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A new approach to unified gauge theories, based upon "generalized Dirac" equations, is

developed. Consideration of the symmetries of such equations is shown to lead to a general frame-

work within which we may construct unified gauge theories of elementary particles. A symmetry-

breaking mechanism is given which incorporates general relativity into this framework.

INTRODUCTION

In recent times the belief has grown among physicists
that underlying all physical laws there are certain univer-
sal symmetries whose appearance is masked by "symme-
try breaking" (nonzero vacuum expectation values, Higgs
mechanisms, and so on). It is thought that at very high
energy densities (in the very early stages of the Universe,
for example), all fields become massless and the "hidden"
symmetries reveal their true universal nature. Such grand
unified theories are realized, mathematically, as gauge
theories for some compact gauge group. Which group
one chooses in constructing such a theory has been, to a
large extent, a matter of personal preference. The charac-
ter of such models is determined by essentially two fac-
tors, their fermion content (leptons, quarks, and so on)
with associated group transformation properties and their
symmetry-breaking mechanisms.

In the present work we will restrict ourselves to classi-
cal theory —we deal only with the classical (first quan-
tized) Dirac equation and its generalizations. We find
that a noninteracting system represented by such a gen-
eralized Dirac equation is characterized by a certain (usu-

ally noncompact) global invariance group. A local gauge
theory can then be constructed with the gauge group be-
ing a subgroup, at each point in space-time, of the global
invariance group.

Before presenting the general model, we first study, in
Sec. I, what may be considered the prototype for such
models, the Dirac equation. In Sec. II we examine the
symmetries of the general model, Sec. III gives a
symmetry-breaking mechanism which incorporates gravi-
tation, and finally in Sec. IV we look at an example.

oaf p+XpVa 2gap1 (1.2)

with g p the space-time metric [signature ( + 1,—1,
—1,—I)].

If the space-time is also space- and time-orientable,
then the bundle of bispinors can be decomposed into a
direct sum of the two-spinor bundle and the conjugate
dual two-spinor bundle. This decomposition takes place
under the action of the identity-connected component of
Pin(1, 3), Spin+(1, 3), which is isomorphic to the group
SL(2,C), the double cover of the proper orthochronous
Lorentz group. In flat space-time (special relativity) this
decomposition is the y5-diagonal representation, which
leads to the van der Waerden decomposition of the Dirac
equation. In our curved space-times the decomposition is
(using the two-spinor notation popularized by Penrose )

uA

—B
U

(1.3)

where A and B are two-spinor indices=0, 1, uA is a sec-

tion of the two-spinor bundle, and V a section of the
conjugate dual two-spinor bundle. The Dirac matrices are

0 o.
BB

y tP a+im. f=O,
where a (=0,1,2,3) are coordinate indices (summation
convention assumed). The semicolon indicates space-time
covariant derivative. The electron rest mass is rn (units
fi=c= 1). g is a section of the bispinor bundle —a four-
complex-dimensional vector bundle, with bundle group
Pin(1, 3) the twofold cover of the Lorentz group. The y
are the curved —space-time Dirac matrices satisfying

I. THE DIRAC EQUATION
y =v2

aAA 0
(1.4)

We wish to discuss the Dirac equation in terms which
are applicable to the curved space-times of general rela-
tivity. Consequently, the initial part of this section will be
peppered with the language of differential geometry. The
equations which we write down, however, should be fami-
liar to readers not acquainted with the obsessions of rela-
tivists.

Consider a space-time possessing a bispinor structure,
so that the Dirac equation may be defined throughout the
manifold. In a coordinate basis we have

cr "cr~ . =g ~ (summation on A and A),
AA

a (1.5)

a
AA;B

where o. . are the van der Waerden symbols (in flat
BB

space-time cr . are, for a=1,2,3, I/V2 times the Pauli
BB

matrices) satisfying
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Here, ezra is the 2 X 2 Levi-Civita symbol with inverse e"
(e =eo~ ——1, e =e~o ———1, and e =e =coo——e&&

——0).01 10 00 11

The E'AB and e" are used to raise and lower indices ac-
cording to the prescription e" g~ =g" and e~~g"=gz.

With (1.3), (1.4), and (1.5), the Dirac equation (1.1)
splits into a pair of two-spinor equations

QA' + U =0,AA lW A

2

Such transformations give a matrix representation of the
group SU(1,1). As we noted in a previous paper, the elec-
tromagnetic U(1) is a subgroup of this SU(1,1) symmetry
group which leads to the quantization of charge for fields
obeying the Dirac equation. The U(1) [maximal compact
subgroup of SU(1,1)] transformations are

e"0

UA' + u =0,
2

(1 6) ol

uA e'e 0 u
—ie 0 real .

0 e
where gg, BB

g&
cTaBB

t

As is well known, associated to any Dirac field there is
a conserved current, the Dirac probability current. In our
two-spinor notation this vector is

(
A —A+ A —A)

It is a simple matter to check that j is conserved, i.e.,
j ~ =0. The question is are there any other conserved.
currents? The answer is yes. The complex vector s,
given by

a a uAVA
AA

is divergence-free.
The three real vectors j, s +s a, and i (s —s ) are, in

fact, the only divergence-free vectors which can be con-
structed bilinearly from the Dirac field. The vector s
does not seem to rate mention in any of the standard texts
on the Dirac equation so it is perhaps worth rewriting it
in terms of the Dirac bispinor. The expression is

1-4cr 02@2

where

If we now attempt to construct a local gauge theory
based on the Dirac equation, we immediately come upon a
problem, the noncompactness of SU(1,1). Any gauge
theory based upon a noncompact group will encounter
problems with negative energy densities and indefinite
probabilities. These problems appear to vanish when we

go to second-quantized theory, the anticommutation rela-
tions for the quantum Dirac field seem to destroy the
SU(1,1) invariance. Second quantization, it seems, sin-
gles out the maximal compact subgroup U(1) of SU(1,1)
as the gauge group.

II. GENERALIZED DIRAC EQUATIONS

In our y5-diagonal representation the Dirac bispinor

U
—B

can be decomposed into its left- and right-handed parts as

0

and

u
—B

with the charge-conjugation matrix C given by
T

&BA

QA

The fact that the Dirac equation possesses three real
conserved currents suggests that the Dirac equation
possesses a three-parameter symmetry group. It is a sim-
ple matter to check that the Lagrangian' for (1.6),

L. =i (u„'4"u —u„'""u. )+ . (u "u„+u "u. ),
A A A

(1.9)

is invariant under the group of transformations given by

QA a b

UA ha
uA

a, b EC, aa —bb =1 .

U
—B

and the dagger indicates Dirac adjoint P =(u, u. ), Pc is
B

the charge-conjugate bispinor

0

U
—B

respectively, so that the two-spinor representing the left-
handed part of P, uz, appears in the Lagrangian (1.9)
with a positive sign and the two-spinor representing the
right-handed part, UA, appears with a negative sign. In
the following we will use the following definition of hand-
edness.

Definirion Atwo-sp. inor field u~ will be referred to as
left-handed if its kinetic energy term (iud'""u ) appears

in the Lagrangian with a positive sign, and right-handed
if it appears with a negative sign.

Now the bispinors representing any fermion field can
always be decomposed into a set of two-spinor fields. For
example, a lepton is given by one left-handed and one
right-handed two-spinor (Sec. I); or a quark, as a triplet of
bispinors, can be decomposed into six two-spinors —three
left-handed and three right-handed. This means (if we ac-
cept the current understanding of particle physics) that all
elementary particles can be described either as a set of in-
teracting two-spinor fields or as the gauge particles associ-
ated with such interactions. If the interactions were
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"switched off," we would simply be left with a set of
Weyl neutrino fields (mass being neglected}. In the mass-
less limit the free Dirac field consists of a pair of Weyl
neutrino fields.

Let us consider a noninteracting system in its massless
limit. The system will be described by n Weyl neutrino
fields u, z (a = 1,2, . . . , n), p of which are left-handed
and q of which are right-handed, p+q =n. These fields
satisfy the Weyl neutrino equation

u~A' ——0 .;AA

The Lagrangian will be

Lp ——i
p

u. ugA'
a=1

;AH

a =p+1
(2.1)

Clearly the invariance group (of linear transformations
acting on the u,z) of I.z is just U(p, q)—the group of
linear transformations preserving the pseudo-Hermitian
orm

p

g z,z..
a=1

z,z,.
a =p+1

xb
V~ugA =ugA. O. )f g~u (2.2)

where the connection matrices P « take their values in
the Lie algebra of 6, and so we may write, as usual,

b -g b j
QCK . CJ Q2

(2.3)

where g is the coupling constant, A J~ the (real} gauge po-

with (z, )HC".
The problem now is to construct a gauge theory for the

interacting system based upon the Lagrangian (2.1}. We
known that at any point of the space-time the gauge
group G must be a subgroup of the global invariance
group U(p, q). In a second-quantized theory the currents
associated with the noncompact generators of U(p, q)
would vanish identically —the noncompact degrees of
freedom mix left- and right-handed fields. This would
seem to suggest that the largest possible gauge group is
just the maximal compact subgroup of U(p, q). Choosing
the maximal compact subgroup as the gauge group has
considerable aesthetic appeal. Interactions of the system
would proceed via what might be called an elementary
particle "equivalence principle": all global symmetries of
the noninteracting system become local gauge symmetries
of the interacting (quantum) system. This is a direct anal-

ogy of Einstein s equivalence principle: In the presence of
gravitational interactions, global Lorentz invariance of a
system becomes local Lorentz invariance (invariance of
the system under Lorentz gauge transformations of the
tetrad" ).

The interacting system for (2.1) will be described,
mathematically, by an associated vector bundle of two-
spinor n-tuples ( u, z ), with bundle group G, over the
space-time manifold. The covariant derivative may be
written as

tentials, and TJ ——(T J), j=1,2, . . . , m &p +q, are the
generators of G in a basis compatible with the U(p, q) in-
variance of (2.1) and appropriately normalized.

We introduce an invariant pseudo-Hermitian metric
H (in. verse H") and pseudo-Hermitian conjugate of u, z
as follows:

(H,, )=diag(+1, +1, . . . , +1,—1,—1, . . . , —1), (2.4)

where there are p
"+ 1" entries and q

"—1" entries, and
u ' =H "u . . (summation on a ) (a means the index

A aA

transforms as the complex conjugate).
With (2.4) the generators Tz must satisfy [remember G

is a subgroup of U(p, q) j

(2.6)

with Cjk~ the structure constants of G in the given basis.
The fully gauge-covariant Lagrangian for the fermion

fields is now

Lz iu '.V——""u,q (summation on all repeated indices)
A

=iu' u'"+. g(o""u'. u Tb )ajaA 2 A bA aj a . (2.7)

The fermions, described by (2.7) alone, are massless. To
give them mass we need to introduce a symmetry-
breaking mechanism, which is our next topic of discus-
sion.

III. SYMMETRY BREAKING

The model developed thus far is incomplete in three
ways: (a) all fermions are massless, (b) all gauge bosons
are massless, and (c) gravitation has not been included (al-
though all our expressions are space-time covariant).

First, in relation to (a), we note that the masslessness of
the fermions implies that the Lagrange density
WF LV g[g =det( g p) ]——is c—onformally invariant.
This is, under the conformal rescalings g~p~Q g~p,

AA ~ AA aAA ~—1 aAA d ~—3/2

with 0=0(x ), the density Wz is invariant. '

Second, a mass term for the fermions must arise via a
coupling to the indices ab in the expression u, ubA,
which is skew-symmetric in ab.

To take account of these two observations, we introduce
a (Higgs) "mass-field" M' = —M ', which satisfies a
conformally invariant wave equation

M"+ —RM"+A, (M M'")M'"=0 (3.1)

where =V V' (V the covariant derivative of Sec. II),
M,d =H H M', R is the Ri.cci .scalar (with the conven-

cc dye

tions

(2.5)

As usual, the field intensities (components of the curva-
ture) may be written as
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a Q

nr, jI

and R jIr
——R jk r), and A, is a constant —included here for

completeness and to bring out the startling resemblance to
the usual Higgs fields.

The Lagrangian for (3.1) may be taken as

6/k, k the isotropy subgroup of 6 in Vh V at
I =(I' ) = I—' a constant skew matrix. By performing a
gauge transformation we can thus take M =I. There will,
however, be more than one I (and more than one group k)
by which symmetry breaking can take place.

After the symmetry breaking M~I, the full Lagrang-
ian of the theory will be

LM ——,
' [(V~—M' )(V M, b ) —, R (—M'M, b )

—
2 A,(M' M,b ) ] . (3.2)

L =Lp+Ll +LM+LG+LE

where

LF iu '„V——u,z., as in (2.7),

(3.4)

The action for (3.2) is conformally invariant with
M' ~Q M, the Lagrange density WM I.Mv —g-
actually changes by a divergence

8 jI 2 in' M M~b~
p ab

—g

LI ——,
' c(I' u—,"ubd +I ' u. "u . . ),

c a coupling constant,

L'M T[Tg (T gkT cjI Idb+T cj T bkI Iad)~a ~

M =(M'")=SIS', (3.3)

where S is a matrix of functions which takes its values in

A conformally invariant Lagrangian (for a scalar field)
has been introduced by Zee' in order to combine
Einstein's theory of gravitation with gauge theories via a
Higgs-type mechanism. This is, of course, our aim here.
It is also worth mentioning that a theory of gravitation
based on (3.2) is of the same type as the "Machian" theory
introduced by Hoyle and Narlikar' —though it must be
emphasized that with symmetry breaking our theory will
reduce to that of Einstein's.

We may also introduce a gravitational Lagrangian with
terms quadratic in the Riemann tensor. (Such terms are
introduced into the present theory only for the sake of
completeness and with one eye on a future renormaliza-
tion program. ) However, because of our conformal in-
variance the only such possibility is kC ~&~C~~~, where
C jIrs is the Weyl conformal curvature tensor and k is a
(dimensionless) coupling constant prescribing the strength
of the gravitational interaction.

We now need to introduce some idea of symmetry
breaking into our scheme. However, we cannot appeal to
the idea of nonzero vacuum expectation values, as in our
curved space-tlIIlcs tllc usual IlotloIls of quantum flcld
theory may not be well defined. ' Trautman' has given a
general description of a Higgs field (valid in general
space-times) and it is his approach we shall use here. The
definition, in the present case, simply says that the range
of M' is an orbit of the gauge group 6 in V h V [where
V is the bundle of vectors (U')]. Symmetry breaking is
now just a matter of choosing a particular gauge. The
reason why nature should "break" conformal, global, and
gauge invariance in this manner is undoubtedly due, in
some way, to nonzero vacuum expectation values —but the
present-day theory of quantum fields in curved space-
times is not sufficiently refined for us to use this appeal-
ing physical explanation.

Given the above definition of M we can now write

,' (I' I,b )R——,' l.(I'"I,b )—],

LE=kC pygC ~~

In this form the conformal invariance of the theory is
broken, gauge invariance is reduced to the gauge group k,
and global invariance is broken to the subgroup of U(p, q)
which leaves I invariant.

For gravitation to be "attractive" we must have
I' I,b &0. To identify (I' I,b) with—the inverse gravi-
tational constant we must have a complete theory. The
larger the U(p, q) and G become, the more contributions
there will be from I' to I' I b.

Two points should be emphasized. First, the theory of
gravitation that results (ignoring the contributions from
LE) is just standard general relativity. Secondly, after
symmetry breaking M~I, all components of the Higgs
field are constant, so there are no elementary scalar fields
in the theory.

IV. AN EXAMPLE: THE WEAK INTERACTION

To construct a theory of the weak interactions we re-
quire one lepton (one right-handed two-spinor and one
left-handed two-spinor) and one left-handed neutrino (one
left-handed two-spinor). The global invariance group is
U(2, 1). We choose the maximal compact subgroup as
gauge group, so 6=SU(2)U(1) which is, of course, the
gauge group of the standard Glashow-Weinberg-Salam
theory. '

The correct form of LG is given when the generators
T'bj are appropriately normalized as generators of
SU(2, 1). We write
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( T'bj A J~ ) =

1 3 1~A~+ ~A~
1 3 1~A~+ ~A~

2 4—~A~

(4.1)

where 8' =8'+.
The necessary symmetry breaking SU(2)s U(1)~U' (1) can be taken to be given by an I of the form

0 0 v

0 0 0
—@00

where U can be taken as a real constant.
The Lagrangian I.b of (3.4) now takes the form

(4.2)

Lz iu ——u,a' +— A o (u, AQ ~ ~ —Q2AQ ~ ~ )+ A o (glAQ ~ ~ +Q2AQ ~ ~ +2Q3AQ ~ ~ )
—a;AA g 3 aAA 4 aAA

A 1A 2A 1A 2A 3A

+~~ O ~ .~2A+~~ ~ (4.3)

The theory is now formally the same as the standard
theory in its particle content (except for the lack of Higgs
scalars) if we make the following identifications:

electron bispinor: —B
Q ~

left-handed neutrino: u2~,

boson of weak hypercharge: A~ .

The Weinberg angle' 8~ is given by

sin Ogr =
1 1+

1
2 4

This is not a bad estimate considering that we have an in-
complete theory (we have not included the strong interac-
tions) and have not included any renormalization effects.
The incompleteness of the theory means that we cannot
identify —,', I,bI' =U l6 wi—th the inverse gravitational
constant (the squared Planck mass in units A'=c= 1).

CONCLUSIONS

The aim of this work was to put forward a coherent
framework within which we could construct unified gauge
theories. The underlying assumption of the work is the
equivalence principle of Sec. II: global symmetries of the
noninteracting (quantum' ?) system become local gauge
symmetries of the interacting system. Clearly a more
thorough investigation of the relationship between the
classical symmetry groups U(p, q) and the quantum sym-
metry groups (as the maximal compact subgroups)
S(U(p)U(q)) (essentially the chiral groups) is required.

To construct a grand unified theory within this frame-
work requires a considerable enlargement of the group
structure. For example, to include just one massive lep-
ton, one neutrino, and two quarks requires the global sym-
metry group U(8,7). Also, if we wish to get the correct
gravitational constant, then some of the gauge bosons
must acquire a mass of the order of e times the Planck
mass.
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