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The Gauss-Codazzi formalism is used to obtain exact solutions to Einstein s equations in the pres-

ence of domain walls. Domain walls are shown to have repulsive gravitational fields. The most

general solution to Einstein s equations for a planar domain wall is obtained. Also, the motion of a
spherical domain wall in an asymptotically flat space-time is derived.

I. INTRODUCTION

Recent investigations in cosmology have focused in a
special way on the role of particle physics in the evolution
of the Universe into its presently observed state. Particle
theories suggest that phase transitions of various kinds
occur in the early Universe and produce important effects
that until fairly recently, had been largely ignored. In the
"inflationary Universe" cosmology, ' for example, an early
phase transition fills the Universe with a false vacuum for
awhile, causing an exponential de Sitter-type expansion
until the true vacuum takes over, and thereby providing a
possible solution to the horizon and flatness problems of
the standard cosmological model. Phase transitions can
also give birth to solitonlike structures such as monopoles,
strings, and domain walls.

Within the context of general relativity, domain walls

are immediately recognizable as especially unusual and in-

teresting sources of gravity. As was pointed out by
Zel'dovich, Kobzarev, and Okun, the stress-energy of
domain walls is composed of surface energy density and

strong tension in two spatial directions, with the magni-
tude of the tension equal to that of the surface energy
density. This is interesting because there are several indi-

cations that tension acts as a repulsive source of gravity in
general relativity, whereas pressure is attractive. This is
evident, for example, from the Raychaudhuri equation re-

lating the expansion of geodesic congruences to the local
stress-energy and from the way the pressure of spherical
stellar models appears in the relativistic equations govern-

ing their structure. It is also implied by the fact that a
domain-wall-dominated Universe expands like R —t,
where 8 is the cosmological scale parameter and t is
cosmological time. The question thus arises whether
domain walls exhibit repulsive gravitational fields, and, if
yes, what are the implications thereof.

Vilenkin addressed this question by linearizing
Einstein s equations (weak-field approximation) in the
presence of a plane static wall. He found that the linear-
ized equations admit static solutions, and that these do
indeed correspond to repulsive gravitational fields. As
Vilenkin pointed out, however, the static solutions to the
linearized equations do not properly match up to the
known general exact static solution with planar symmetry,
except for the special case ~= „cr, where r and—o are,

respectively, the tension and the surface energy density of
the wall (for a domain wall, r= cr). It appears that, unless
r= —,cr, the weak-field approximation of Einstein s equa-

tions has static solutions to which no static solution of the
exact Einstein equations corresponds. This results in
some uncertainty as to how to interpret the solutions to
the linearized equations.

In this paper, we address the questions raised above by
finding exact solutions to Einstein s equations in the pres-
ence of domain walls. We use the Gauss-Codazzi formal-
ism for describing the geometry of surfaces embedded in
higher-dimensional curved spaces (Sec. II). From the
Gauss-Codazzi equations we derive an unambiguous
answer to the question whether and in what sense domain
walls have repulsive gravitational fields: for an observer
to ride along next to a domain wall, he must fire a rocket
away from the wall (or use some other means to balance
the wall's repulsion), or the wall must accelerate toward
him, or both. In Sec. III, we derive the motion of a spher-
ical domain wall in an asymptotically flat space-time. We
find that such a wa11 always collapses to a black hole, and
that it is always attractive to a distant observer. This
latter property is not inconsistent with the repulsive char-
acter of domain walls because the spherical domain wall
accelerates towards its center, thereby increasing its
separation from an initially comoving external geodesic
observer. In Sec. IV, we consider "planar" walls, i.e.,
walls which are homogeneous and isotropic in their two
spacelike directions. We show that there are no
reflection-symmetric static solutions to Einstein s equa-
tions for a planar wall unless ~= —,

' o. Next we derive the
most general reflection-symmetric solution to Einstein s

equations for a planar domain wall (r=o). We isolate
and analyze in detail the unique solution which is free of
curvature singularities. It corresponds to a uniform gravi-
tational field in which observers on either side are repelled

by the wall with constant acceleration 2~6&o., where 6&
is Newton's gravitational constant. Finally, in Sec. V, we
discuss our results and draw some conclusions.

Throughout, we adopt the convention in which the
space-time metric has signature —+ + +.

II. THE GAUSS-CODAZZI FORMALISM

%e wish to solve Einstein's equations in the presence of
stress-energy sources confined to three-dimensional time-
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like hypersurfaces (infinitesimally thin shells of stress-
energy). Following Israel, we shall use the Gauss-
Codazzi formalism, which greatly streamlines the forrnu-
lation of the problem.

A. The equations

Let S denote a three-dimensional timelike hypersurface
containing stress-energy and let P be its unit spacelike
normal ((a/=+ 1). The three-metric intrinsic to the hy-
persurface S is

R+(saba' m—)= —16&6' [S,bS' ——,'(S, ') ] .

(2.8d)

The following form a complete set of equations to solve
Einstein's equations in the presence of a thin wall: (1)
Einstein's equations off S. (2) Equations (2.6) and (2.8),
and continuity of the metric g,b across S. (3) A suitable
description of the matter on S, such as Eq. (2.9) below,
augmented by an equation of state. (4) Initial data.

hab =gab —gakb (2.1)

where g,b is the four-metric of space-time. Let V, denote
the covariant derivative associated with g,b and let

B. The surface stress-energy tensor

We shall restrict our attention to sources for which

=ouau" —g(h b+u ub), (2.9)

Da =~a'~b .

The extrinsic curvature ~,b of S is then defined by

~ab =Dagb ~ba

(2.2)

(2.3)

In terms of the extrinsic curvature, the contracted forms
of the first and second Gauss-Codazzi equations are

R +~,bm vr =——26,bing

h bDc~ Dam'=G—bch aP .

(2.4a)

(2.4b)

Vab =~+ah ~—ab (2.5a)

Here R is the Ricci scalar curva, ture of the three-
geometry h,b of S, ~=a, and 6, is the Einstein tensor
in four-dimensional space-time.

» the situations of interest to us, the stress-energy ten-
sor T,b of four-dimensional space-time has a 5-function
singularity on S. This implies that the extrinsic curvature
m.,b has a jump discontinuity across S, since m.,b is analo-
gous to the gradient of the Newtonian gravitational poten-
tial. Hence, one is led to introduce on S

S' = —oh' (2.10)

Since (h' )=diag( —1, +1,+1,0) in the local frame of
any observer moving within the surface, it is clear that all
such observers measure the same surface energy density
and tension-. Motion parallel to a (pure) domain wall is
undetectable.

For the choice (2.9), the conservation equation (2.8a) be-

comes

(o ~)hacu D—bu'+u, Db[(o~)u ] .—h, Db~ —0. ——
(2.11)

The parts of this equation parallel to and perpendicular to
u' are, respectively,

where u' is the four-velocity of any observer whose world
line lies within S and who sees no energy flux in his local
frame, and where o and r are, respectively, the surface en-

ergy density (energy per unit area) and tension measured

by that observer. For a dust wall, ~=0. For a domain
wall, &=0 and hence

and

S,b= dl T,b (2 5b) and

Db(au ) ~Dbu =0 (2.12a)

where I is the proper distance through S in the direction
of the normal P, and where the subscripts + refer to
values just off the surface on the side determined by the
direction of +P. Using Einstein s and the Gauss-Codazzi
equations, one can show that (cf. Refs. 4 and 6)

—1
Sab (1 ab hab Yc

8mG~

One also introduces

(2.6)

nab =
2 (7r+ab +1r ab ) (2.7)

Then, by virtue of Eq. (2.6), the sums and differences of
Eq. (2.4) on opposite sides of S yield in Uacuo (i.e., if T,b
vanishes off S)

(h, +u, u )Db~ (o ~)h«u—Dbu'. (2.12b)

C. Attractive energy and repulsive tension

Particularly useful combinations of the equations of
Sec. II A involve the accelerations of observers who hover
just off S on either side. Let the vector field u' be ex-
tended off S in a smooth fashion. The acceleration

u'V, u =(h, +g g, )u'V, u'

It follows immediately that for domain walls (r=o), cr is
a constant, i.e., o. has the same value at all events on the
three-dimensional timelike surface S. Whereas for dust
walls (~=0), we have Db(ou )=0, which states that the
total amount of dust is conserved.

ha~DbS =0, (2.8a) =h, u'D, u' —g u'u'm;, (2.13)

ha, DbF ' —Da& =0,

~,bS' =0,
(2.8b)

(2.8c)

has a jump discontinuity across S since m„has such a
discontinuity. The perpendicular components of the ac-
celerations of observers hovering just off S on either side
satisfy [using Eq. (2.8c)]
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kbu V u
i + —kbu V~u

I

= —u u 1 &b

4~—GJv u'u b(h, bS ~ 2S—,b )

=4~G~(o2r. —) . (2.14b)

The covariant equation (2.14b) states an interesting gen-
eral result about the gravitational properties of walls.
Consider first the case of a plane wall with reflection sym-
metry. In that case

gbu~v. u ~+ — gbu—V.u
~

—2~G„(a—2r) . (2.15)

It follows that an observer who wishes to remain station-
ary next to the wall must accelerate away from the wall if
(o —2r) ~ 0, and towards it if (o —2r) & 0. In this sense, a
wall is attractive or repulsive depending on whether o.—2~
is positive or negative. To hover next to a dust wall, one
should fire a jet engine whose thrust per unit mass is

I

gbu'V, u ~++kobu'V, u
~

= 2—u'ubp, b

= —2—(It' +u'ub)p

(2.14a)

2m.G&o. away from the wall, whereas to hover next to a
domain wall, one should fire a jet engine whose thrust per
unit mass is 2mG~cr towards the domain wall. Of course,
if the wall itself is being accelerated, only the difference of
the accelerations of the observers hovering on either side
is a measure of the wall's gravitational pull or push. And
that is precisely what Eq. (2.14b) expresses.

III. SPHERICAL WALLS

In this section we shall obtain the asymptotically flat
solutions to Einstein's equations for spherically symmetric
domain walls. For as long as possible, we shall proceed
without specifying the relationship between o. and r. Our
analysis closely parallels that of Israel, who obtained the
solutions for dust walls.

For a spherical shell of stress-energy, let the unit nor-
mal P point in the outward radial direction. It is well
known that asymptotic flatness and spherical symmetry
require the exterior geometry to be Schwarzschild,
whereas the interior geometry is flat (Birkhoff's theorem).
Hence,

2G~M dt+ I—
r

dr +r (d0 +sin Hdg ) for r ~R(t)

(ds ) = e&"~gt +e —&"'dr +r (dg +sin gdy )

1

2G~M
1 (3.1a)

(ds ) = dT +dr +r—(do +sin Odg ) for r ~R(t) . (3.1b)

Here M is the mass as measured by a distant external ob-
server and

r

G~M
gbu'V, u + ———R+

R
r =R(t) (3.2) (3.6)

is the equation of the wall. One finds for the components
of u' and P (a =t or T, r, 8, P, in that order)

(u'~) ={e "P,R,O, O), {u' ) =(a,R,O, O),

b'u,Vu( b= —R.
CX

Substitution into Eq. (2.14) then yields the equations of
motion

(P+)=(e R,P, O, O), (P )=(R,a, 0,0) .
(3.3) (a+P)R =—aGyM 2r ap(a+p)

o. R
(3.7a)

26~MP—:e "t= 1— +R
R

1/2
(3.4)

These expressions and the definitions (2.2), (2.3), and (2.7)
imply that

Here a dot denotes a derivative with respect to proper
time of an observer moving with four-velocity u' at the
wall, and

a=T=(1+R )'r

nG~M
(a —P)R =—

R
+4rrGp(cr 2r)aP . . —(3.7b)

~ 2 1/2 26~M ~ 2M= —, (1+R )'~'+ 1— +R
R

1/2

4mo.R

(3.&)

Equation (3.7a) tells us that R is always negative if r) 0.
Hence, a spherical wall with ~&0 always collapses to a
black hole, regardless of its size. Another result is the ex-
pression for the mass

(h' +u'u )K,b ——(g+"+g ")—,r (3.5)
~ ~

obtained by eliminating R from Eq. (3.7). This expression
implies that, independently of the value of ~, the mass M
is positive definite (because cr is always positive), and
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hence a distant observer is always attracted by the spheri-
cal domain mall.

By Birkhoff's theorem, M is a constant. Consequently,
if the conservation laws (2.12) can be solved for cr in terms

of R and R, then (3.8) yields a first integral of the equa-
tions of motion and the solution is obtainable by a quad-
rature. As we already noted in Sec. IIB, the conservation
laws are solved easily for domain walls (r=cr=constant)
and for dust walls (r=0, oR =constant). In these cases,

one verifies quickly that Eqs. (3.7) guarantee that M =0;
and further, that the remaining equations of the formal-
ism are all automatically satisfied.

Equation (3.8) implies that

M =4rtoR (1 2~aG—ItR ) for R2 I
4~6~a.

(3.9)

IV. PLANAR WALLS

In this section we shall solve Einstein's equations for
the gravitational fields of domain walls under the follow-
ing symmetry conditions. (1) The wall is homogeneous
and isotropic in its two space dimensions. (2) The space-
time geometry is reflection symmetric with respect to the
wall. Under these conditions, we can find a coordinate
system in which the wall is in the z =0 "plane" and in
which the geometry has the form

ds2=e~+' ~'~ ~( dt +dz )—+8(t, (z [
)(dx +dy ) . (4.1)

where R is the maximum value of R, i.e., the value for
which R =0. Our analysis breaks down for
R & 1/4m. G~o, since a spherical shell that large is already
within its Schwarzschild radius Rsd, ——26~M. Note that,
for fixed cr, the ratio R~/Rs, z decreases towards unity
with increasing R

Finally, in the present circumstance, note the sense in
which spherical shells with r/o & —, exhibit repulsive

characteristics. According to Eq. (3.6), both internal and
external observers must accelerate inward in order to keep
up with the collapsing shell when rlo & —, (this is obvious
for the internal observer since he is in a flat region); but,
of the two, the external observer must accelerate more
strongly. If ~/o. & —,', it is the internal observer who must

accelerate more strongly.

and

2

—~,~~+ &,zz+
4B

2
7 0

4B
(4.2d)

where a subscript comma denotes differentiation with
respect to the coordinates following it.

The most general reflection-symmetric solution to Eq.
(4.2a) is

B(t, z )=F(t
ized)+G(t+

iz ), (4.3)

FII

6"—

F 2

F'(v, ——v, ) =0,
2 F+G

GI 2 —G'(v, +v, ) =0,2F+G

(4.4a)

(4.4b)

—F'6'
(F+G)'

(4.4c)

where a prime denotes differentiation of a function with
respect to its argument. The nontrivial solutions to Eqs.
(4.4) separate into two classes distinguished by the vanish-

ing or nonvanishing of F' or G'.

Class I: F'=0 or 6'=0 (but not both)

Suppose G'=0. Then Eq. (4.4c) implies that

2v=lnH (t z)+ lnK —(t +z) (4.5)

for z&0, where H and K are arbitrary; and Eq. (4.4a)
then becomes

1 F' H' =0,
2 F H

which implies that

(4.6)

F'(t —/z[)K(t+ /z[)
F' (t —~z )

(4.7)

for all z. In Eq. (4.7) we have used the reflection symme-
try of the metric.

Similarly, if F'=0,

where F and G are arbitrary functions. Substitution of
(4.3) into (4.2) yields for z & 0

For a lack of a better word, we refer to this case as that of
the planar wall.

G'(t+
/
z

/

)H(t —
/

z
f

)

G'"(t+ [z
[

)
(4.8)

—B „+B =0, (4.2a)

(4.2b)

B,'+B,'
&, +&, — ' ' —», ,v, , —»,v, =o, (4.2c)

A. The vacuum equations and their solutions

The solutions to the vacuum Einstein equations for the
metric (4.1) are well known. We shall briefly review their
derivation. Substituting (4.1) into the definition of the
Ricci tensor R,b and setting R,b

——0 yields

2. Class II: I"+0and G'&0

In this case, Eqs. (4.4a) and (4.4b) can be solved for v,
and v, :

F" G" 1 F'+ G'
F' 6' 2 F+6

FII 6II
I GI FI

F+6 2 F+6

(4.9a)

(4.9b)

for z &0. Equation (4.4c) is then automatically satisfied.
Since, for z) 0, F'=F, = —F„G'=G,=G„and so forth,
Eqs. (4.9) are readily integrated with the result
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F'« —lz I
)6'« + lz

I
&

[F(t —
I

z
I
)+6(t+ fz f

)]' '

for all z. Cp is the constant of integration.

(4.10)
The junction conditions are Eqs. (2.6) and (2.8). Equa-
tions (2.8b) and (2.8c) are trivially satisfied, since by sym-
metry, K,b =0. Equation (2.6) yields

Yab gab, ze
I + gab, ze

B. The junction conditions at z =0

The functions appearing in the above solutions are
determined by satisfying the Gauss-Codazzi junction con-
ditions of Sec. II at z =0. The vectors u' and P defined
in Sec. II have components ( a = t,z,x,y)

=4m GN(h~bS, 2S—~b)

4—trGbt[oh, b+2(o —r)u, ub] (a,b~z) . (4.14)

The (t, t) and (x,x) components of this equation are,
respectively,

(u') =(e ', 0,0,0), (P)=(O,e ',0,0) (4.11) v, I+= —v,
I

=2m.Gb, (o —2r)e"'P) (4.15a)

in the coordinate system (4.1). The metric intrinsic to the
wall at z =0 is

/t b=gb I p fora, b+z,

and

g, p) 1 F'(t) G'(t)—
4~6„cr F(t)+6(t) (4.15b)

=0 for a or b=z;
and the extrinsic curvature is

~,b I
+=h, 'hb V,g» I + ——, g,b,—e 'I + for a, b&z

=0 for a or b=z .

(4.12)

(4.13)

o(F+G)' '~ I, p
——C, , (4.16)

where C) is a constant of integration. To obtain (4.16) we
have assumed ~/o to be a constant as is the case for both
dust walls and domain walls. Finally, Eq. (2.8d) yields

The perpendicular component (2.12b) of the conservation
equation (2.8a) is vacuous, as it should be, whereas the
parallel component (2.12a) yields

(F'+6') 2v'+-e —2v 1 F+6 2(F"+6"—)
, z=O

=8m. Gbt o(o —4r), (4.17)

where it is to be understood that

v' I, p
—— (t,z =0) .Bv

ai

As an intermediate step in deriving Eq. (4.17) from Eq.
(8d), one obtains the scalar curvature R of the z =0 wall,

22B" 1 B'
B 2 B

Bl—2v
B

(4.18)

where B' and B"are defined analogously to v'. Equation
(4.17) implies that a necessary condition for a static solu-
tion is ~= 4

o., a result promised in the Introduction. One
readily verifies that for r = —,cr there is a static solution

C. The solutions for domain walls

)~2 +(1+E Iz I
)(dx +dy ) (4.19)

(1+E
I
z

I

)'~'

that satisfies all equations (4.10), (4.15), (4.16), and (4.17)
provided E=—4mG&o-. This solution has the unique
form appropriate for a static vacuum solution with planar
symmetry, and we shall encounter it again shortly.

I

implied by Eq. (4.15b). And Eq. (4.16) just tells us that
o.=constant, something we already know to be generally
true for domain walls. Combining Eqs. (4.7) and (4.15b)
yields

1 F'
(4nGtto ) F. (4.20)

F&0 and F'&0 (4.22)

are required by Eq. (4.15b) and our demand that x,y,z be
spacelike coordinates, whereas t is a timelike coordinate.

Similarly, the general class-I domain-wall solution for
F'=0 has nonvanishing metric components

which assures that Eq. (4.15a) is satisfied as well. Conse-
quently, the general class-I domain-wall solution for
6'=0 has nonvanishing metric components

g =gyy F(t —fz I ), ——
(4.21)

F'(t
I
z

I
)F'(t+ lz I

)—
(4mG~o) F'~ (t —

I
z

I

)F3~z(t+
I
z

I
)

where F is an arbitrary function. Note that

In this subsection we shall derive all planar-domain-
wall solutions.

g =g =G(t+ Iz I ),
(4.23)

1. Class I: E'=0 or G'=0 (but not both)

Suppose 6' =0 and ~=o.. The equations we must solve
are (4.7), (4.15), (4.16), and (4.17). Actually, Eq. (4.17) is

6'(t+
I
z

I
&6'(t —

I
z

I
)

(4~6~~)' 6'"(t+ lz I

&6'"«—lz I
)

with the requirement that 6 &0 and 6'&0.
Taub's analyses' reveal that all class-I solutions are flat
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in the vacuum off the wall. In fact, these solutions, in-

cluding the domain-wall structure, are equivalent to one
another. For the solutions (4.21), one sees this by per-
forming the coordinate transformation

t* —z' = F'i'(t —z),
2m G~o.

1 F ' '(t+z)
2+G~cr

+2m GcrF'i (t —z)(x2+y ),
x~=F'i (t —z)x, y*=F'i (t —z)y

for z & 0, and similarly for z & 0.
In terms of the new coordinates, the metric takes the

Minkowski form

and that Eq. (4.17) follows from Eqs. (4.10), (4.27), and
(4.28). Differentiating (4.27) on both sides yields

F'2 6'
0=

F'G'(F +G)'i' F
6" 3 F' —G'
6' 2 F+6 (4.29)

Consequently, Eq. (4.28) is implied by Eq. (4.27) and the
requirement F' +G' . Conversely, Eq. (4.28) implies
F'& G' —unless F'=G'=0, which is not allowed. Also
F'=G' is not allowed because it would yield e "=0. It
follows that all class-II solutions are obtained by solving

Eq. (4.27) with the requirements F' &G' and
F'(t) G'(—t) & 0.

Taub has shown that all class-II empty-space solutions
are equivalent to one another. Indeed, taking the z )0 re-

gion for definiteness and performing the coordinate
transformation

ds = —gt* +gz* +gx* +yy* (4.25) F(t —z)= —,'(X+ Y), G(t+z)= —,'(X —Y), (4.30)

and the location of the domain wall (z =0) is given by one finds

1

(2m Gcr)
(4.26) ds = — +X(dx +dy )

Cp dX —dY
X1/2

(4.31)

In the new coordinates, the domain wall is thus bent into
a segment of a sphere defined by Eq. (4.26) and the coor-
dinate restriction F'(t —z) &0. If we analytically extend
the solution (4.25) in the obvious way into the region
F'(t —z) &0, we pick up the remainder of the sphere
which now completely encloses the original z &0 side of
the wall within its interior. In the Minkowski coordinates
therefore, this planar domain wall is not a plane at all, but
rather an accelerating sphere. The sphere comes in from
large distances, at near the speed of light in the far past; it
has constant outward acceleration 2+G~o, halts its col-
lapse and reexpands. By reflection symmetry, it is clear
that the z & 0 side of the wall in the original coordinates is
also enclosed by an outwardly accelerating sphere in the
Minkowski coordinates there. This behavior is permitted
on both sides because we have not demanded asymptotic
flatness.

The locally repulsive nature of the domain wall is evi-
dent. Indeed, the exhibited motion of the wall in the Min-
kowski coordinate systems requires an observer riding
with the wall to accelerate toward it, regardless of which
side he is on, with acceleration 2+G~o.. Further, every
geodesic observer sees the wall accelerating away from
him with acceleration 2+G&o..

for the geometry of space-time in the new coordinates.
Note that X)0 since x and y are spatial coordinates.
Note also that there is a curvature singularity at X =0.
Substitution of (4.30) into Eq. (4.27) yields

r

X3/2 (4.32)
Y

(2mG~cr) Cp

dX
dY

1

(2mG&cr)2
I
Cp

I
X

(4.33)

Hence as time + Y advances, the domain wall slows down
as it comes in from X= + oo, turns around at
X =1/(2mG~cr)

i Cp ~, and subsequently heads back out
to X=+ oo. We now determine which one of the two re-
gions on opposite sides of the domain wall in the (X,Y)
coordinates is the side corresponding to z &0 in the origi-
nal coordinates. Equations (4.30) yield

for the motion of the domain wall. The domain-wall
solutions corresponding to Eqs. (4.31) and (4.32) fall into
one of two subclasses, depending on whether Cp&0 or
Co) 0.

If Cp & 0, X is a spatial coordinate and Y is a time
coordinate. The equation of motion (4.32) becomes

2. Class II: F'+Oand G'+0
BY BX
at

= az=F 6
(4.34)

We must solve Eqs. (4.10), (4.15), (4.16), and (4.17) for
r=cr. Again Eq. (4.16) just tells us that cr=constant
One readily shows that Eqs. (4.10), (4.15a), and (4.15b) are
equivalent to Eq. (4.10), the requirement that
F'(t) G'(t) & 0 and the fo—llowing two equations:

FI Gl 2

(4.27)
(4nG~cr) F'G'(F+G) i c)X g'= —(F' —G') 0

Bz
(4.35)

c) Y c)X (Fr Gr )
Bz Bt

The first equation and the dern. and F' —6') 0 imply not
only that Y advances with t along the domain wall, but
also that the normal vector P has X component

Fl t

FI
6" 3 F' —G'
6' 2 F+6 (4.28) there. Therefore the z) 0 side is that containing X=0.

Hence, because (4.31) has a curvature singularity at X=0,
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we must reject the class-II solution for Co &0. Note that
if the curvature singularity at X =0 had happened to lie
outside the Z & 0 region under consideration, the present
solution would be no less acceptable than the class-I solu-
tion discussed earlier.

We next turn to the class-II solution with Co & 0. X is
now a time coordinate and Y a space coordinate. Accord-
ing to Eq. (4.34), I' increases as time advances along the
domain wall; and according to Eq. (4.32), the domain
wall emerges from a spacelike singularity at X =0. Again
the solution is rejected, leaving only the class-I solution as
possibly of physical relevance.

V. CONCLUSIONS

We have found that domain walls have repulsive gravi-
tational fields, as had been anticipated by Vilenkin.
Equation (2.14b), which has general validity, states this
result and expresses clearly what is to be understood
thereby. The repulsive character of domain walls is also
well illustrated by the unique (class-I) solution to
Einstein's equations in the presence of a planar domain
wall. For this solution, geodesic observers on either side
are repelled by the wall with uniform "acceleration"
2~6&o.. "Practical" examples of planar domain walls
with reflection symmetry that one might consider are a
domain wall stretched by a static hoop and a domain wall
stretched over the cosmological horizon. In the first case,
a test particle placed next to the domain wall would be re-
pelled by it, whereas a distant test particle, more than the
hoop's diameter away, would be attracted by the domain
wall-hoop system. Indeed, in an asymptotically flat
space-time, everything (provided it has positive total ener-
gy) is gravitationally attractive from far away. This is
true in particular of the spherical domain wall discussed
in Sec. III. Even though all domain walls are repulsive in
the sense of Eq. (2.14b), a distant observer is attracted to-
wards the center of a spherical domain wall. As was em-
phasized at the end of Sec. III, these two statements are
not contradictory because the spherical domain wall ac-
celerates inward.

Next, let us consider a domain wall stretched over the
cosmological horizon. It derives its stability from causali-
ty. If the domain wall is so close by that it traverses a re-
gion of the Universe that we can observe sufficiently well
today, its presence would be detected by the fact that it re-
pels heavenly bodies on either side. Axion models,
which have been proposed to explain the absence of P and
CP violation in the strong interactions, have recently been
shown to have domain walls. "' In that case, the magni-
tude of the acceleration is

Smg U 4 12mG~o=2~G~ . —2mG f m u——
N3 m' m

1 U 1
(5.1)

10 sec 10' GeV

where m, is the axion mass, X is the number of vacuums
of the axion model, "' and u is the magnitude of the vac-
uum expectation value that breaks the UpO(1) quasisym-
metry of Peccei and Quinn. ' Astrophysical and

cosmological constraints require u to lie in the range 10
GeV & v & 10' GeV. ' ' If, on the other hand, the
domain wall stretched over the horizon is outside our
presently observable universe, it may have escaped our no-
tice because its gravitational field is one of constant ac-
celeration and therefore does not produce any tidal ef-
fects.

Our results are also of relevance to the evolution of
domain walls in the early Universe, and to a discussion of
the primordial density perturbations that such domain
walls produce. The results of Sec. III imply that a
domain wall of size larger than (4mG&o) ' is a black
hole. Closed domain walls of size less than (4m.G&o)
are likely also to collapse to black holes by radiating away
their asphericity. The collapse of closed domain walls
would provide us with a new source of primordial black
holes which may find their way into the halos of galaxies.
In axion models, the domain walls appear when the
Universe has cooled to a temperature T=1 GeV. If
X = 1 (that is to say, if the axion model has a unique vac-
uum), the domain walls have initial size of order 10 sec,
the age of the Universe at that time. ' ' These domain
walls are of both the open and closed variety. The black
holes produced by the collapse of the closed domain walls
would have mass of order

M -4m oRI ~, 4 —10 Mo Io . (52)~I—1O sec 10' GeV

If black holes of such characteristic mass have found their
way into galactic halos, they probably would have gone
undetected. '

If the axion model has multiply degenerate vacuums
(X & 1)," causality implies that there is at least of order
one domain wall per horizon at any time after t=10
sec. This is because causally disconnected regions of the
Universe will in general be in different vacuums. With
one domain wall per horizon, the Universe's energy densi-
ty becomes domain-wall dominated at cosmological time

1 4 10 GeVtz„— -0.6 g 10 sec
32~6&o. U

(5.3)

(5.4)

After tz„ the large-scale expansion of the Universe goes
like R -t, where R is the cosmological scale parameter.
Here "large scale" means length scales comprising many
domain bubbles. One might question whether such a
domain-wall-dominated Universe is in disagreement with
observation since our presently observable Universe would
be completely inside a domain bubble, far from any
domain walls. The trouble, however, is that the amount
of matter in our neighborhood of the Universe is that
same amount which was contained in our domain bubble
at time tz, that is to say, much less than what we observe
today.

Finally, it may be interesting to consider theories in
which there is a near-perfect degeneracy of the vacuum,
but with a very slight breaking of the degeneracy present.
In that case the domain walls disappear after a time of or-

5, 11
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provided tz & td and provided the decay time, in which a
disconnected domain wall within its horizon can radiate
itself away, is smaller than ts .In (5.4), b,A is the
energy-density difference between the almost-degenerate
vacuums. tz is the size of domains for which the differ-
ences in volume energy are of the order of the surface en-

ergy. Once the domain walls have average size tz, the
degeneracy-breaking effects become important and the
true vacuum takes over. If ts is sufficiently large, the
density perturbations produced by the domain walls be-

fore they disappear may become the seed masses from
which galaxies evolved in a hierarchical clustering lnodel
of galaxy formation. The hierarchical-clustering model is
the appropriate one' to an axion-dominated Universe. '

ACKNOWLEDGMENTS

The work reported here was supported in part by grants
from the Department of Energy (Contract No. DE-AS-
05-81-ER40008) and from the National Science Founda-
tion (PHT-8300190).

A. Guth, Phys. Rev. D 23, 347 (1981).
~See, e.g., T. W. B. Kibble, J. Phys. A 9, 1387 (1976); A. D.

Linde, Rep. Prog. Phys. 42, 389 (1979).
Ya. B. Zel'dovich, I. Yu. Kobzarev, and L. B. Okun, Zh.

Eksp. Teor. Fiz. 67, 3 (1974) [Sov. Phys. JETP 40, 1 (1975)].
4See, e.g. , C. W. Misner, K. S. Thorne, and J. A. Wheeler, Grav-

itation (Freeman, San Francisco, 1973).
5A. Vilenkin, Phys. Rev. D 23, 852 (1981).
W. Israel, Nuovo Cimento 44B, 1 (1966).

7A. H. Taub, Ann. Math. 53, 472 (1951); Phys. Rev. 103, 454
(1956).

sR. D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); F. Wilczek, ibid.

40, 279 (1978).
J. Kim, Phys. Rev. Lett. 43, 103 (1979);M. Dine, W. Fischler,
and M. Srednicki, Phys. Lett. 104B, 199 (1981).
P. Sikivie, Phys. Rev. Lett. 48, 1156 (1982).

A. Vilenkin and A. E. Everett, Phys. Rev. Lett. 48, 1867
(1982).
For a recent review of axion-related topics, see P. Sikivie,
University of Florida Report No. UFTP-83-6, 1983, presented
at the Gif-sur-Yvette Summer School in Particle Physics,
1982 (unpublished).

D. A. Dicus, E. W. Kolb, V. L. Tephtz, and R. V. Wagoner,
Phys. Rev. D 22, 839 (1980); M. Fukugita, S. Watamura, and
M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982).

~5L. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983); J.
Preskill, M. Wise, and F. Wilczek, ibid. 120B, 127 (1983);M.
Dine and W. Fischler, ibid. 120B, 137 (1983).

6J. Ipser and R. Price, Astrophys, J. 216, 578 (1977).
~7J. Ipser and P. Sikivie, Phys. Rev. Lett. 50, 925 (1983); F. W.

Stecker and Q. Shafi, ibid 50, 928. (1983); M. S. Turner, F.
Wilczek, and A. Zee, Phys. Lett. 125B, 35 (1983).


