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The degree of freedom and helicity count of the fermionic sector in generic superconformal plus
supergravity models is exhibited by explicit elimination of all constraints in the 3+ 1 decomposition
of the action, which is given entirely in terms of gauge-invariant variables. In the purely supercon-
formal, massless, case, the third-derivative action describes three helicity-% excitations and one of

helicity % When mass is introduced by adding a Rarita-Schwinger term, a new helicity-% excita-

. . . . 3
tion appears, and the total spectrum now consists of two massive spin-5 modes plus a massless one.

In both cases, the excitations unavoidably emerge in sets with both signs of the Hilbert-space metric;
some implications of this ghost behavior are discussed.

I. INTRODUCTION

The degree-of-freedom content of higher-derivative
gauge theories, particularly gravity, has received consider-
able study.'™® There, the general fourth-order action is
the sum of squares of the Weyl tensor and of the scalar
curvature, to which may be added an Einstein term. The
purely conformal theory (with or without the Einstein
part) is of particular interest, and has been completely
analyzed canonically.’ Because of the ghost problem
common to higher-derivative theories, the generic theory
is expected to be unstable in that its energy, unlike that of
Einstein’s gravity, is not positive; in the purely conformal
case the energy vanishes.” Since the Einstein theory and
the conformal theory both have supersymmetric exten-
sions, it is of interest to display the excitation content of
the fermion sector of these theories in explicit canonical
form as well. The fermionic spectrum must, of course,
contain the partners of the boson excitations, with ghost
properties corresponding to those occurring in the gravity
sector. Further, this indefinite-Hilbert-space structure
should explain how the theories can simultaneously pos-
sess the fundamental supersymmetric property that energy
is a formal square of supercharge, yet violate positivity.
In this paper, we carry out the explicit canonical analysis
of the (flat space) kinematics of the fermionic sector for a
general combination of conformal and Einstein supergrav-
ity, leaving the relation with energy to another work.® We
shall see that (in agreement with earlier results®* the
purely conformal fermion sector consists of eight massless
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degrees of freedom: three excitations of helicity % and
one of helicity 5. These excitations fall into two sets with
opposite Hilbert-space signatures. In the generic super-
conformal plus supergravity combination where the in-
verse Einstein constant provides a mass scale, some of
these excitations acquire mass and a new massive
helicity-5 excitation appears. The degree-of-freedom
count jumps to ten: two massive and one massless spin %,
again with unavoidable ghosts. These results are in ac-
cord with the corresponding bosonic counts, in which
Weyl gravity represents six degrees of freedom [massless
helicity (2,2,1)], while Weyl plus Einstein gravity has
seven (one massless and one massive spin 2). The addi-
tional bosonic degrees of freedom needed for supersym-
metry are provided in each case by the (massive or mass-
less) vector field of the conformal supergravity sector.
Our results are automatically gauge independent since
there are no constraints, and therefore no gauge functions,
left in the action, which is described by gauge-invariant
fields. In this respect, our work differs from the earlier
approaches.?*

II. FERMIONIC ACTION

We shall consider the free fermionic actions obtained by
taking the flat-space limit of (higher-derivative) confor-
mal supergravity alone or together with the Rarita-
Schwinger action of standard supergravity. There is a rel-
ative constant of dimension m? between these two actions
which we fix by giving ¢, dimension +. The purely con-
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formal theory is then obtained by taking m =0. Our ac-
tion is of the form

I=Ic+Igs,
where?
Ic= fdx WH(3,6,—3,8,) (0
and
Ins=— [ dx 3,67y Sy (Ot —3,8)
with
BV QY QY —i (YR — PR . o

The field ¢* is determined in terms of ¥, by the con-
straint that W*" be chirally self-dual and o traceless,

WH =1ty S W, vHyY"Wy,=0. (3)

This action is gauge invariant under 8¢, =d,a(x) and the
m =0 part has a further (“conformal”) local invariance
under 8¢, = yuB(x) all spinors are Majorana. We use a

metric with signature (—,+,4,+), €'¥=41, and
imaginary (Majorana) representation y’s:
==, P=—y%r’=—r". @

In order to discuss the canonical decomposition of the
theory, it is more convenient to use the (8, o) matrices,

Y=B=B'=—B* 7=—iBy’s,

Lt _*
0=0 =—0 .

; (5)

7/5 —_ 7,5 — 7,5*
We also define electric and magnetic components of the ¢
field strength,

= =

X =3¢ —-Vy°, X=VXV, (6)
and similarly introduce
(WO=wo, (Wy=1ew, . )

The algebraic spin-3 projector is defined by

o (2Q14iFX)
0=_—T—_—

=1-¢

-

) (®)

L

1= [dx —i%-()’(’%yﬁ—%%)+i(17-17f1)'{ $3]

+ VX [+7°P ¥ —(T—G55)X]

2
m- s
+2(¢

The action is now of first-order form; only first-time
derivatives of the field W =(1,¥,%) appear. However,
there are constraints so that not all components of ¥ may
be independently specified as initial-value data. In order

10+V X(Y 1//1+IBX

X +ig v X +ipBEX Y1 — Uy FXX)

where 75=1—i X.
The definition (2) and constraint é3) for W*" uniquely
determine W*" and ¢" in terms of X and X:

#=-Loraioriai,
and
F=—LipX -y D+ iraax]. ©)

The action may be written as
1=2 [dx[ W B-(3op + V¢°—7°V X §)

+3mAG-T XX O+9°F X +ig-y°X)] . (10)
Our procedure thus far has been to solve explicitly for
(W 4y, 8,) as functions of ¢, and its time derivatives, rath-
er than keep them as independent, “Ostrogradsky” vari-
ables. This has the advantage that all time derivatives are
manifest from the start and the most convenient choice
for new variables becomes reasonably transparent. At thlS
point, the leading time-derivative term is WO B¢ 0
~ 1// 0 ¢ oo; all the other terms are of lower order.. When
we cast the theory into first-order canonical form,

I~fdx

where the matrix S is symmetric (and includes the tradi-
tional B factor of 1), the vector ¥ will include both the
original 1, field and the Ostrogradsky variables. To this
end, we observe that the coefficient of 11) 00 18 —-W 03; we
therefore define

U= —iBX '+y°X) (12)

and rewrite the action (10) in terms of 1/;1 and of a
Lagrange multiplier field, ¥,, which enforces (12). (The
index on ¥, defines _the number of time derivatives it car-
ries with respect to ¢v itself.) Then (10) becomes

%‘PSE)O\IJ——%(\P) (11)

(13)

r
to exhibit the constraints, we use the identity
PVx=PVxP+1P-Vid (14)

and the vector-spinor orthonormal decomposition,” 1°
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$=$T+(%)I/ZP VlO' th,L (15)

where ¢ b T is the doubly transverse, helicity-3 part,

&’-¢TEOEV-¢T, (16)
while the helicity-+ components are v/, the o'-
longitudinal part of v,

FPp=iv3y, 17)

and ¢, the &-transverse projection of the (ordinary) long-
itudinal part of the vector 1,

V-Py=—(3)2%a-Vyr. (18)

Note that (iog°V)?=(—V?). Orthonormality follows from
these properties: any two vector-spinors have the inner
product

J&TG-i= [Pe@TET+yit+ylh . 9

Returning to the action (13), we note that there are two
constraints (the equations obtained by varying ¢° and t/;l
do not involve any time derivatives):

2
svf = vh=— "o/,
(20

Using the identity, Eq. (14), we rewrite the second equa-
tion as

2
¢§=—m7(¢L+zx/§¢'> . 1)

and
L= [dx é(—m2xaox_¢fao¢f)+%z/z{fys(a*-ﬁwf

2 —
+ ’"T[Aﬂ & VIA+228¢51 | . (23)
Here we have introduced the field
A= ¢rL + \/51/11 .

The (unconstrained, gauge-independent) helicity-3 ac-
tion may be written as

The above constraints may be used to eliminate ¥4 and ¥/,
regardless of whether m? vanishes. In the purely confor-
mal theory (m?=0), the result is simply

vr=v,7. (22)

It is instructive to link these results (and the degree-of-
freedom count) to the gauge invariances of the theory.
First, we note that the helicity-% parts, being transverse,
are entirely gauge- independent and unconstrained. With
regard to the helicity-+ fields, the original ¥y is the usual
gauge variable associated with the 5¢“_a,‘a mvanance,
and its coefﬁment is the gauge constralnt fixing ¥%. Like-
wise, 1/)1 and its constraint (fixing ¢2) are the Ostrogradsky
images of the former. This leaves the variables (¥}, ",
in general. However, one more component disappears,
namely the gradient part of ¥, not unlike 4; in electro-
dynamics, and two helicity-5 parts remain. Finally, in
the purely conformal case one of these variables disap-
pears as well because of the local 8y, =v,B invariance
which states that y#i, is also absent from the action.
(Since the invariance is algebraic rather than differential,
there is no associated constraint.)

In our linearized action, the helicity-g and helicity-i
components cannot mix as ortho_gpnahty forbids any com-
bination of the form f d3iry T ﬁ X, where & denotes any
linear combination of & and V and, after some algebra,
the action may be written as

I=I;,+1,,,

where

L= [dx é\ii-sao\i_%\iiMﬁ , (24)
where
¥,
\v= 12;1 ’
¥
0 0 1
S=10 —-10}{,
1 00
and
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0 1 7P

2
M=g| 1 37B ZPZ“mT]
— 2 m2 2.2

—VP || (@m Y'P)

Here P is (1/ i)V, p*=PBP, and we have reexpressed the

& matrices in terms of ¥. The Fourier-transformed field
equation then reads

DV=[wS—-M(p)]¥=0, ‘ (25)
where
0 -1 Bo+7P
— 2 m?
I=B| -1 —(Bo+37°B) — 20"~
m2
Bo+7vVB — 2P2——2— —2m*7p

This equation may be solved to yield
=7 B—rP)¥ ",

P I1=— |37 B+ B—rop®)+2p*—

w3

and

(Y#pu)m?+ptp, )P T=0 .
Note that the first two equations are necessarily nonco-
variant; ¥, and 1, are essentially W° and 3°W 9, so they
must have the complicated Lorentz transformation prop-
erties which are implicit in these relations. The final

equation is the covariant wave equation from which it is
apparent that the excitations all satisfy

p*py=—m? @7
or

p¥pu=0.

Without having to perform an explicit diagonalization
of (25), we can immediately conclude that, in the helicity-
(+2) sector, there are two massive and one massless de-
grees of freedom (times 2 for + helicity). Clearly, the
number of degrees of freedom does not change if m =0.

The helicity-5 modes in (23) must be analyzed
separately in the zero-mass and nonzero-mass cases. In

the m =0 case A does not appear; only the ¥7 degree of
freedom remains in the action, which has the form

1150 = [axt(ayhp |rh--a, |(Buh) (28)

and exhibits a standard spin-+ zero-mass Majorana parti-
cle with negative metric. The full mode count thus con-

sists of three helicity-3 plus a helicity-5 degree of free-
dom.

In the m =40 case, the rescaled field p=mA also appears
and the resultant equations are

(v#pu) (l) (1) —m (1) (1) EL =0 (29)
1
so that each field obeys the covariant equation
(pHp,+m)p,¥5)=0. (30)

Diagonalized equations may be defined from (29) using
combinations (involving ) of (p,t//f). One may choose

—%(,a +yb) 31)
as the negative-metric diagonal fields.

The norm of the Hilbert space in the spin-3 sector is
determined by the signature of S —!. With the overall sign
of our action corresponding to the conventional sign for
the bosonic sector, the equal-time anticommutation rela-
tions are given by

(W70, 8 (T,0)} =S~ T| Py, | ') . (32)

Hence, the form (24) of S immediately tells us that there
is one linear combination (¢/2+ ) with positive norm and
two combinations (1, — ¥, ;) with negative norm.

To find the explicit values of the norms of the physical
helicity-> eigenstates, we include a source, 7, in the ac-
tion:

Ly=Lip+ [dx 79T, (33)
The field equation is then

DV=nq, (34)
which implies

$1=B(@ B+ —BT,,

— 2 —
Vo= P’ +20@ B0+~ ]¢—Bﬁ’1—(sa’-ﬁ—w>3 ,
and
1/—;2_ Et"f)’—}—a)
(m?4-p?—0?)(p*—w?)

2
mT+p2+2cod"§~—w2

—

X 72

+ (@ B+0)BT1+7 | (35)

The norms of the states given by the poles at
w*=(p?+m?,p?) are governed by the signs of the residues
at the poles. The pole terms in & =2 ~! are

A
B
1

where

adpto

t gt
(m?+p*—e?)(p:—0?) ALBLD, o
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m?
2

The residue at the zero-mass pole is (w=|p |)

A= +p* 4203 P—w? and B=B(a P+w) .

2

.'.'1_+2 2

2 e [
3| 2Blp| |—5— |5+ 2lp|B 1|20,
A 1 m
while the residue at the w?=p?+m? pole is

[o=4(p*+m?)1/?]

1
2m?

A
S |B (™ + s 4,8,1) <0
A
1

(37)
with

mB+&-B+o=Zul"u"".
A

These two massive helicity-% ghosts combine with the
helicity-+ ghosts of (30,31) to make two massive spin-+
excitations when m=40. For m =0, they are still ghosts
as is the single helicity- particle of (28).

We remark that our final actions (both for m =0 and
for m=£0) are, of course, not manifestly Lorentz invariant
since we have eliminated the redundant variables. Indeed,
we have the form which normal (massive or massless)
spin-3 actions take when reduced to canonical form.’

III. COMMENTS

We have exhibited the canonical form of both the pure-
ly conformal fermionic theory and the generic conformal
plus Rarita-Schwinger combination. In the former we
found eight massless excitations, namely, those associated
with the three transverse traceless helicity-+ fields
(¥, %1, %) and the helicity-1 field /7. These eight de-
grees of freedom pair with the six massless helicity (2,2,1)
metric degrees of freedom of conformal gravity plus the
spin-1 axial photon required for superconformal invari-
ance. When the Rarita-Schwinger term is added to yield a
supersymmetric but not conformally invariant theory, a
second helicity-5 degree of freedom appears which, along

with the original helicity-+ field, combines with two of
the helicity-3 degrees of freedom to form two massive
spin-2 degrees of freedom while one helicity-5 field
remains massless. The corresponding massive bosonic
sector has massive spins 2 and 1 (including the axial vec-
tor) plus a massless spin 2. The pairing yields a massless
spin (2,%) representation of the supersymmetry and a
massive spin (2,5,5,1). It should be noted that, as usual
with gauge theories, the m —0 limit is not the same as the
m =0 theory since, although all modes become massless,
the lower helicity modes need not disappear. (This is even
true for the massive Rarita-Schwinger theory.’)

As one would expect, the massive multiplets all have
negative Hilbert-space norm (or, for the bosons, negative
energy). The zero-mass excitations have both positive en-
ergy and positive norm. Although these specific assign-
ments depend upon the signs chosen for the two parts of
the Lagrangian, the conclusion that there must be
negative-norm excitations does not: We may change ei-
ther the overall sign of the fermionic terms, the sign of
the mass term or both. If we change the overall sign, we
have positive-norm massive excitations and negative-norm
massless excitations (of course, supersymmetry now no
longer obtains unless the sign of the gravitational action is
also changed). If we change the sign of m?, the excita-
tions become tachyonic but still have the same norm.

The fact that the fundamental dynamical variables do
not have positive-definite commutation relations immedi-
ately undermines the usual argument that the energy in a
supersymmetric theory must be positive semidefinite. In
any such theory the generator of time translations, PP,
may indeed still be expressed as the anticommutator,
P°=+tr{Q,Q}, but this is manifestly positive semidefin-
ite only if the norm of the Hilbert space is positive.!!
Since the supercharges Q¢ are odd in the (indefinite
norm) fermionic variables, there is no argument that POis
non-negative and no contradiction with the classical bo-
sonic results. The detailed consequences of this will be
presented elsewhere.?
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