Eq. (3.14). With I =0, the WKB approxima-
tion gives for 0 & r &a,

$0, ————(2q+1)—.
4 2

(B3)

The ground state corresponds to q =0 or the condition

f dr[2m(E —,'ma) r )]'~ —=,'n. . —

Evaluating the left-hand side of Eq. (B4) gives

LHS=av'2mE —.
7T

4

This leads to E = —,
'

cu in agreement with the exact solution

given in Eq. (3.19).

2. To verify the &KB method for / & j.

t
the present case

a =(2Elmco ) ~, V(r)= —,mco r +2 1/2 & 2 2 I(~+ I)
2mr

l'2

Pip
——f kdr .

To ensure the vanishing of u at r =0, we need the condi-
tio11

and for r &a,

where k = [E—V(r)]'~, (Bl)

For I & 1, the WKB method gives

b
u — exp — sc dr for 0 & r & b

r
(B5a)

r
u — exp — ~ dr

where @=[V(r) E]'~ . (B2)—
In these equations, a is the classical turning point. For

and

2
u — cos Pb for b & r & a —.

k " 4
(B5b)

As usual, we rewrite the right-hand side of Eq. (B5b) as
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2
COS tj! bg

— COS Pxa-
k

+ S111 f~ — S111 XQ

(3.19) are concerned, the WKB method does a reasonable
job in reproducing the spectrum. Notice that for l =1,

[I(I + I)]'~'=1.41,
our approximation in (814) amounts to replacing this
value by 1.5, which is a reasonable approximation. Furth-
ermore the approximation in replacing [l(l+I)]'~ by
I + —,

' becomes more and more accurate as I increases.

Now we recall that the connection formulas in the WKB
method give

2 r
cos f~g — ~ exp — Ic dr

k
"' 4

(87)

1 . m' 1
sin Q~~

— ~— exp + K cA'
k

" 4 v'a

Equation (88) shows that the appearance of the
sin[/„, —(m/2)] factor in Eq. (86) is not acceptable. This
could be avoided with

APPENDIX C: DERIVATION OF EQ. (811)

Mathematical identities (all quotations are referred to
those given in Ref. 11) that we need are as follows:
I1

(x a)" —'(b —x)"
dx

x

(b —a)"+" ' b —a
B(p,v) 2F1 l,p;p+v;

for b &a &0. (3.228.3)

1E1(a,p;2p;z)

1P, =(q+ —,), q =0, 1,2, . . . .

For arbitrary I and q, Eq. (89) takes the form
1/2

8 I(I+1)
dr 2p E —2@co r

b 2pp

Rewrite LHS in the form

(810)

a hz+1
p

1 z
+2~

(9.134.1)

2F1(-,'„I;2;4z(1—z))=, iz i
(-,',

1 —z

i
z(1—z)

i
(—,

' . (9.121.25)

LHS= ~ [(r' —b')(a' —r')]'
2 $2 2 2

—(a b) =(q+ —H—r .PN'

2 2 2 (811)

We begin with the LHS of Eq. (3.11). From (Il)
r

2 22 2 2

LHS = —2F1 1, —,;3;a2 8 ' a
(Cl)

The second equality can be proven by means of, among
other things, hypergeometric function identities. " Some
details are given in Appendix C.

Comparing Eqs. (810) and (811),we get

ab=—[I(1+1)]'" » 2Eanda +b = (812)
pcs PN

From Eqs. (Bl 1) and (812)

From (I2)

a 2 2

2E) 1, —,;3;
a

r

a 2+$2 a 2+$2~F] —,', 1;2;

Identify

(C2)

(a b) =———[l(1+ I)]'~
PQ) N

(q+ —,
'

)
PN

(813)

2 b2
4z(1 —z) =

a +b

T111s gives

(C3)

ol

Z =2q + I+ [l (l + I )]' =2q +I + —, (814)

2(a +b )

(a+b)
(C4)

From Eqs. (C2), (C3), and (I3), Eq. (Cl) can be wri«en as
Some observant reader might have already noticed that

the WKB wave functions given in Eq. (85a) does not have
the correct near r =0 behavior for I &1. Despite this
discrepancy, we observe that so far as the eigenvalues of

LHS=" (a —b)',
4

and the expression in Eq. (811) follows.



30

APPENDIX D: DERIVATION OF EQ. (4.14}

To arrive at Eq. (4.14), we need to reexpress each
relevant bilinear form of scalar products of SO(3) vectors
in terms of linear forms of scalar products of new SO(3}
vectors. Consider the general expression

P =(a.b)(c.d)

=g[(—1)' a, bt ][(—1)' "ct„d) „], (Dl)

Now we introduce @~ and 4I" through the expressions

Pi@o=C'i

a1mcln 01m @1m

=Co' (0,0
~
l, m;l, n)

+ g4I'M(1, M
~
l,m;l, n)

where a, b, c, and d are vectors in the triplet representa-
tion. Introduce the new SO(3) vector c4gM, BJM defined (D5)

)
b) d) „——g BsM (J'M'~ 1,—m 1, n)—

J'I'
with J ranging from 0 to 2. Now the Clebsch-Gordan
identities imply that

( J'M'
~

1,—m;1, n) =—( —1)~ (J', —M'
~
l, m;l, n),

(D3)
g(JM

~
l, m; l, n ) (J', —M'

~
l, m; l, n ) =5Jzg~

with M=m+n Substi.tuting Eq. (D2) and (D3) into
(D 1) we get

&=(a.b)(c.d)

g ~JMBJ —M(

=20 80+3I.B]+32 92
(D4)

and similar expressions for 4't and %'t'. Substituting Eq.
(D5) and the corresponding expressions into (D4) one ar-
rives at (4.14).

Consider the case when a a=b b=c.c=d.d =1. Note
that for this case by setting Az equal to Bq in Eq. (D4),
AJ and BJ are not properly normalized. However, note
that the multiplicative factor needed to restore the nor-
malization is some finite factor of 0 (1). For example,

&o ——ga) c)„(0,0~1,m;l, n)

I
Q$ C$ ~

&o= 1/v 3. In general, a~ c~ deviates
from unity by some finite amount. One can easily see
that this complies with the above statement of normaliza-
tion.
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