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Glueballs in n.p = PPn
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We propose a model which is able to explain the main features of the experimental data for the
reaction aping. Pn, starting from the assumption that two glueball resonances with J =2++ are
produced in this reaction. The couplings of these glueball candidates to IIII are estimated, and come
out to be of the same strength as ordinary hadronic couplings.

I. INTRODUCTION

Quantum chromodynamics has introduced in the had-
ronic spectroscopy the possibility of a new type of hadron,
called glueballs. ' This is an exciting subject in the
development of hadronic phenomenology. There are
many reviews about experimental candidates, theoretical
models for the production, masses, widths, and quantum
numbers of these subjects. While we do not have any
quantum-field-theoretical proof of the existence of glue-
balls (nor of hadrons in QCD), some authors have shown
the nonexistence of glueballs at the classical level. These
theorems obviously do not forbid the existence of quan-
tum glueballs. For us, these objects formed only by
gluons must be treated as ordinary hadrons, if QCD is
correct. Our main aim in this paper is to give a parame-
trization for a particular reaction, i.e., mp~PPn, that.
can be used as a constraint for a microscopic model of
gluon interactions producing glueballs. The choice of this
reaction is related to the violation of the suppression due
to the Okubo-Zweig-Iizuka (OZI) rule, which forbids

(qq ) states as possible candidates to explain the experi-
mental results. We agree with some authors that the
OZI-rule violation is a good condition to search for possi-
ble glueball states.

Our phenomenological analysis is completely based on
the main features of the experimental results, namely,
peripherality and the partial-wave enhancements indicat-
ing the existence of two J =2++ objects, one dominant-
ly in S wave and the other dominantly in D wave. Our
amplitude is easily constructed taking into account a pro-
duction mechanism, described by a single Regge
parametrization, times a decay process and two hadronic

PP resonance propagators. These points are shown in de-
tail in Sec. II. In Sec. III we present the results of our
model in comparison with experimental results, and end
with some conclusions.

II. THE MODEL

The peripherality of the reaction (i.e., a great number of
events for small squared momentum transfer t2) and the
t2-channel quantum numbers suggest pion exchange (see
Fig. I).
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FIG. 1. Diagram representing the reaction m p ~PPn with a
m. exchange and a glueball or a (PP) resonance in the s& channel.
s =(p, +pb), s) ——(p~+pq), and t2 ——(pb —p3) .

The violation of the OZI rule hints at a glueball reso-
nance G;, as discussed in the Introduction, with
I J =0+2++ and well-defined mass M; and width I;.
We assume that the glueball, with these quantum num-
bers, can be treated as a hadron, having ordinary cou-
plings with other hadrons.

Looking at the quark diagram for the reaction
m p~PPn, shown in Fig. 2, we see that this reaction is
OZI-rule-forbidden, but not suppressed as shown by the
experimental results. The violation of the OZI suppres-
sion can also be seen by the ratio

o(K p~PK+K A) o(~ p~PK+K n)

cr(K p ~/PA) o(rr p ~P. Pn )

where all the reactions, except ~ p +PPn, —are OZI-rule-
allowed, although the two ratios are the same.

Within the framework of QCD, if quarks interact with
other quarks via gluons, we can expect the existence of an
amplitude of the type q&q~~gluons~q2q2. But the in-
teraction among gluons in QCD can produce the new
states called glueballs. The violation of the OZI rule can
then be understood qualitatively by the formation of glue-
balls with a strong effective coupling constant to other
hadrons. This fact supports our hypothesis that glueballs
couple ordinarily to other hadrons, and therefore the cou-
pling constants gG ~~ must be comparable to other had-

J
ronic coupling constants.

The global amplitude representing our model is given
by the expression
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FIG. 2. Quark diagram for the reaction ~ p~ppn I
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A = g R (op~. GJn)N~(s, )T(GJ~rt1$),

where R represents the production amplitude,

@J(s1)= (s1 M) —+iMJ I I )

is the resonance propagator, and T represents the decay
amplitude for GJ —+1I)p.

The characteristics of the subreaction n p~GJn dis-
cussed above permit us to treat it as a high-energy 2~2
reaction, well described by a standard m.-exchange Reg-
geized amplitude:

R(rr p~Grn)=g + gG + I 1+/exp[ isa~(—t2)]]
J

FIG. 3. The Gottfried-Jackson frame used in our caIcuIation.

where i = 1,2, m I ——m2 ——m~, and we have used the phase
convention of Ref. 9. Using the fact that only M=0
states were observed, we define the tensor e p by

cap( p12=0) = [~a (p 12=0)ep (p 12=o)
6

+& (P12 0)ep (P12
a (t2)

X
Sp

I ( a(t2—)) (2) +2&+(P12 0)&p(P12 o)l .

(0;+cos8,i, +sin8),
2

F. (p;) = (p;;E;sin8, 0,E;cos8),p 1

I-

(4)

(5)

where (g + „) /4m. =14.5, a (t2)=0.72(t2 —m ), so= 1

GeV, and /=+1. To avoid nonessential complications
we take into account the spin only in the decay amplitude.

In order to construct the decay amplitude T(GJ~PP)
taking into account the spin-parity (J ) of the involved
particles, we have used the helicity formalism. This am-
plitude is given by

I'2,
,2., =&„'(8,p,p1)& '(8,p,p2)c p""~p(p12 ——0), (3)

where A, 1,A, 2 are the helicities of particles 1 and 2 (pp),~(~ )
and e„~ )' and e~p are the spin-one and spin-two wave
functions, respectively, defined by

e*+-(8,/=0, p) =e'+-(p;)

For the vertex (2+—+1 +1 ), the most general vertex
function C p& is given by the expression'

Capp% glgapgpv+g2(gapAY+gavAp)Ap

+(g3g„+g4AqA )AaAp . (7)

Here we have used the normality of the PP state,
%41' ——+1, the fact that we have two identical particles,
and A = —,(pt —p2) .

Thus, the decay amplitude depends upon four constants
multiplying the different couplings of the vertex function

C~p& . We will see below how we can use some experi-
mental constraints to determine the coupling constants
gG ~41 and gG, &&. First, we will relate the different

T G

g;(i =1,2, 3,4), and henceforth all calculations will be
made in the Gottfried-Jackson (GJ) frame (as is shown in
Fig. 3) with ((1=0.

Inserting (6) and (7) and the Lorentz condition
e„(1u)pr =0 into (3), we find

(g1[(&+ e'2. , )(e )e+2( ee2, , )(e+ e2, )+2(e'.e2 )(e'e2 )]

+g2I[(&+ &2., )(~ .A)+(~ e2., )(~+ A)+2(e'e2. , )(e'A)] —,'(e&,.p, )

[(e+ &2, )(& A—)+(EE2, )(E+ A)+2' (e'e2 )(e .A)] —,'(e~ P2)j

+[«+ A)(~ »+(~'A)'][2g3(~*. ~~,)--,'g4(~*.
, V2)(",J1)]) .
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T++ (gl+2g3 I pl I
')a2(cos8),

6

V3 &1 2
( —g, +g2

I pl I
)sin8cos8,

2 m4,

Tpp 2 l. 2+1 ( gl +2g2 P 1 I

')
6 mp

+ 2g3 (
I p 1 I

'+ &1'
I p 1 I

')

(10)

The four independent amplitudes are obtained in a
straightforward calculation of the above scalar products.
They are (omitting the label M =0 from now on)

T+ =Q —', g, sin'8, (9)

8'1T $1 1, ~ 41r

In expression (18) Mz (squared nucleon mass) has been
introduced so that

I
TI, I

becomes dimensionless. " We
have, for each state G~,

(gG 4141)

4m.

Mg xi2

IG ——
16m. s i

butions to the states Gz- and GT, respectively, we can ob-
tain constraints between the g'a. We choose to relate g2,
g3, and g4 to gi setting T20 ——T22 ——T42 ——0 for the GT
state, and Tp2=T2p=T42=0 for the GT state.

The next step consists in replacing the obtained values
for g2, g3, and g4 into expression (18) to calculate gl.

2g4E1—
I pl I

]%2(cos8), (12)

XP02 (+02+b02Y2+ 02Y3+d02Y4) (19a)
where &2(cos8) =(3cos 8—1)/2.

We can now obtain the partial-wave amplitudes using
the well-known formulas

C~, -~,~&ou.
M~ x(2

I
16~ s i

' 1/2 (g )2

4m

X 2mfd. Ml„(8)T2 2, ( 8) d(c os 8) . (13) XP22 (1222+b22 Y2+c22 Y3+d22 Y4) (19b)

Inserting (9)—(12) into (13) and taking into account the
symmetrization of these amplitudes

Tl..= l 1 +( —I )'+'l ~i'
we find

T20($1)=P20(+20gl+b20g2+c20g3+d20g4)20

20T 02($1 ) P02(&02g 1 + b02g2+ c02g3 + d02g4 )

T 22($1) =P22(a22gl+b22g2+C22g3+d g4),20

T42($1) P42(cl42gl +b42g2+c42g3+d42g4) .20

(14)

(15)

(17)

Th«L, ~, bl.~, CL, , dL, and PL, are given in Table I, in
terms of the invariants.

Using now the experimental results, i.e., only the
waves J I.&M =2+020 and 2+220 give significant contri-

where xi ——si —4m~ and

y2=

y3=

6m41 —~s&(sl+4m41 )

~$1(—$1+4m 41~$1 —m~ )

x, +4m, ~s,
2x 1 4m y ~Si —s 1

—m y

m~' x, +4m~~sl
2 2 7

xi s] Si —4m' si+mp

4 9m~ +~si(sl —4m41~s& —m& )

~$1($1—2m41 sl —m41 )
2

si —Si —6m' 2

2
s& —2m~ s& —m~

(20)

(21)

(22)

(23)

TABLE I. Value of the coefficients of Eqs. (14)—(17) in terms of the invariants, where
x1—=s1 —4m~ .2

a

2 0 s1+4m~ —s1x1/2

0 2 2(14m', s, —6m' —~$1) (s1+3m4V sl)x1

CL

S1X1 —S1X1 /82

x1(6m~ —s1) s1x1 /16 2 7T

3m~2 10

1

15m'

' 1/2

' 1/2

2 2 2(10m&2+s, +3m4~si) —xl(2$1+3m~~sl)/2 —slxl s1x1 /8 2 7r

3mp2
' 1/2

4 2 4m', ~s& —x1 x &($1 —2m~~$1)/2 $1x1/2 s1x1 /162 4 m'

5mp2
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80 m&2
f4= 2X)

8m 2 si —2m~ ~g
~i —2m~ ~~

(25)

40—

Introducing the branc
'

parameters:
=0.28 GeV and

b

gG pp
——13.7(gg )'

g,
&&

——2.8(g, )'r'

(26)

(27)
20—

gG PP&7.9,

gg, ~~
& 1.6,

(28)

(29)
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tention to the fact that this subject is in a certain sense re-
lated to our proposition that establishes a glueball
suppression in allowed diagrams as discussed in the end of
Sec. 2I.
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