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An extended scalar-tensor theory of gravitation
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A link between several scalar-tensor theories of gravitation and Einstein s theory is proposed. It is
based on a Lagrangian in which the part depending on the scalar field vanishes under the usual con-
ditions, but under special conditions new aspects of gravitation can be forecast.

I. INTRODUCTION II. THE EXPRESSION FOR e

This paper tries to make a link between several scalar-
tensor theories of gravitation and Einstein's theory. Many
sound arguments have been presented which modify
Einstein's equation of gravitation, from Jordan' and
Brans and Dicke up to some more recent works, by
adding a supplementary scalar field. Using these argu-
ments, one can add a term of the form

Ls =~f,kf'

in the action principle leading to Einstein's equation. The
action principle then reads

5 J dxg' (R+LM+Ls)=0 (1.2)

(R is the scalar curvature of space-time and Lss is the
matter Lagrangian density).

However, the gravitation experiments performed hither-
to have strongly supported Einstein's equation. %'e shall
denote shortly by E the coordinate frame and the condi-
tions under which the tests of the Einstein theory have
been carried out. Thus, under the usual conditions E the
factor e must tend to 0. Now, in order to keep the term
(1.1) in the general case, it is assumed that e does not van-

ish under other conditions than E, in. other domains of
space. Therefore, the physical basis of the theory is the
combination of the arguments of the existing scalar-tensor
theories with the experimental data supporting Einstein's
theory.

One can see now that e has the physical significance of
being a spatial magnitude characterizing the contribution
of the scalar field to gravitation. Consequently, e has to
be linked to a characteristic feature of space. Therefore,
one may assume that the metric g,J and its variation must
enter the expression for e. The Christoffel symbol is suit-
able; the simplest way to express the scalar e with its help
is by

e = —i ( V"„+I,"„V'), (2.1)

(e)o i [V——,"„+—(I;"„)oV'] =0 . (2.2)

We have denoted by (I,'„)o the value of I,"„under the con-
ditions E. Under different conditions one may have

(2.3)

and @+0.

where V' is an imaginary vector (constant in E). This
vector is not a measurable field, but a calculus magnitude
which ensures the scalar character of e. Therefore it has
no physical role in the theory. The theory is based on e,
which is in equivalence with I,"„(V" being just the link).

Following the above considerations, e vanishes under
conditions E:

III. THE FIELD EQUATIONS

The variation of Eq. (1.2) with respect to g'1 yields the equation

R;J g;J(R/2)+sf;f —J+ Eg;,f,g'"/2—

(3.1)

Rtl giI(R /2) = kG T~J +S—,J. . (3.2)

where TJ is the matter tensor. In obvious shorthand no-
tation we can write Eq. (3.1) as

In the frame and under the conditions E, Eq (22) is

vahd and Eq. (3.2) reduces to the Einstein equation. But
under different conditions, when we have Eq. (2 3), then

Eq. (3.2) holds. This can be t~e in regions of the universe
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Clf+f i(el/e)=0, (3.3)

where the variation of the metric is very rapid, maybe
with pulsars, black holes, gravitational collapse, etc. Of
course, Eq. (2.3) is not a covariant condition, but if it is
valid in one coordinate frame, e, being a scalar, remains
the same in every coordinate frame. The variation (1.2)
with respect to f yields the equation for the scalar field

This is identical with the equations for the scalar field in
Uacuo given by the theories referred to in Refs. 2—4,8,10,
and 11.

IV. EQUATION OF MOTION

The Einstein tensor being divergenceless, the right-hand
side of Eq. (3.2) is also divergenceless

where 0 is the covariant O'Alembertian.
For

@=const=e,

Eq. (3.1) reduces to

R;J g,J(R/—2)+e,f;f J E,g~j.f kf—' /2=koTJ,, k (3.5)

DJ(ko T J+S'J) =0 .

In general,

DJS'J&0,

therefore also

DJ T'J&0,

(4.1)

(4.2)

(4.3)

which corresponds to the equations from many known
scalar-tensor theories of gravitation. Thus, Eq. (3.5) is
identical with the equations of Tupper and Lindstrom
and, setting e, =—', , e, = —1, with those of Sen and Van-
stone and of Yilmaz. ' The substitution

and the test particle which is moving only in the gravita-
tional field does not in general follow geodesics.

The equation of motion can be deduced from Eq. (4.1).
Following a standard method' one obtains

(d xjldd)+1 I i(dx "/dr)(dx'/d~)+P'~=0, (4.4)
(3.6)

where
in Eq. (3.5) yields the equation of Dicke in the second for-
mulation, " which by a transformation of units leads to
the equation of Brans and Dicke. In Uacuo, the same
substitution (3.6) yields the equation of Dunn and Van
den Bergh. '

With the condition (3.4), Eq. (3.3) becomes

(3.7)

+(u /mckz) f dV~g1"giS '

or, substituting for S

(u =dx /d~), (4.5)

WJ=(mckG) ' f dV~gS J
d~

WJ=(imck )
' f dV~g I

—(V„V")f' f J+ ,'g"J(V„V')f j''"+——,'g JV„[V"(fQ'")]I

+(iu4lmck ) f dV~g I', [(V„V")f'"f' ,' g '(V„V')f J—"—'" —,'g 'V, [V"(fQ—'")]I, (4.6)

where V„ is the covariant derivative. Thus, we can consider that it is a supplementary gravitational force which deviates
the test body from the geodesics. Of course under conditions E this force vanishes.

V. NEWTON'S LAW R4 =(—koc p/2)+(S4 /2) . (5.4)

The existence of the supplementary gravitational force
leads, in the weak-field approximation, to the modifica-
tion of Newton's law. Following the method of Landau, '

one can write Eq. (3.2) in the form

In the weak-field approximation the products of the
Christoffel symbols are of the second order of magnitude.
Furthermore, the terms containing the derivatives with
respect to ct are also negligible. Thus, R44 reduces to

R~ =kG( TJ 5jkT/2)+SJ 5j~—Sl2

where

(5.1)
ar44

R4& —— (a =1,2, 3) .=
ax. (5.5)

S =SJJ .
(5.2)

The only component of g;~ differing from 5,z is

g~ ——(g ) '= —1 —(2U/c ), (5.6)

For slow motion, the four-vector velocity reduces to the
component u, and the tensor T;J reduces to

where U is the Newtonian potential. With U «c we
can write'

T4 = —cp4 2 (5.3) R4 ——g R44 =- —R44 .4 44 (5.7)

where p is the mass density. Then Eq. (5.1) reduces to The calculation of I 44 yields
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«

~gj 4 ~gj4 ~g44

ax
+

ax axj

One can absorb exp(k) and (BA./B«)exp(A, ) into the gravi-
tational "constant"

..ag44
ag gaa

BxJ Bx' (5.8) G =(kgc /8m) 1+«exp(A, ),BA,

Br
(5.18)

(no summation over a).
Introducing I 44 in Eq. (5.5) we obtain and the force takes the form

R44 ——

Bx

g44——,g — =hU/c 2

Bx
(5.9) F= —Gm'm/«+m' , BU

Br
(5.19)

Thus, in view of Eqs. (5.7) and (5.9), Eq. (5.4) becomes However, it is instructive to write

EU=(kgc p/2) —(c S4 /2),
where S4 has the form

S4~= i [(V'—„V")fQ'+(V"/2)(f, ,f')] .

Computing I,', V' we obtain

Bg Bg„„Vs ( rn/2) «" Vs ( rr/2) "" Va

(5.10)

(5.11)

F= —Gm'm/«

+(Gm'm/«) 1 — 1 «—exp(A) +m'BA, , BU
()r Br

(5.20)

with the constant

=(1/c ) V',
Bx

and Eq. (5.10) takes the form

~U —P
Bx

where

(5.12)

(5.13)

G =kgc'/8~.

Thus, the force is of the form

F = —Gm'm /«'+F, .

(5.21)

(5.22)

@=iV'f bf /2,
(5.14)

y=(kgc4p/2)+(ic'/2)[v', f .f' + v'(f ~ "),/2~

Of course, under the conditions E, the part Fz van-
ishes, but Eq. (5.22) gives rise to an interesting possibility.
In view of Eqs. (5.20), (5.14), and (5.16), if U and aX/a«
are positive, then BU/B«and

(kgc p/2) +y .

& solution of Eq. (5.13) for a point paNicle of mass m
can be put into the form'

(Gm'm /«) 1 — 1 —«exp(~)a~
Bf

U = —(kgc /8m)(m/«)exp(k) —U,

with the shorthand notations

(5.15) can be positive, and therefore Fz is positive. Now, we
have not excluded the possibility that under special condi-
tions

g =if,f 'V r /4,
(5.16)

[Fs f
) [Gm'm/«'/

and then a sui generis antigravitation could appear.

(5.23)

(kgc~/8~)(m—'m /«)exp(A, )
Br

+(kgc /8m. )(m'm/«) exp(A, )4
9r

, BU
+Vl

Br
(5.17)

ri =if +'( V Vq )
'~ «/4,

U=exp(g) f (dr)(p/«)exp( —ri)+small term .

The gravitational force on a point particle of mass m'
is then

VI. CONCLUSIONS

The present proposal for a theory of gravitation exhib-
its some features which we consider worthy of attention.
The theory is in full agreement with the experiments per-
formed so far. It reduces to Einstein's theory of gravita-
tion under the conditions in which the theory has been
tested.

The theory comprises several scalar-tensor theories of
gravitation in the sense that the equations of these
theories can be obtained in particular cases. Furthermore,
under special conditions, the present proposal forecasts in-
teresting new aspects of the gravitational phenomena.
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