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Dynamical generation of fermion masses

Ngee-Pong Chang*
National Laboratory for High Energy Physics (KEK1, Tsukuba gu-n, Ibaraki ken-, 305 Japan

Da™XiLi
Physics Department, City College of New York, New York, New York 10031

(Received 27 January 1984)

We study the self-consistency condition of fermion-mass generation based on the Nambu —Jona-

Lasinio approach in an arbitrary gauge and show that the mass so generated is a gauge invariant.

We also calculate the mass difference between the up and down quarks.

I. INTRODUCTION

In the lexicon of renormalizable field theory, the fer-
mion mass is destined to play a subtle but very important
role. In the old days, we simply put in the fermion mass

by hand. Unlike the vector boson, putting in a fermion
mass does not disturb or destroy the manifest renormal-
izability of the theory. The successful QED is such a
theory where m, is put in by hand. It has, in fact, met
the experimental test to such an embarrassing degree that,
indeed, it could in turn be used to probe the hadronic con-
tent of the theory.

But in our drive to grand unification, it is natural to as-

sume the fermions to be fundamentally massless and to
seek for the theory to generate the masses dynamically.
Setting the fermion masses to zero also gains for us some
chiral symmetry. This is useful in protecting the fermions
from developing large masses due to higher-order radia-
tive corrections in a grand unified theory. But this chiral
invariance may only be formal. It is well known that fer-
mion field theories can encounter the Adler-Bell-Jackiw
anomaly which destroys the chiral invariance. For non-

Abelian gauge theories, the non-Abelian chiral anomalies
even threaten the renormalizability of the theory, unless
the fermion content has been arranged so that the total
non-Abelian chiral anomaly vanishes.

In grand unified theories (GUT's), this is usually ar-
ranged. The fermion mass is then finally generated
through their Yukawa coupling to Higgs fields,

10 '. Perhaps in the fundamental Lagrangian these h's
should really be zero. In that case, we must attribute the
fermion masses (at least of the first generation) to dynam-

ical mass generation. '

Recently, Chang and Chang have developed a new ap-
proach to calculate the dynamically generated fermion
mass in QCD based on the Nambu —Jona-Lasinio (NJL)
mechanism. Whereas the original NJL mechanism was
proposed in the context of an unrenormalizable field

theory, Chang and Chang made a renormalization-group
analysis of the NJL gap equation (i.e., the self-consistency
condition) and found that it is indeed a renormalization-

group invariant for QCD. They have found that the mass
of the quark so generated is, to two-loop renormalization-

group accuracy,

where A,' ' is the two-loop-invariant cutoff in QCD. This
mass M is a renormalization-group (RG) invariant.

In this paper we will further study this approach. In
Sec. II, we will extend their study to include an investiga-
tion of the role the two-loop constants could play in their
mass determination. The answer is that the two-loop con-
stants will not affect (1.1). In Sec. III, we will extend
their analysis to an arbitrary gauge, and show that, even
in an arbitrary gauge, (1.1) obtains.

II. FORMALISM

Consider the QCD Lagrangian with vanishing fermion
mass. Let it be written as

which upon symmetry breaking becomes (P~P+ v)
W=Wp+W;„, , (2.1)

The mass, so obtained, is the "current" mass with
renormalization-group transformation properties that any
tree Lagrangian mass parameter should have.

Such a mechanism has often been used to study and
analyze the observed fermion-mass spectrum. In order to
fit the spectrum, it is found that the Yukawa coupling
constant for the electron is of order 10,while the h for
the u and d quarks is of order 10 . These extremely
small coupling constants are to be compared with the
gauge coupling constants in the theory, being of order

W=(~p MPf)+(~; t+M—gg) (2.2)

and the perturbation theory is to be taken around the non-

perturbative vacuum (M&0). To do this new perturba-
tion theory, Chang and Chang took the crucial step in in-

troducing the intermediate Lagrangian

W'=(Wp Mgg)+(W;„, +5M—@P) . (2.3)

where by Wp we mean the massless kinetic terms for the
fermion and gauge fields. Following NJL, the Lagrangian
(2.1) is to be rewritten as
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The 5M is treated just like a counterterm in usual La-
grangian field theory, except that it is used to fix the
two-point proper Green's function to be

h i ——6C/ ( T, T, =Cg I),
h~=3C/ + —", C/C2 —', C—gf,

(2.16)

(2.17)

r„')(p)=(} p —iM)Z (2 4) and the corresponding equation for A, reads

for p «M . The M in (2.4) is the same M as in (2.3}.
To one loop in A, ( =g„ /16~ ), for example, they found

(in the a =0 gauge) with

A, = —bA, —cA, (2.18)

M 15M = —3A,CyM ln
p 2 3

(2.5)
b= 3 C2 —Tf22 4

c = ', Cp —4Cyf———', C2f .

(2.19)

(2.20)

A,b M
5M =M ~ 1 — 1+ ln

p 2

1
6C~lb '

3
(2.6)

and to all orders in A, , but accurate to one-loop RG accu-
racy, they found

h) lb ' ' h2/c —hilb
b+cA,

r 0
b +cA()

(2.21)

In general, to two-loop RG accuracy, Eq. (2.15) may be
solved by

where (1np =t)—
— A, = —bA,

dt
(2.7)

where mo, A,o ', and A,o are RG invariants. In particular,
we choose to write (ln)M

—= t)

So far, this result is but a simple exercise in
renormalization-group theory. To make contact with
NJL, they then impose the self-consistency condition

1 1 c=———ln
1+b/cA, b mo

ln
1+b/CA, O(') 2 p2

1

3

(2.22)

5M=M.
Upon noting that Eq. (2.6) may be written as

6' /b

5M M 1

with (one-loop RG accuracy)
T

(2.8)

(2.9)

1 1
(2)

—ba' .
~0 ~0

(2.23)

So far this appears to be a formal exercise in the
renormalization-group theory. In claiming that (2.21) is a
solution of (2.15), what we mean is that A, is the function
of t as given by (2.22) and m„ is a function of t through
its dependence on I,. A,0 ', A,0, and m0 are independent of

1 1 b M=—+—ln
2 p

1

3
(2.10)

the NJL self-consistency condition (or, in superconducting
terminology, the gap equation) will be solved by

1 b M 1—+—ln ——=0 .
2 p 3

(2.11)

In terms of A,"', the one-loop cutoff, defined by

p(I)
+b ln— (2.12)

p
the NJL dynamically generated mass, accurate to one-loop
RG accuracy, is then given by

=0,

M =A'"e'
C (2.13)

as the mass parameter. Therefore, the RG equation for
m„ is fixed by the usual modified minimal-subtraction re-
normalization to be (to two-loop accuracy, say)

d
dt

m, = —(h, A, +h, A, ')m„ (2.15)

with [f=number of flavors, C2=N for SU(N) group]

Another way to look at their result is to look at (2.3) as
defining a massive QCD with

(2.14)

Suppose now we proceed to calculate the two-point
Green's function in massive QCD (which we shall refer to
as the old theory). In general, we will find (at p ~0)

I '„'(old) =Z 2 '(y p iM)— (2.24)

with ~ a RG invariant. By explicit calculation it can be
verified that, indeed, M is given by

h ] /b h2 lc +A ] I6
(2.25)

b +ci.0
M =PBp

Ao

1

Ar0
(2) =0. (2.26)

In that case, the A of the two-point function is nonvan-
ishing. In fact, it is exactly m0. Contact is finally made
with the earlier approach when we realize that m0 ——M.

The alert reader will find that our Eq. (2.21) is a gen-
eralization of Eq. (3.5) of Ref. 2. We now have A,z

' and

where, in using the right-hand side, we are to continually
re-express Ao in terms of A, , )M, m„achieving finally a
complete perturbative expansion for M in A, , p, m„.

Now what about the limit m„~0'? Equation (2.21}tells
us that there is a trivial way to achieve the limit, viz. by
taking mo ——0. Perturbatively then, the full two-point
function is also zero. But there is a nontrivial way to
achieve m, =0. That is, for ma&0, we look for
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A,o, where previously there was only A,o. This generaliza-
tion is to allow for the fact that in a realistic calculation,
we must sooner or later include not just the two-loop loga-
rithms, but also the two-loop constants. How would the
inclusion of such two-loop constants affect the determina-
tion of M?

A complete two-loop calculation, including constants,
has been carried out by one of us (Li) with the result that
(a =0}
X—:M —5M =M[l+AC/(3L —1)+A, D(3L —1)

+A,'E(3L +1)—A,'F+0(A, ')], (2.27)

X=M 1+AC& 3L —1 ——+DR,'(3L —1)'
2

+A, (E+E&a+Eqa )(3L —1)

+A, (F+aFi+a Fp)+O(A, )

where D,E,F are given in (2.28), and

&) ———,Cf'+ 4CfC2 9

1

E2 ———„CfC2,

(3.3)

(3.4}

bD = —,Cf —— Cf,
12

E =
~ C/'+fsC/C~ pC/—f (2.28)

F=32.0675 C/ —6.84185C/Cg+ 1.73209' f .

Upon expanding (2.21) and comparing with (2.27), we find

F) ——7.369 53Cf +8.25602Cf C2,

F2 ———16.3273Cf —3.885 38CfC2 .

Following the earlier work of Ref. 2, we now check on the
RG properties of X, using again the fact that M is an RG
invariant. Following our remark which follows Eq.
(2.14), it is no surprise that we find

(2.29) 1 d 2

X dt
X=—(hiA+hpk ), (3.5)

Note that with our generalization, the solution (2.26)
remains valid even in the presence of two-loop constants.
It is interesting to note, nevertheless, that there is an alter-
nate solution with

and the right-hand side of (3.5) is in fact gauge invariant.
Based on this fact, we find that the solution to (3.5)

must be of the form

=0, (2.30) X(a&O, A, ,M,p}=Z, a, A., X(a=0,A, ,M,p),M

p
(3.6)

which leads to the complementary solution

M =A(2'e'+'"
2 c

For the case of three generations and SU(3},

a'= —0.435 355 .

III. GAUGE INDEPENDENCE

(2.31)

(2.32) +A~C&Cz(8. 25602a —3.885 38a )

+A,'C&'(7. 369 53a —16.3273a')+ O(&') (3.7)

and

where X(a=O, A, ,M,p) is the series we had before. Here

Z, is given by the series expansion

Z, =1—TaA, Cf+X CfC2
1 a(3+ a)

12
(3L —1)

So far everything has been calculated in the a=O
gauge. In dynamical symmetry breaking, a particularly
difficult problem has been to establish the gauge indepen-
dence of the dynamical mass so generated. In this section
we will now exhibit the problem in a general a&0 gauge
and show how the dynamically generated mass can indeed
be gauge invariant.

Consider the Lagrangian (2.3), and continue to treat 5M
as a counterterm, used to fix I'„' to be (2.4) even when

a+0. To one loop, we then find

Z~=0 .
dt

(3.8)

—(ao/2)A, CgZ =8 9

where

(3.9)

(3.10)

We can express Z, in a renormalization-group-
invariant form

and

5M = 3A,CgM(L ——,
'

) 4-——A,C/, (3.1) 16.512OC2+14.7391Cf
a =lnM+

b

Zp ——1+aAC/(L ——,
'

) . , (3.2)
( —,Cp —2f)(3.885 38Cz+ 16.2023C/)

bC

At this level, it is hard to see how the a-dependent terms
will disappear upon inclusion of higher-order terms.

But, upon including two-loop terms, we find Unlike 1/A, o, 1/A, , is not zero.

(3.11)
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Equation (3.6) exhibits the full gauge dependence of the
self-consistency condition. We need to obtain the solution

accuracy. We have

X(a,A, ,M, )M )=0 (3.12) dt
k3 ———bk, 3 (4.1)

in general for a&0. But (3.6) tells us that it is sufficient
to solve for the a=O gauge, since if X(a=O, A, ,M,p) van-
ishes, X(a,A, ,M, )(b) will also vanish, at least for a range of
a close enough to zero. Therefore, in (2.3), when M is
given by (1.1), the two-point proper Green's function will
still be given by

I'„'(p) = (y.p iM—)Z 2

with, of course, a gauge-dependent Z2.

d = 2

dt
A. ) ——b'A, )

d 2

dt Xg ———(h)A, p+6Q A, i)Xg,

(4.2)

(4.3)

where Xg refers to the self-consistency condition for the
quark with charge Qe and l(,i=gal /16m, A, i

=—e /16+.
The solution to (4.3) is

' h)/b ~
—6/b'

Xg ——Mg (4.4)
30 10

IV. UP-DOWN MASS DIFFERENCE

In QCD, we can only generate the same mass for the up
and the down quarks. In order to study the origin of the
mass difference between the up and down quarks, we
should consider including the effects of QED. The theory
that we study thus is SU(3)XU(1). The procedure for
mass generation will be the same as in Sec. II. For simpli-
city, we will from now on work exclusively in the a=O
gauge.

First, consider the mass determination to one-loop RG
I

and can be satisfied by

1 =0,
~30

(4.5)

and the situation is the same as when QED was turned
off. To one-loop RG accuracy, the degeneracy between
up and down quarks is not lifted.

We proceed now to two loops. Here, because A, ) is so
much smaller than A, q, we have kept only terms to first or-
der in A, ), as a perturbation to order A, ) of the previous
SU(3) result. The self-consistency condition now reads

T

Xg —Mg 1 +A)Cj(3L —1 )+A) (3L —1 ) —Cj — Cj +Xi (3L —1 ) +Q A)(3L —1 )2 12 6

+Q A]A3Cj(3L —1) + A)Aqhig(3L —1)+Q A)AsCjdiq+O(A), Ai )6 (4.6)

To perform the RG summation, we are to take

3 2

dt
A3 — &A3 cA3 c3)A3 A] (4.7)

di
A, i ——0. (4.8)

This last approximation is to make the summation a straightforward one and is entirely consistent with keeping only or-
der A, )A,s terms in the perturbation series in (4.6). The equation for Xg then reads

dt Xg ———(h)l(p+Q hips, )ig+h2kp +6Q A))&g .

The solution is

(4.9)

(h)+h)&A)g )/b h + .g h2/c —(h h)+&g )h()/b
3 C 6g A](t —to)

Q ™Q
Ar30 b +CA30

e (4.10)

with

& +cA,3+—ln —bt+a3 .
k30 A3 6 A3 6 +CA3Q

(4.11)

Upon expanding X~ as a power series and comparing
with (4.6), we find

aq h lnMg ——,+——Q A, i 6
(4.12)

d i3 ——64. 1350 . (4.13)

In (4.6), d)q represents the genuine two-loop constant of
the self-energy graphs involving both gluon and photon
exchange. Explicit calculation gives
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From the solution

1 =0
A3p

we find

(2) (1—Q A, )d)3)/6
Mg ——A, e

—Q~A, )d )3/6 Q'~i
=Mpe ' " =Mp 1 — d13

6

(4.14)

(4.15)

(4.16)

where Mo is the mass generated in QCD. From here, we
can immediately find

2

M„—Md ———Mo d )3,
288m

(4.17)

which is of the right sign and also of the right order of
magnitude, but we hesitate to claim any physical signifi-
cance since the meaning of M„,Md itself is not completely
clear. Also, until we have understood the generation
problem, it would be dangerous to apply this to the higher
generations where m, & ms and m, & mb. If we argue
that the heavier generations decouple, then this result is of
some significance.

V. CONCLUSION

In this paper we have analyzed further the work
described in Ref. 2 and have been able to clarify some im-
portant issues. We have shown how, doing a better calcu-
lation, including two-loop constants will not destabilize
the solution for M. We have also shown how the RG ap-
proach of Ref. 2, in fact, can give a gauge-invariant deter-
mination of dynamical mass. Finally, we have also made
an attempt to go beyond QCD to include QED effects and
found an encouraging M„—Md of the right sign and or-
der of magnitude.
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APPENDIX

In this appendix, we list for reference the entire calculation up to the two-loop level, in the MS scheme. We start with
the tree Lagrangian, in n =4—e dimensions, with t Hooft scale p,

Py„(B„g—r.A„')g —,' (B„A'„B—„A—„'+gf'—"'A„"A ', )' MQQ+5MP—Q+ Wo„+W,„.„,
where

g„y=0.577. . .=Euler's constant,

and introduce the counterterms

W, =usual m =0 counterterms —(Z Zz —1)(M —5M)gg

with

Zm =1— X2 k2
+ (18' +3b)+ ( ——,Cy —, CfCp+ 3 +ff), —

E

2aA, Cy 2 2
A'

Z2 —1— [—a(a+3)CyCq —2a Cy ]+
E'

25 CK 3 2+2a+ Cg Cz ——
Cg CIf—

4 2

~,=y p —iM

I —e/2
.
y(pA, C )J+— iM(A, Cy) +—1+a2(x cx 6+2a

2

6 7T

24
1 4 4y.p(Cyf) ——+A~ iM(C&f) ————+8&-
E E
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gauge+ ghost
13—3a 27 a 3a+yp(CfC ) + + +

13—3a 41+4a+3a 85
3

3a i3 q m a

3a(a+ 1) 9+ 17a+8a +& +
~2

9+ 12a+ 3a 15+5a+ 2a
iM—CfCp + +Bt+aBg)+a Bg2

g2 E'

2a~ (24+ 3a) 2+y p(Cf ) — —a +3,+ad, )+a A, 22 2E

2—M(C') " 'a
g2

21+6a+a +a, +as, j+a ~,2

+y.p(Cf TCf Cp) — +~e+a~e i+a ~@2
2 4a 3 —5a 2

2E

4a(a+3) ( —9+2a+3a ) +g +
g2 E

2

+ M

p

—g/2 2

1+
48

2a
X y.p[(a+3)CfC~+4aCf ~,z

I.

—6—2a 1+aiM[(a+—3)CfCq+4«f

—iM [(a——", )CfC, + 3 Cff] , +—+——

z 4a a(a+ 12) a(a+ 3)

—36+4a 30+8a+2a
3 4 +3 2—I,MCg + +3+4a+ 3a

E

+;(z z, —1)(M —&M)

+i 5M

+y p(A, Cf ) —2a 5M
—e/2

M—iM A,Cf
p

where all the two-loop constants can be found in Table I.
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Label

TABLE I. Coefficients for the fermion self-energy.

s

t

c
12.265 3

16.555 1

4.13427

—11+@

3.855 33
—2.05047

0

—3.523 58

0.603 112
0

29 3a2+ 2
—12.354 2
—23.816 8

1.068 85

0.379 222
—6.30044

0

1

2 6
2.741 48

7.070 79
0
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