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We study the cosmology of Kaluza-Klein models and discuss the possibility of obtaining large
amounts of inflation. The exponent that occurs in the inflation factor is simply related to the num-

ber of "extra" dimensions. The number of dimensions should therefore be large (-40). Quantum-

gravity effects are important if the inflation is substantial. However, the appearance of inflation fol-
lows simply from thermodynamic considerations.

I. INTRODUCTION

There has been considerable interest lately in the early
cosmology of Kaluza-Klein models. ' A recent paper by
Sahdev has explored the possibility of inAationary
cosmologies arising in a simple fashion in such models.
The overall aim of such inflationary cosmologies is to
solve the well-known horizon, flatness, oldness, and
monopole problems.

Our analysis is of the same class of models as discussed
in Ref. 2. There are three main points which we wish to
emphasize in this paper concerning such Kaluza-Klein
scenarios. First, to achieve a satisfactory degree of infla-
tion without unacceptably large dimensionless parame-
ters appearing in the initial conditions, a large number of
compact "extra" dimensions is required. Indeed, we will
argue that to achieve the desired inflation factor of order
10 ~ one needs a number of dimensions of order
log(10 ~ ). This result may be regarded either as a grave
drawback or as a rather pretty link between the exponents
in the large numbers of Dirac and the number of extra
Kaluza-Klein dimensions. The second point is that,
whatever the number of dimensions, large inflation im-
plies that much of the inflation occurs in a regime when
quantum gravity is undoubtedly relevant so that simple
classical calculations must be considered as only sugges-
tive. The final point is that, regardless of the second
point but under the conditions of the first point, one can
argue on thermodynamic grounds that a sufficient infla-
tion can almost certainly be achieved even in those cases
where the details of inflation are not classically calculable.

In Sec. II we give a description of the model being con-
sidered. We then sketch some general arguments that im-

ply the existence of an inflationary phase. In Sec. III we
proceed with an analysis of the system using the classical
(Einstein s) equations. As noted in the second point, this
analysis does not apply to cases involving large inflation.
Nevertheless, we believe it is instructive and promotes
some confidence in the general arguments we advance.
Also it is necessary to study the classical description to see
where it breaks down. In Sec. IV we conclude by sum-
marizing our results.

II. THE MODEL

The system that we study is an (n+ 1)-dimensional
universe where there are d=3 ordinary spacelike dimen-
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Here G is the (n + 1)-dimensional gravitational constant
related to Newton's constant G~ by

G= ~aGx= ~a

where VD is the volume of the compact D-dimensional

sions and D extra compact spacelike dimensions,
n =d +D. At the present time, and indeed since times of
the order of the Planck time, one envisions the operation
of some unknown effect that balls up the extra dimensions
with a radius presumably comparable to the Planck
length. This is the assumption one must make in any
Kaluza-Klein model. This unknown mechanism (which
may be some quantum-gravity effect) must give a cosmo-
logical constant of order 1 (in Planck-mass units ) in the
extra dimensions but none in the observed four. However,
in the earlier epoch we are considering, which precedes
the time at which the ordinary cosmological evolution
commences, one must assume that there is a zero (or
negligible) cosmological constant in all dimensions.

For simplicity let us assume that in this primeval epoch
the universe is radiation dominated so that p =pin, where

p is the pressure and p the energy density. This radiation
may be excitations of the metric itself or of explicit
matter or gauge fields. Let us for the moment assume
that a classical description is valid. The geometry is
specified by a line element

ds = dt +r (t)g—,jdx'dxj+R (t)ga&dX'dX

The r and R are the scale factors of the three ordinary
and D extra dimensions, respectively. This is a generali-
zation of the Friedmann-Robertson-Walker form.
Einstein's equations then resolve into three equations for
r(t) and R(t) (not all independent due to the Bianchi
identity and conservation of energy-momentum), with
corresponding constant curvature kd and ka,
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manifold. If this volume is a sphere, it has physical ra-
dius RKK and

2~(D+1)/2
RKK

D+1
2

The parameter kD we scale to + 1. [Thus R is not the
physical radius but, for a sphere, is R =R/(D —I)'~ .]
The parameter kd we assume to be negative, zero, or a
sufficiently small positive number. What we mean by suf-
ficiently small we will discuss later (see Sec. III).

We further assume that, for the period we are interested
in, interactions occur at a rate adequate to maintain
thermal equilibrium. In that case entropy is conserved.
In particular, the entropy S in a volume comoving with
the expansion (contraction) of the universe is constant:

S-r"R T"=const .

For future reference we write that

Tn+ 1 C( dRD) (n+1)i—n
P = pol&n

Here X~,~
is the number of polarization states of the radi-

ation and a„ is the (n +1)-dimension Stefan Boltzmann
constant given by

&=0
t=o

tt=tt=t,
FIG. 1. The behavior of the scale factors of the ordinary (r)

and extra (R) dimensions as a function of time. As toto, R
goes to zero and r blows up. At t =t, & to(v =~, ) some (quan-
tum?} effect stabilizes R at R~K and henceforth, r expands in
the usual FRW way.

Cln

n+1nI g(n +1)
2

~(n+ &)/2

C is just a ( n-dependent) constant defined by Eq. (6).
Now there are two ways to look at the model we have

presented. One may examine solutions to the classical
equations [Eqs. (2)] or one may make thermodynamic ar-
guments. The former strategy has the advantage of per-
mitting a more detailed treatment. However, we shall see
in Sec. III that the classical equations are not to be trusted
in the most interesting cases. The thermodynamic argu-
ment is more general and powerful, and we present it first.

The general behavior of r (t) and R (t) is as depicted in
Fig. 1. We wish to have all of the dimensions start off
with a "big bang. " Perhaps this should be called the
"first big bang. "From this point both r and R expand. If
kd is negative, zero, or positive but sufficiently small,
then r(t) behaves in an "open" manner as we shall see in
Sec. III. R (t), however, reaches a maximum and begins
to recollapse. As we shall argue, this collapse of R(t)
drives a rapid inflation of r(t). Ultimately, R will reach
some minimum value which we call the Kaluza-Klein ra-
dius, RqK. At that point quantum-gravity effects are as-
sumed to stabilize R. From that time until the present
R =RKK. After that time, which we call the collapse
time t„ the ordinary dimensions enter a Robertson-
%'alker phase and expand as t' . Since we aim to
achieve inflation from the collapse of R, we assume that
no other significant inflations, coming from phase transi-
tions or other mechanisms, disturb the Robertson-%'alker
expansion after R has collapsed.

Now what are the goals of inflationary cosmologies'?
Essentially they are three: (1) to achieve a huge ( —10 ~

)

R =R(t )-r(t )-t
Thus the entropy in a causal volume is

S-(t )"T"-(RT)"i,

(8a)

(8b)

This must be at least of order 10 . (Remember we have
assumed that entropy is conserved. ) Thus, there are two
possibilities. The first is that n is small and RT is huge
initially. For example, with n=11 we need R~ T~ —10,
or with n =6, R T~ —10' . But this does not satisfy goal
(3) which was to avoid introducing huge (or tiny) dimen-
sionless parameters into the initial conditions. Far prefer-

inflation of the scale factor r (t) in a short period of time
so as to solve the horizon problem, (2) to generate the
huge entropy we now see (in the form of the 10 black-
body photons within our horizon) within a causal volume
at some early time, and (3) to do all of this without having
to tune fundamental dimensionless parameters appearing
in. the initial conditions to be either very large or very
small (e.g., 10+ss or 10 ). We might call these the in-
flation, the entropy, and the fine-tuning aspects of the
problem.

As we shall see in Sec. III, the rapid inflation of r be-
gins at about the time that R achieves its maximum
(which we call t )The rap. id inflation stops at the col-
lapse time t, . It is convenient then to specify "initial"
conditions at t~. Goal (2) above tells us that at t~ we
want to have an entropy of order 10 (or larger) within a
causal volume. This causal volume is, at that time, an n-
dkmensional volume with radius of order t . It is not
hard to see from Einstein s equations (which are valid at
t~ ), and we will show it in Sec. III [see Eqs. (17)], that
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able is to have D (and n) relatively large. Then
(R~T )-10 " can be of reasonable scale. With n of
order 40 we need not introduce any numbers greater than
about 100 into the initial conditions.

A further desirable requirement is that T & 1. Other-
wise we would expect to have gravity coupling very
strongly to thermal energy and the metric fluctuating
wildly. Gn the other hand, we do not want T to be ex-

tremely small for the usual reason of avoiding unnaturally
fine adjustments. (For confirmation that this situation
can, in fact, be arranged see the discussion below. )

To repeat, our point of view is that the second goal of
inflation —to have a huge (& 10 ) entropy within a causal
volume at early times —is best achieved by having a
reasonable temperature T~ (and thus a reasonable entropy
density) but an enormous causal volume at t This. enor-

mous causal volume can be achieved by having a large
number -40 dimensions and a reasonable value of R (t~ ).
In this way the third goal, that no fundamental parame-

I

ters be initially huge, is also achieved. (We regard R as
more fundamental than R . )

Now the crucial question is whether goal (1), a huge
and rapid inflation of r, can be achieved in models which
satisfy the above constraints. The answer is yes and, in
fact, achievement of goal (1) follows quite naturally when
the other goals are also achieved. In Sec. III we will show
this to be the case assuming that quantum effects are ig-
norable. However, the following thermodynamic argu-
ment suggests that a large inflation is generally present in
such scenarios.

Let us consider two times. At an initial time t;, the
universe is effectively n dimensional (T~R; &1). At the
final state t~, R has reached its minimum RKK & 1 and
has decoupled ( TfR«& 1) so that the universe is effec-
tively three dimensional. At both times we assume
thermal equilibrium. If entropy is conserved between
these two times, then, setting the entropy in a comoving
volume at t; and t~ equal, we find

(r 3R DT n)N(3+D) 4+D V
I I l p01 3+g) 3+D

KK
=(rf Tf )N~&( —, )a3 —10 (9a)

where the last step follows from assuming that goal (2) has been achieved at t; =t~. Thus, using Eq. (8), we have
1/3

rf T; n&3 N~i+ ( VD/R ~K )[(D +3)/(D +4)]a3+D
(R, T, ) "

ri ~f

T- va &&10""
D g&3 Ty

We have assumed that T; & 1 and, since we have assumed
that at the final time things have cooled enough so that
the universe looks three dimensional, we also know that

Tf & 1 /R «& 1. Thus, within the interval of time be-

tween t and t~, an inflation in r of order ) 10 must
have occurred. In fact that is the amount of inflation re-

quired to solve the horizon problem. If entropy is gen-
erated during the inflationary phase, then our reasoning
suggests an even larger inflation of r.

We see then that the Kaluza-K1ein extra dimensions

play a crucial role in two ways. First, for D large (but not
exponentially large), they allow an enormous volume (and
thus an enormous entropy) within a not very large radius,
thus "solving" the (exponentially) large-number puzzle.
Second, their contraction drives a huge inflation of r as

we were able to show from purely thermodynamic argu-
ments. In Sec. III we will put flesh on these bare bones
and confirm our faith in our arguments by working out
the essential features of the solutions to Einstein's equa-
tions.

III. EINSTEIN'S EQUATIONS

Gur course in this section will be, first, to deduce cer-
tain general features of the solutions of Eqs. (2) without
actually solving them. Second, we will perform a quanti-
tative but approximate study of these solutions, and con-
firm [at least to the extent that we may trust Eqs. (2)] the

(9b)

l

validity of our foregoing analysis. Finally, we will deter-
mine where one might expect the classical treatment to
break down.

Let us first assume that kd &0 in Eq. (2b). Then we
may easily demonstrate two things. (a) If r and R com-
mence in a big bang, r will continue to increase monotoni-
cally rather than recollapsing. (b) When r recollapses to-
ward its minimum value, r is driven to expand rapidly.

We may prove (a) by contradiction. Suppose r expand-
ed and reached a maximum and recollapsed. At its imag-
ined maximum we have r=0 and r &0. Looking at Eq.
(2b) in this case we see

8~Gp+d—=
r~ r

that the left-hand side is negative while the right-hand
side is positive (k~&0, p&0). So r never turns over.
Similarly we may prove (b) from Eq. (2b). Define to to be
the time when R would recollapse to zero were quantum-
gravity effects not to supervene. %"e assume that R
behaves, to leading order, like a power of (to t) for-
t~to from below. As R~O near to it is clear that
R/R~ —00. Further we showed in proving (a) above
that r/r&0. Thus the term D(R/R)(r/r) on the left-
hand side of Eq. (2b) is driven to —ao. Since k~ &0, and
the right-hand side of Eq. (2b) is positive, it must be that
either (i /r) or r/r (or both) goes to + ao as t +to. Thus—
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m= r~ZD, (10a)

which satisfies the equation [Eq. (2b) times d plus (2c)
times D]

'2

8 GC~—{g+1)/n
dt

D
(10b)

In this equation and the subsequent discussion we have
taken k~ ——0. We are interested here in the behavior of P
in the limit P —+0. For the parameter values of interest
the final, curvature term in Eq. (10b) is always negligible
in this limit. There are thus two further possibilities: (1)
the term Sn.GP '"+"~" is important in this limit; (2) it is
not important in this limit. In the former case it follows
immediately from Eq. (10b) that, for P behaving as a
power of r as t~0, it must be true that

~—{n+1)/n t —2

r~0
(1 la)

r also behaves in leading order as a power of (ta r—) and
it must be that r itself tends to + ~, i.e., it must behave
as a negative power of (ta t—) T. hus we see that it is the

coupling of r and R through the term D(r'/r)(R/R) and
the collapse of R that may be said to drive the inflation of
r.

The above discussion assumed that k~ (0. In fact, the
solution may look like Fig. 1 for a certain range of posi-
tive values of k~. This will be discussed later.

Now we wish to make quantitative statements. An ex-
act analytic solution of Eqs. (2) and (6) is not possible ex-

cept in very special cases which are not realistic.
Nevertheless, we can extract useful information about the
solution by a systematic approximation. The equations
are simple to solve by an expansion about the points t=O
and t =to. The interesting physics occurs near the latter
point. But we wish for completeness to study also the
structure near the former point. Therefore we will expand
the solutions about both points.

To see the general structure of the solutions it is useful
to define the effective volume element

A. The solution near t=0

Again we are treating the case k~ ——0. %e will see
below how far this may be relaxed. At the first big bang
we may write

R(t)=At (1+A'r'+ . ) (13a)

and

r(t)=at~(1+a'r'+ . . ) . (13b)

In fact, for k~ ——0, a is an arbitrary scale of no physical
relevance. From Eqs. (10), (11),and (13) it follows that

aD+ jdd =
71+1

and that

8 GC(A D d) (n —+1)/n

(n +1)
Using these relations in Eq. (2a) yields

2

Pl+1

(14b)

(15)

Thus near the first big bang we have r, R -r ~'"+", i.e.,
both r and R vanish at t=O explaining the identification
of case (1) with the big bang. It is easy to check from
Eqs. (2) and (6) that the curvature term 1/R is of higher
order than the derivative terms [(r'/r), etc.] and the den-
sity terms which both go as t . Thus the density term is
important and the curvature term is not as t —+0 as is re-
quired to use the results of case (1) above [i.e., Eq. (11)].
The first subleading terms in Eq. (13) account for the ef-
fects of the curvature (1/R ) term which tends to turn R
over. By substituting Eqs. (13) into Eqs. (2) and matching
subleading terms one can solve for 5, A', and a' in terms
of A to find, in the limit of large D,

r

Pl —1 26=2 =2 1 ——
n+1 D

t2n/(n+1)
g~O

(1 lb)

1 1 1+0
12 D

(16b)

In the second case, where both terms on the right-hand
side of Eq. (10b) are to be ignored, it is even easier to
solve. For reasons which will be clear shortly, it is useful
to define the independent variable to be r We find im-.
mediately that

oc
g~Q

The two possible behaviors illustrated by Eqs. (11) and
(12) are exactly those of interest here. The limit t~O is
identified with the approach (backwards in time) to the
big bang, while ~=(t0 —t)~0 is identified with the (for-
ward) approach to the time when R collapses. Note the
distinction that for t~0 the leading behavior includes the
influence of the density term but not the curvature term
while for ~—+0 neither term is important to the leading
behavior. We now study each case in more detail.

1
Q ~+ (16c)

I /2

A 1+2/D 12
tm—

D
(17a)

Since we desire D to be large for the reasons given in Sec.
II, we will neglect terms of order 1/D (except when they
will later be multiplied by D). Note that the fact that
both 2' and a' are nonzero serves as an a posteriori justi-
ficatio for using the same subleading power (5) in both
R and r. The time t~ when R turns over is estimated
simply by setting R=O in the two-term approximate ex-
pression obtained above. Thus, from Eqs. (13) and (16) we
find
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" 1/D
12

m— D
(17b)

Sm.GC

&(&+ 1 )(BDb d)(n + }}/n

and
2n

(n + 1) (2n —1)

-D - -d- (n+1~/n
a

8 b
(21)

ar = —R (17c) where Eq. (14b) was used in the final step. We find

B. The solution near t =to
B'= —— a = —+ —(ri —y)

1 e+g 1 d
D y —q n n —1

The solution near the point t =to is more subtle. As
above we define r=(to t) a—nd expand in powers of r.
Thus, we write for r near 0

R(r)=Br'(1+B r'+ . ),
r(r) =br"(1+b'r'+ . ) . (18b)

Thus, from Eqs. (2a), (12), and (18) it follows that

(19a)

Dy(y 1)+dr)(—ri —1)=0, (19b)

so that

1+[(d /D)(n —1)]'~ 1+V d 1+V 3

n D»1 D D

(19c)

1 —[(D/d)(n —1)]' 1 1
'9=

n D» i V d W3

(19d)

(20)

Again we can easily cheek that the derivative terms in Eq.
(2) go as r to leading order. Thus both 1/R and p go
as less negative powers of ~. Thus, to leading order in
1/r, one may solve Eqs. (2) keeping only derivative terms
as we did in case (2) to find Eq. (12). The important
feature of these solutions is that y) 0 while g (0 so that
for ~~0, R —+0 while r —+ac. This explains the identifi-
cation of this situation with the collapse scenario and the
identification with the corresponding solutions [R (t) and
r (t)] near t=O in Sec. III A.

The subtlety of this regime arises in determining the
next to leading-t-erms. Whether p or 1/R is next most
important after the derivative terms depends on the num-

ber of dimensions. For large D the p term is more impor-
tant than 1/R . This is the case of interest to us. Re-
turning to Eq. (10) to match the subleading power in
P ( —r' ) to the behavior of the density term

("+ }~"),we find

b'= — a = —+ (y —ri) }c .e+y 1 D
d y —q n n —1

(22b)

12 v d (~d —1)
D d+1

1/2~dd+1
vd —1

(24b)

and thus, from Eq. (21), we have

1 D i/d+1
A 12

Again the fact that b' and B' are both nonzero justifies
the use of identical subleading powers for both R and r in
Eq. {18). Note the remarkable feature that B' is negative
similarly to 2' in the case near t=0 except that in the
present approximate solution the effect of the curvature
term has not been included.

To explicitly connect the solutions [Eq. (18)) for r near
0 to those appropriate to t near 0 [Eq. (13)] is nontrivial at
the present level of approximation. One might attempt,
for example, to simply match the two sets of solutions at
some intermediate point such as t~ [defined by dR /dt=O
as in Eq. (17)] taken to correspond to r (defined by
dR/dr=0). The difficulty with this procedure is simply
that for r near r~ it is not true that the curvature term
can be ignored (e.g., the equations for R do not allow

R =0 if kD ——0). However, it is true that our two-term ap-
proximate solution does exhibit a zero derivative at a fi-
nite r which offers at least a crude approximation to the
actual point of maximum.

While factors of order 2 are surely introduced in such
an approximation, they will be irrelevant in what follows.
Thus we define r as the point where the two-term ap-
proximation has zero derivative and find, in the limit of
large D,

i d+1 —((+im}
rm —~

Identifying this point with ro —r and matching the two
solutions yields, again in the limit of large D,

(24a)

Then, using Eqs. (2a) and (10) (but ignoring the curvature
terin), one may solve for B' and b' in terms of the quanti-

ty

0+1
vd(vd —1)

d/2 & 1+1/D
(24c)
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C. Inflation

—T(t) &&10 "/ (25)

assuming (rT) —10 . Hence, if the end of inflation is
marked, for example, by temperatures of order 10, we
must require r(t)/t to be of order 10 / at this time (a
factor we recall from our earlier discussion). Thus the
horizon problem is treated satisfactorily, in the present
scheme, if the inflation of r (due to the collapse of R) car-
ries us rapidly from a time t) when r (t) )/t) —1 (i.e.,r de-
scribes an initially causal volume) to a time t2 when
r(t2)/t2-10 and T(t2)-10 . With our present ap-
proximation scheme the quantity r(t)/t is difficult to

To examine the inflation of r let us look at Fig. 2,
where lnr is plotted versus lnt. Near the first big bang
this line has slope 2/(n+ 1) as indicated in Eq. (15).
Near t=t~ (~=~~ ) the scale factor r begins to inflate rap-
idly. This is shown as an almost vertical segment on the
ln-ln plot. When t =t, {~=r,=to t,—), R reaches its fi-
nal and minimum value and the inflation of r ends (see
later discussion). If, by that time, T & 1/RKx the modes
in the extra dimensions will have de-excited and a normal
Robertson-Walker expansion will commence with r —t '

Thus the curve in Fig. 2 will have slope —,
'

(changing to —',
when matter later begins to dominate). This picture is
somewhat modified if de-excitation occurs after the col-
lapse time t, as is discussed later. As noted earlier, if
kd ——0 the overall scale of r is arbitrary. We have chosen
to normalize it in Fig. 2 so that it is presently equal to the
size of our observable universe. Thus the line of unit
slope in Fig. 2 (which is just a plot of lnt) intersects lnr (t)
when t equals the present age of the universe.

In order to consider the horizon problem, to which we
now turn, the crucial quantity is r (t)/t at the time when
inflation ceases and normal FRW expansion commences.
As indicated in the figure, if we simply calculate back-
ward from the present time (ignoring for simplicity the
distinction between the matter and radiation-dominated
regimes), we find, in our units

(26)

From Eq. (18), r, is (well) determined (for small ~, ) by
our approximate solution to be

a/(i+~a )
KK KK

8 a»a 8 (27a)

which is much less than unity for 8 & Rzz. In the same
approximation we have

&KK
r(v, )=b

—D/(4+~& )
KK

8 (27b)

For the larger ~ we use the same notation but keep the
subleading terms [and use Eq. (23)j to find

1/y

{1+8'r' )-'/r&m
+m— 8

' a/()+v d ) D/(Md +1)
1—

D
(28a)

and

&mr(r )=b (1+B'r' ) " )'(1+b'v' )

~m-b 8
D/(d +v d )

'— ' &/(d +)/d )d+1
D

study directly in the region ~—+0 because we cannot evalu-
ate to quantitatively, and thus cannot specify the relation-
ship between t and ~ quantitatively. However, since r is
varying rapidly compared to t in this region (as ~~0
r -v" while t~to r—- to ) and since we are concerned
with factors of order 10 not of order 2 (or even of order
10), we can set t2-t) -r (t) ) [but not, in the same approx-
imation, r (t2) -r(t) ) and not w2-r)]. Then we can iden-
tify r) (i.e., 7)) with the r discussed above and t2 (i.e.,
r2) with ~, . We expect all these operations to be good to
factors of 2. Thus we focus on what we call the inflation
factor, W, defined as

8+1
()t —v d

(28b)

I

Cn t I' n now (n t

FIG. 2. A plot of Inr versus lnt. Before t =t, we have
r-t '"+". Between t and t„r increases rapidly. After t„
r —t '/ (until matter dominates). The inflation factor is
r(t, )jt„denoted W.

Combining these results we find for D »d,
D/(8+~d )

1/v de
&KK d+1

D/(d +~4 )

(29)
KK

which is required to be of order 10 . Thus this
Kaluza-Klein scenario offers an explanation of the hor-
izon problem as long as R /RKK, which is essentially
just E. measured in units of the Planck length, is of or-
der 10 . This is just the constraint (for T —1/RzK & 1)
of Eq. (8) which was required in order to obtain the
desired entropy and thus yields the required inflation as
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already argued on thermodynamics grounds in Eq. (9).
The large inflation is again seen to arise from the large
volume in the extra dimensions at early times.

Now we are in a position to see why the classical equa-
tions cannot be used when there is a great deal of infla-
tion. As is apparent from Eqs. (27), (28), and (29) the
huge inflation stems primarily from the small size of r,
In fact, we can write

—1/~d
C

m

and then use the order-of-magnitude (or two) relations
-R -R~~W'd+~d '/D to find, in the usual units,

~d+vd )/D~ ~d ~—vd & 10—88/~3 (31)

Mp,
-

I

Mp) = I

I I

C

4

I
I

I
I

I

&=0
tp

Remember that this is in units of the Planck time. At
those times (i /r) -(R /R ) —1/r . With frequency com-
ponents of order 1/r, ) 10ss/ 3 being excited it is reason-
able to expect that quantum-gravity effects ought to be
important. We believe one should not trust Einstein's
equations for r less than 1. By that time there has still
been relatively little inflation. In fact, almost all of the in-
fiation occurs when quantum-gravity effects can be ex-
pected to be important, so that we cannot calculate reli-
ably. Notwithstanding this difficulty, let us pursue the
classical description further.

One aspect that we have glossed over is the de-
excitation of the modes in the extra dimensions. This
occurs roughly when T falls below 1/R. After this hap-
pens the equation of state drastically changes. The pres-
sure in the extra dimensions drops from p/n to nearly
zero. The pressure in the ordinary dimensions goes to p/3
(assuming equilibrium). We should here emphasize that
even if de-excitation occurs before t„while E is still col-
lapsing, nevertheless inflation will continue until t, . The
point is that for ~=0 the curvature and density terms in
Einstein's equations are not as important as the derivative
terms. Even if the equation of state changes late in the
collapse of R, the leading behavior of r and R, as given in
Eqs. (18) and (19), will be unaltered until R stabilizes

around RzK and R becomes negligible.
In principle there are two cases to consider in which the

de-excitation time td is greater or less than the collapse
time t, . In practice, however, de-excitation will presum-
ably occur over some finite span of time rather than in-
stantaneously and, since quantum effects can be expected
to be important here, we will not discuss the two cases in
great detail. Note also that the assumption that thermo-
dynamic equilibrium is maintained is unlikely to be valid
when W is large.

Case I (td &r, ). Figure 3(a) exhibits the idealized
behavior of T and 1/R versus t for this case. Assuming
equilibrium we see that the temperature peaks at td.
From Eqs. (6) and (10a), T behaves as P '/", so from
Eq. (12) it follows that, for r~0, T behaves as r
Once de-excitation has occurred the radiation becomes ef-
fectively three dimensional and red-shifts rapidly while r
continues to inflate. Ordinary evolution proceeds after ~, .

Case II (td ) r, ). Idealized behavior for this case is il-
lustrated in Fig. 3(b). The radiation is still effectively n

dimensional when 8 stabilizes at RKK and the inflation
of r ceases. Thereafter from Eq. (6)
T-(r R ) ' "-r " ". Hence T starts to decrease after

t, . In this case RT& 1 at t =t, and decreases subsequent-

ly. By the time RT is of order unity de-excitation has oc-
curred and ordinary cosmological evolution proceeds.

There is one more point to be discussed and that is the
size of kd. Let us assume kd &0. How small must kd be?
Or, equivalently, if kd is normalized to unity how big
must r be, where r now has physical significance, i.e., the
"size" of the three-dimensional universe? If r is not to
recollapse with R, we must have, at least, that kdlr is
unimportant compared to 8mGp/n at t =r . Then [see
Eq. (14b)] we require

2n (n —1) 1
&8nGp/n=

r (t~) (n+1)' t ' (32)

or

r(t )&t
But at t we have R -t [see Eqs. (17)]. Thus the
necessary condition is that (r/R) be greater than unity at
t . This seems not unreasonable. The bound in Eq. (33)
just says that the "physical size" of the ordinary three-
dimensional universe is larger than a horizon at tm. From
Fig. 2 this can be seen to imply the statement that the size
of the universe is larger than the horizon now. This is a

(33)

I

z=Q

tc t =to

FIG. 3. A plot of 1/R and T versus t. (a) Decoupling before
the collapse time t, . The temperature peaks at the decoupling
time. (b) Decoupling after the collapse time t, . The tempera-
ture peaks at the collapse time.
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fact we already know of course. So there is no interesting
constraint on kd.

IV. CONCLUSIONS

We have argued that, because of the presence of the ex-

tra Kaluza-Klein dimensions, it is possible to achieve a
large (10 ) entropy at early times ( t = t~ ) within a causal
volume without the introduction of absurdly large (10 )

numbers as fundamental parameters as long as the num-
ber of extra dimensions is -40. In this case the large en-

tropy is present at t =t (when the extra dimensions have
maximum size) due to the huge volume of the compact
space which is characterized by (R ) . Thus with D-40
the required large volume —10 requires only a R~
—10 . In this way we explain the mysterious large num-

bers of Dirac by relating their exponents to the number of
extra dimensions. Then from thermodynamics alone (the
conservation of entropy) we argued that the inflation of
the scale size of ordinary space is just such as to ensure
that the universe inside the present horizon was inside a
causal volume also at an earlier time. Thus a number of
extra dimensions of -40 offers an explanation of the en-

tropy, inflation, and fine-tuning problems mentioned ear-
lier. Detailed analytic (but approximate) calculations us-
ing Einstein s equations support this conclusion, though
we expect the thermodynamic argument to be generally

valid and Einstein's equations not to be valid in the cases
of real interest.

We should emphasize that there are serious uncertain-
ties arising from the fact that in these models there is an
epoch where quantum-gravity effects are important. For
instance, this situation makes it difficult to say anything
definite about expansion rates during the period in which
most of the inflation occurs. This in turn raises questions
concerning the details of the matter spectrum and the re-
turn to equilibrium after inflation ends. Furthermore, we
can say little about the maintenance of homogeneity dur-
ing inflation (since quantum fluctuations are presumably
large). This is important as a prime goal of inflation is to
explain the large-scale homogeneity of the universe.
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