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A noncompact, 28-dimensional subgroup of E7 that is a global symmetry of the Cremmer-Julia
action is gauged. The resulting theory has X=S local supersymmetry and SU(S) &(ISO(7)+ gauge
symmetry, where ISO(7)+ is the Inonii-Wigner contraction of SO(8) about its SO(7)+subgroup. The
scalar potential is changed and the usual problems associated with gauging a noncompact group,
such as ghosts, are avoided. In the symmetric gauge there is a manifest SQ(7), under which the
gravitini transform according to the eight-dimensional spinor representation, while the noncompact
generators of ISO(7)+ are realized nonlinearly.

N =8 supergravity is the largest extended supergravity
with maximum spin 2 and is the most likely to be physi-
cally relevant. Its particle content is uniquely determined
and the ungauged theory, with 28 Abelian vector fields,
was discovered by Cremmer and Julia. ' de Wit and
Nicolai have given a gauged version in which the vector
potentials become SO(8) gauge connections. It is clearly
important to know how much freedom there is to change
the self-coupling of the theory. That there may be several
different ways of gauging the theory is suggested by the
possibility of different nontrivial dimensional reductions
of the 11-dimensional theory and the existence of several
distinct gaugings of N =4 supergravities. Gates and
Zwiebach recently obtained three distinct gaugings of the
SO(4) supergravity, and it is a generalization of their re-
markable results that will be applied to X =8 supergravi-
ty in this paper.

The ungauged N =4 theory, with Lagrangian Wo, has
a local U(4) symmetry of the action and a global
SU(4) X SU(1,1) symmetry of the equations of motion, of
which the real subgroup SO(4) XSO(1,1) is a global sym-
metry of the action. ' The physical scalar fields
P=tc(A +iB) lie in an SU(l, l)/U(1) coset space, and can
be represented by an SU(1,1) matrix &,
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Here, k is an element of the U(1) subgroup of SU(1,1)
and could be set to unity by a suitable choice of the U(1)
gauge —the symmetric gauge. ' The inhomogeneous com-
plex coordinate y, satisfying

~ y ~
&1, is related to the

physical scalars by

where t is a real parameter. This acts on the scalar fields
parametrized by P in (1) as

P ~P E(t) '=—P '(t),

u ~u'=cosht u —sinht v,
v —+v'=——sinht u+cosht v,

while the vector fields transform as

where the SO(4) (anti-) self-dual parts of the vector poten-
tials are

g II g XL
(gII + 1 PIKL )p+ p EL —2 (8)

Since E(t) is in the SO(1,1) subgroup of SU(1,1), it gives a
symmetry of the ungauged Lagrangian, Wo~Wo, but
acts nontrivially on Ws. If one rescales the coupling con-
stant

making the global SO(4) symmetry of the action local by
adding minimal couplings in the usual way with couplinp
constant g and with the six vector fields
(I,J=1, . . . , 4) acting as SO(4) connections. Supersym-
metry is broken by the gauge couplings, but can be re-
stored by modifying the supersymmetry transformation
laws of the fermions by coupling-constant-dependent
parts, 5g, and by adding g-dependent terms to the La-
gr»gi», ~o~W=Wo+Ws, where Ws consists of
fermionic bilinear terms and a scalar potential. The
theory has a local U(4) X SO(4) symmetry, the
SU(4)XSU(1,1) symmetry being broken to SO(4) by the
gauging.

Consider the action on the Lagrangian and supersym-
metry transformation rules of this theory of the SU(1,1)
transformation given by

r

0
E(t)=exp

tanh
[ qb

f

The standard gauging of the theory can be obtained by
the combination gA& appearing in the minimal couplings
remains finite. Then under the action of E(t) and (9),
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W =Wo+ Wg~&(t) =Wo+ Wg(t), (10)

where Wg (0)=Wg. The coupling-constant-dependent
parts of the supersymmetry transformation rules are also
modified by (5)—(7), (9), 5g ~5g (t), and the theory
remains supersymmetric for all values of t.

For all finite values of t, this transformation constitutes
an invertible field redefinition and so the theory is
equivalent to the original SO(4) gauging. The Lagrang-
ian W(t) is invariant under a local U(4) X SO(4) symmetry
but the SO(4) commutation relations and the spin-one ki-
netic term no longer have the canonical normalizations.

Consider now the well-defined limit as t tends to infini-

SO(8) couplings with coupling constant g and with the 28
vector fields Az ———Az as gauge connections. Super-
symrnetry was lost in the process and the change of the
action under an infinitesimal local supersymmetry
transformation was expressed in terms of the so-called T
tensor

T jkl . ((Tkl +U klIJ)(t( JK(i jm
U U

jmKI) (17)

If one adds to the Lagrangian coupling-constant-
dependent fermionic bilinear terms and a scalar potential,
W=WO+Wg,

~g =ge(v 2A) "0„;~"'W.J+ 6 A2'Ikif„r"X"
ty

lim W(t) =W'=&0+Wg(OD ),t~ ao

+A3'J~l™X,IkX( „)+H.c.

+g'«-.'
I
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W(t) =W'+0(e '),
and adds to the supersymmetry transformations the terms12

and the corresponding limit in the coupling-constant-
dependent parts of the supersymmetry transformation
rules

5g1(„'=V 2gA, 'Jejr„,

5gg = —2gc4 2l 6'

(19)

(20)

lim 5g (t) =5g,t~ 00

5g(t)=5g+O(e ") .

(13) the theory becomes fully supersymmetric, provided that
the scalar-field-dependent tensors A(, A2, A3 satisfy

(21)

IJ
Qgj U,&KL

—klIJ —kl
U Q

(16)

where i, j, k, . . .= 1, . . . , 8 are SU(8) indices, I, J,
J(, . . .=1, . . . , 8 are E7 indices, and in (16) they are an-
tisymmetric in pairs.

de Wit and Nicolai gauged an SO(8) subgroup of E7
that was a global symmetry of Wo by adding minimal

The limiting theory is again supersyrnmetric but the
gauge symmetry has undergone an Inonii-Wigner contrac-
tion from SO(4) to SU(2)XU(1) [cf. (7)], the U(l) acting
trivially, i.e., as central charges. It constitutes a gauging
of an SU(2) subgroup of the global SU(4) symmetry and
the model is related by a duality transformation to one of
the models obtained in Ref. 6. It has been obtained from
the SO(4) gauging by a singular, noninvertible field redefi-
nition, and so represents an inequivalent theory.

These results have previously been obtained by Gates
and Zwiebach, who gauged an SU(2) &&SU(2) subgroup of
SU(4) with two coupling constants g(, g2, obtaining a
family of models depending on the relative magnitudes of
g(+g2 and g( —g2. Their parametrization of these
models is related to that sketched above by

g&
—gz

tanht =
gi+g2

Consider now X =8 supergravity in the conventions
and notation of de Wit and Nicolai. The ungauged
theory' has a local SU(8) symmetry of the action and a
global E7(+7) symmetry of the equations of motion, of
which an SL( 8,R) subgroup is a symmetry of the
Lagrangian, Wo. The 70 scalar fields lie in an
E7( + 7 )/[SU(8)/ Z 2 ) coset space that can be parametrized
by the "56-bein"

v2
A3ijk, lmn ~ijklpgr[lm Tn]108

(22)

0
E(t) =exp

tXgJKL

tXIJKL

under which

&~X (t)=F"E(t)

IJ A IJ(t) [ ( tg )]IJKLA KL

where X is real and self-dual,

(25)

~IJKL X 1 PJKLMNPQX
IJKL 24 MXPQ (26)

(7j=+ 1 is an arbitrary duality phase, which it will be con-
venient to choose here as +1) and X ' is to be regarded
as a 28&28 matrix, labeled by antisymmetric index pairs.
Since E(t) is in the real SL(8,R) subgroup of E7, it consti-
tutes a symmetry of the ungauged action WO~WO, but
modifies Wg. For all finite values of t this yields a
theory which is field-redefinition equivalent to the de
Wit-Nicolai theory. If one now attempts to take the limit
taboo, in analogy with the N =4 construction, one finds
that for many choices of the four-form X that a limit
does not exist. This suggests that the construction might
only work for a four-form with rather special properties.

Consider then

The consistency of Eqs. (21) and (22) follows from some
nontrivial properties of the T tensor, as a result of which
(21) and (22) provide definitions of A(, A2, A3.

This gives a theory with local SU(8) &&SO(8) symmetry,
the E7 being broken to SO(8) by the gauging.

Consider now the action of the E7 transformation given
by
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XIJKL YIJKL ) QJKLMNPQYMNPQ
24

where

YIJKL & (5IJKL+5 IJKL+ 5IJKL+ 5IJKL
1234 1256 1278 1375

(27) L)I 6J)

0 L[M 5N]I~& ai.
'

and D(L') is obtained by replacing LI in (39) with

LIJ (p+IJKL +e p IJKL—)LKL
It can be shown that the Lagrangian W(t) satisfies

+5IJKL ~ 5IJKL+ 5IJKL)
W(t)=W'+O(e "), (40)

This four-form gives the associator of the octonions and is
closely related to the torsion that parallelizes S (Refs. 10
and ll). It is invariant under the SO(7)+ subgroup of
SO(8) (Ref. 11) [i.e., the stabilizer of a right-handed SO(8)
spinor] and giving the scalar fields an expectation value
proportional to X in the de Wit-Nicolai theory gives a
spontaneous symmetry breaking of SO(8) to SO(7)+ (Ref.
11)

(XIJKL 35IJ )(XKLMN+ 5KL ) 0 (29)

and

pIJ, KL 3 (5IJ & XIJKL)+ —
4 KL

and, as a 28)&28 matrix, X has 21 eigenvalues of —1 and
7 eigenvalues of +3. Introducing the projector P+ onto
the 21-dimensional eigenspace

=5,+5g+0(e "), (41)

where 6~ is independent of t. Although there are, in prin-
ciple, terms that grow exponentially with t in (40) and
(41), these vanish identically as a result of certain special
properties of the tensor XIJKI. . Then the limit of the
theory as t~ oo exists and, since for all finite values of t,
the theory is supersymmetric,

5Q ( t )W ( t ) = ( total divergence )

where W' is independent of t, and the supersymmetry
transformation laws 5Q(t) =50+5g(t), which have t
dependence through the t dependence of the terms Ai'I,
A ~;Jk', satisfy

5g(t) =5g+O(e ')

pIJKL 5IJ pIJKL 1 (5IJ +XIJKL)KL + —
4 KL (3 1 )

it follows that

( tX) )IJKL tpIJKL + —3tpIJKL
+

so that (25) becomes

(32)

P+ projects the generators of SO(8) onto those of SO(7)+
(Ref. 11). Then

5QW'=(total divergence)+O(e '),
which can only hold for all t if the limiting form of the
theory is supersymmetric.

A similar argument can be used to demonstrate gauge
invariance. For any particular gauge generator L,

I IJ(t) tgIJ + 3'IJ—
v+

where

g IJ PIJ KLg KL
p+ + p o

Rescaling the coupling constant

(33)

(34)
D'(L) =R

L+ +P+L P

D(L, t) =D'(L)+O(e ')

where

L++P L P+

(42)

g ge (35)

to preserve the finiteness of gA&, one obtains a one-
parameter family of Lagrangians W(t) =Wo+ WK(t)
For all finite values of t, the theory is field-redefinition
equivalent to de Wit-Nicolai theory (t =0) and so is
supersymmetric with supersymmetry transformations
5Q —50+5g ( t), and has an SO(8) gauge invariance. An
SO(8) generator LIJ acts on the scalar fields and vector-
field strength 56-vector as an Ez matrix D (L, t),

L++ 2L

z
z

L++ —,L
(43)

(44)

where the diagonalizing similarity transformation is given

57 = PD(L, t), — (36) aild

IJ
5 IJ D(L,t)—— (37)

where

D(L, t) =E(t) 'D(L')E(t), (38)

where D (L )=D (L,O) is the matrix giving the SO(8) ac-
tion in the de Wit-Nicolai model

L IJ+PIJKLL KL

and for any 8&& 8 matrix AI,

A =A(, 'K5J)L' .

The four-form Z is

Z IJKL & L [I ~JKL]M
M

(46)

(47)
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The commutation relations of the gauge transforma-
tions are, from (43),

[D (Ll } D (L2}]=D'([Li L2]}

where, in terms of the projections (45),

[L~r,L+K ]=4L+(r ~r}[L K]

[L+r,L K ]=4L (r 5rl[L Kj

[L r,L K ]=0

(48)

(49}

(51)

Since for all t, D(L, t) is an element of the E7 algebra gen-
erating a symmetry of W(t), it follows that D'(L) must
also be in E7, and when acting on the spin-zero and spin-
one fields as in (36), (37), must give a local symmetry of

M„,jkl ———2" 2(u; B„vklrr —v 8 Bkl )
IJ IJ

+4~kg~ prr[M ( tij™'klLM+v jKM'+kl

KLMN( KL MNIJ +ij ~kl

VijKL VklMN ) ] (57)

Since the vector and scalar kinetic terms are just gauge
covariantizations of those of the Cremmer-Julia theory, '

the usual problems associated with the gauging of non-
compact groups, such as ghosts or nonpropagating de-
grees of freedom, are avoided. The change of the minimal
couplings under supersymmetry gives a net change of the
action under an infinitesimal local supersymmetry that
can be parametrized by a new "Ttensor"

IJ=23[ 3 )
—2gA[~+

—2gA [p+ Av ]
IK KJ

IK KJg~ [p — ~ v) (52)

and the covariant derivative of the 56-bein gains a gauge
convariantization

(D„P )P '~(D„P )P ' —g(P D'(A„)& ', (53)

so that the SU(8) connection is

A~ir= —
3 (tTr rrBptlik —v cllJvrkrr )

—'k IJ —jkIJ

X»KLMN(V, kKL —u jkMX

KL jkKL
)]—

(49) gives the usual commutation relations for SO(7)+,
but as a result of the vanishing of (51) the full algebra is

no longer that of SO(8) but is an Inonu-Wigner contrac-

tion of SO(8) about its SO(7)+ subgroup, giving

ISO(7)+, which is isomorphic to the group of motions of
Euclidean 7-space. The 21 L+ generate SO(7) "rota-

tions, "while the I. give 7 "translations. "
The theory, then, constitutes a gauging of the 28-

dimensional, noncompact ISO(7}+ symmetry of the

Cremmer-Julia action Wo, acting through (43) as (36) and

(37) (with t = ce ).
Minimal couplings are added so that the Yang-Mills

field strength is

V(s) = ——,g e ' (59)

which has the same shape as the potential of
Freedman-Schwarz model. There are thus no SO(7)+-
invariant critical points of the potential.

Z"jkl
(
—k! + klrr)—

X [MuKL (urm tr ' r.M VimKM—V

& jm KL jmMN}]—

(58)

where MrrKL &u are defined in (55) and (56). Then
supersymmetry of the theory is restored by adding terms
(18) to the action and (19) and (20) to the supersymmetry
transformation rules, where the tensors A~, A2, A3 now
have a new functional dependence on the scalar fields
given by (21) and (22) but with the T tensor in these equa-
tions replaced by T,"r" in (58). Again, the consistency of
these equations can be demonstrated,

The theory has X =8 local supersymmetry and
SU(8) XISO(7)+ gauge symmetry. On going to the sym-
metric gauge, ' the diagonal SO(7)+ subgroup is manifest,
with the gravitini, for example, transforming according to
the eight-dimensional spinor representation of SO(7)+.
The noncompact generators of ISO(7)+ are then realized
nonlinearly.

In the symmetric gauge, the scalar potential V(prJKL)
is given in the SO(7)+ singlet direction in scalar space,
where itrrJKL =2v 2SXyrKL by

~IJKL ++IJKL+ 2 ~—IJKL

KL=
8 (7&u &uKL} ~—

t +rJ(K ~L] (pPQMN pPQMN }IJ 2 — [P Q] — +
[K~LMN] J

4 I

The scalar kinetic term is

where

(55)

(56)
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was supported by a NATO Fellowship.¹teadded. I have recently found a number of other
noncompact gaugings of X =8 supergravity. The Yang-
Mills groups are SO(7, 1), SO(6,2), SO(5,3), and SO(4,4),
together with the Inonu-Wigner contractions of SO(8)
about the subgroups SO(6) XSO(2), SO(5) XSO(3), and
SO(4) X SO(4). [The contraction about SO(7) gives
ISO(7).] The theories with gauge groups SO(8), SO(4,4),
and the contraction of SO(8) about SO(4) X SO(4) can be
truncated to give the three gauged Ã =4 supergravities,
d1scussed above.
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