PHYSICAL REVIEW D

VOLUME 30, NUMBER 4

15 AUGUST 1984

Search for higher-dimensional cosmologies

M. Gleiser, S. Rajpoot, and J. G. Taylor
Department of Mathematics, King’s College London, London WC2R 2LS, England
(Received 24 February 1984)

Cosmologies in six-dimensional Einstein-Maxwell theory and Englert’s solution for eleven-
dimensional supergravity theory are studied. Spontaneous compactification is shown to occur in

which the three-space has preferred expansion over the extra dimensions.

An effective four-

dimensional cosmological constant is calculated for each possible solution.

I. INTRODUCTION

If our four-dimensional universe has its roots in a space
of extra dimensions! then cosmology is the ideal place to
look for consistency. The isotropy in the three spatial di-
mensions suggests that the extra dimensions may also
have evolved isotropically before compactification into
the four and D —4 dimensions. We assume that the evo-
lution of the D dimensions before compactification oc-
curred from a common radius. The natural scale of gravi-
ty in four dimensions is the Plank mass Mp. After com-
pactification, the size of the extra dimensions is expected
to be of order 1/Mp. In this paper we examine the
cosmological solutions in the six-dimensional Einstein-
Maxwell theory with a monopole in the extra two dimen-
sions? and in the eleven-dimensional supergravity theory
with the fourth-rank antisymmetric field required by su-
persymmetry taking values in the extra seven dimensions.
We assume the metric to be diagonal and time dependent
in D —1 dimensions. Furthermore, it is taken to be of the
Robertson-Walker form in the 1+ 3 and D —4 dimen-
sions,
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where M,N =0,...,D —1; i,j=1,2,3; m,n=4,...,D —1;
and g;; and g, are the maximally symmetric metrics for
the three- and (D —4)-dimensional spaces. This form of
the metric gives the following components for the Ricci
tensor Ryt

R _3—+(D 4)
® RD .

2K3 d R3
R«-:— —_— _— ) —
v R32+dt R,
Rp_s | Rs
3— D—-4 — |g..
+ +( )RD | gir @

R — (D—5%p_s d |Rp_as
mn = RD—42 dt | Rp_,4
R; Rp_4 |Rp_4
3—— D —4 .
* R; o )RD « |Rp_s [F™

Our interest in the six-dimensional Einstein-Maxwell
model is based on the fact that, although it is not a realis-
tic model (as remarked by the authors), it has several
features that are of interest for any realistic theory to be
developed. In particular, the coupling of the SU(2)
Yang-Mills four-vector to massless fermions is chiral, due
to the presence of the magnetic monopole that automati-
cally circumvents the Atiyah-Hirzebruch theorem as re-
cently emphasized by Witten.’

II. SIX-DIMENSIONAL
EINSTEIN-MAXWELL THEORY

The six-dimensional Einstein-Maxwell action including
a cosmological constant is given by

S=— fd6z(

where M,N=0,1,2,3,5,6; u,v=0,...,3; m,n=>5,6, and the
signature is (— + + +;+ +). Then Z* is given by
ZM—(x*y™). R, A, and k are the six-dimensional curva-
ture scalar, cosmological constant, and gravitational cou-
pling constant, respectively, and the Maxwell field is de-
ﬁned by FMN —‘—‘:aMAN —aNAM.

The field equations derived from this action are

R
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(___g(16))1/2 aM[(—g(6))1/2FMN]=FMN;M=O , (5)
where the semicolon denotes covariant differentiation
with respect to our ground-state metric and the energy-
momentum  tensor Ty is  defined as Ty
=Fy Fhy — t8un F.

We take polar coordinates in the two- sphere with
8ss=R,%, gs¢=0, g¢s=R,%sin’0, where x°=6, and
x%=4¢ as usual. If the magnetic monopole potential (tak-
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en, of course, to be rotation invariant) is given by’
A, (y)dy=_(m/2e)(cosOF 1)d¢, where m is a positive in-
teger and e is the Maxwell-field coupling constant, we can
show that the energy-momentum tensor components are

m? —1 if M,N=0,...,3

Tun =¢ 8e2R,* MV with €=, 1 if M,N=5,6.
Before we start to consider cosmological solutions to
this model, it is worthwhile to mention that, in our nota-
tion, a compact space should have a negative curvature
scalar. Following Freund and Rubin,® we see that the
presence of a rank-two antisymmetric tensor (the Maxwell
field) will preferentially split the six-dimensional space-
time into the desired product of a four-dimensional and a
two-dimensional space with opposite signs for the curva-
ture scalar. As we, of course, want the time to be in the
four-dimensional space, the two-dimensional one should
be compact in order to avoid closed time loops in the ordi-
nary space-time. If we contract Einstein’s equations (4),
with the value of the energy-momentum tensor given
above, we find that the four- and two-dimensional curva-
ture scalars are given by
2
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As soon as A >0 the condition for a compact two-

sphere is trivially satisfied. But if A <0 we must have
3m?

and this condition puts an upper bound on the value of

the six-dimensional cosmological constant. This is very

big for the radius of the two-sphere being of the order of

the Planck length, as is usual in Kaluza-Klein-type

theories.

We now look for cosmological solutions as we have dis-
cussed in the Introduction so that our metric has the form
mentioned at the beginning, keeping the form of the
monopole potential in the two-sphere. When inserted into
the field equations (4) and (5) we obtain
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We may divide the solutions into two classes, class I be-
ing for a nonzero cosmological constant and class II for a

zero cosmological constant. In both cases we find, among
the possible solutions, the familiar one with an oscillating
anti—de Sitter universe and a static two-sphere.

For class-I solutions we try initially the power-law
behavior R;(1)=r;t"" (i=2,3) with »; and @; constants,
the latter to be determined from Einstein’s equations
(8)—(10). The solutions are in the following table:

Solution as a, A=const K3 Ky
(a) 0 0 Yes 0 C
(b) 1 0 Yes AdS C
(c) 0 1 No 0 c*
(d) 1 1 No AdS c*

where C is the compact space; C* is the condition for
compactification, achieved by fine tuning of parameters;
AdS=anti—de Sitter space-time.

Solution (a) is the trivial static solution of Ref. 2. Solu-
tions (b), (c), and (d) involve expansion either in the three-
space or in the S? or in both. We must realize that the
only possible solution is (b) since solutions (c) and (d) can
only exist for a time-dependent cosmological constant and
this time dependence will violate the Bianchi identities.
Thus, expansion in the extra dimensions is ruled out by
geometrical arguments. An interesting point is that in the
framework adopted here it is also impossible to find solu-
tions with shrinking extra dimensions. If instead of a
power-law behavior we try an exponential one, we can
easily find a solution with expansion in the space-time but
with static and compact internal space. This “inflation-
ary” solution is (as in our previous one) a direct conse-
quence of the presence of A.”

If we now try an oscillating behavior for the four-
dimensional space-time with a static two-sphere, i.e., if we
write R;(t)=r3cosat and R,=r,, we are able to find
another solution for As«m?2/8e%r,*. [For A=m?/8e%r,*
we obtain solution (a) as above.] From Egs. (8)—(10) we
get solution (e),
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This is an oscillating anti—de Sitter universe with period
7=27/a and a compact two-sphere. These seem to be the
only possible solutions of this form for class-I models.
We will discuss the relation between the period and size of
the compact two-sphere later when we discuss this prob-
lem for the eleven-dimensional situation, since these are
similar.

For class II, we obviously can get an oscillatory solu-
tion if we just take A=0 in the solution (¢) above. This
solution is very important since, in eleven-dimensional su-
pergravity theories, one usually starts without a cosmolog-
ical constant and thus we should expect to get this kind of
solution in the round seven-sphere® and in Englert’s solu-
tion.> Freund has already shown* that this is the case for
the round seven-sphere. We later show that this will also
be a possibility for the seven-sphere with torsion. The
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Einstein equations for the two cases are identical except
for numerical coefficients.

III. ELEVEN-DIMENSIONAL SUPERGRAVITY

The motivation for studying the previous model resides
basically in the fact that we have the Maxwell field taking
values only on the two-sphere. This interesting feature of
this model could help us to find possible cosmological|
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solutions for the round seven-sphere with torsion obtained
by Englert for the compactification of eleven-dimensional
supergravity.> For this the fourth-rank antisymmetric
tensor also depends on the extra dimensions being related
to the torsion used to “flatten” the seven-sphere as in the
Cartan-Schouten formalism.® We here give a brief review.
More details of the (AdS); XS’ solution can be found in
Ref. 3.
The bosonic part of the action is given by

11 ammiez | R | 1 mnpg V2 g1 M
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where now, M,N=0,...,10; pu,v=0,...,3; m,n If we try the power-law behavior R,-(t)=r,-ta‘ (i=3,7), we

=4,...,10, and the signature is (—++...+). ZM is
given again by ZM=(x*,y™), R is the eleven-dimensional
curvature scalar, and Fjyypo=419p Anpg). The field
equations are

Run— %gMNR =— T;(SFMPQRFNPQR_gMNFSPQRFSPQR) ,

(12)
M, -+ MgNPQ

FMNPQ —V2 ¢
; 241? (—g

(10172 FM]”’M4FM5"'M8 :

(13)

If we then look for solutions in the form of a product
of a four-dimensional space-time and a compact seven-
sphere we find, following Englert,® that R,.,=78mn;
Ruv=7'8uvs Rmp=0, with v <0 to have a compact space.
We then have a solution where

4o f
(___g(4))1/2 (4|)1/
plus a nonvanishing expectation value for FMVFC in the
seven-sphere. Then (13) and (14) give
172
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If we now use the parallelizability property of the
seven-sphere, we can relate the torsion tensor S™,, used
to flatten the sphere to the field F™"? by

FTPI=1S 1 (npgm1 »

where S+[npgm] are the two possible values for this tor-

sion tensor.®> Englert has shown that a solution of this

kind is possible if

a=_12
Y

(15)

if2= —328, Fmpququ’= %}‘-272gmn’

In order to look for cosmological solutions, the most
natural ansatz is to take the constant f appearing in (14)
to be time dependent. From (15) this will immediately
give a time dependence for the field strength F™"4. We
will see moreover that no mixed field strength on metric
components arise with this modification and the metric
being of the form assumed at the beginning of the paper.

get for Einstein’s equations,

[Bas(as— 1) +Tala;— D]t 2= — 5 fA1) ,
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Additionally, we have from (13) and (14) that

(d /dH(R;7f)=0.

We can easily see that a solution of this form is possible
for Egs. (16) similar to the one found by Freund® for the
round S7. Another important feature of this model is the
absence of an eleven-dimensional cosmological constant in
the initial action. If we look back in our six-dimensional
model we see that the only solution with zero cosmologi-
cal constant is the oscillating one. We expect then that, if
the analogy prevails, this will again be the case for the
present model. In fact, Einstein’s equations are now

Ry _R, 5
TR =
2
K3 d |R3 3 R; R, s
Bl 4|2 1 =, a7
2R32 dt | R, + R, R, R, e/ (17
2
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For R;=r;=const and Rj=r;cosat, from (17) we
find

88
fr=2a?=const; ky=—a’rs} k;=3a’r,*/10.

This model allows as solution an oscillating four-
dimensional anti—de Sitter universe with period 7=27/a
and a static seven-sphere. Although the oscillatory solu-
tions are an immediate consequence of the choice for the
time dependence of R; and R, (or R;) they provide some
interesting results for the effective four-dimensional
cosmological constant.

For the six-dimensional model we can write an expres-
sion for a provided that we normalize the six-dimensional
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gravitational coupling constant in terms of the four-
dimensional one (K,) as

KKy

K K
==
v,

41rr22

and that we take the class-II solution for simplicity.
Then, '

2/3
2mrky /

2
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1
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with the correct dimension [a@]=L ! (here [e]=L). In
eleven dimensions, a will depend on the field strength f
and on the eleven-dimensional gravitational coupling con-
stant which involve one of the free parameters of the
theory, the “size” when all dimensions were equivalent.
Of course, the other free parameter is the time of compac-
tification (¢y) that we have to include in our solutions
R;(t)=ri(t +1t, )“ since they are valid from ¢ > ¢, in prin-
ciple. The mass gap of the theory is Am ~1/r; (i=2,7)
which is, as usual, taken to be of the order of (Planck
length) 2.

We can obtain an effective four-dimensional cosmologi-
cal constant A from Egs. (8) and (10) for the six-
dimensional model and from the first two equations in
(17) for the eleven-dimensional model. If we contract
Einstein’s equation we get, in four dimensions,

2
—K
Ruv= —2—Agm, .

By comparing with our solutions we have
A=A/2—m?/16e’R,* :
(a) and (b): A=0,
(e) A=A/2—m?/16e%ry*£0 ,
(f) A=—m?2/16er)*= —2472/k*7* .

For the oscillating solution in eleven dimensions we
have

2
Am— Sfrm 32— 12T

In our units we must write

o7

A=—12"M, =

For 7=1.5x10"° yr=10® cm and Mp=10"% cm,
A=~10"120 pf,4,

For solutions (a) and (b) we have imposed A =0 to solve
Einstein’s equations. Nevertheless it is an interesting
feature of higher-dimensional Einstein-Maxwell theories
that this can be achieved through a fine tuning of the D-
dimensional cosmological constant. In other words, al-
though the higher-dimensional universe admits a cosmo-
logical constant we, in four dimensions, do not see it.
This suggests that higher-dimensional theories may even-
tually give a proper answer for the cosmological-constant
puzzle. For the oscillatory solutions we have used
7=1.5X10' years as the period of oscillation. This will
again provide a very small A which is in agreement with
the current accepted value. Although our model is only
valid for the radiation-dominated era, since we are not in-
cluding fermionic matter in our analysis, we can say that
the solutions presented here provide evidence that it is
worthwhile to take the extra dimensions seriously as a tool
for unified models of gravitational and gauge interactions.
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