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A mass formula relating the 6-N and p-~ hyperfine splittings is derived within the context of the rela-

tivistic harmonic-oscillator quark model. The spring constant, determined fram the Regge trajectories, ad-

justs the wave-function overlap integrals so that reasonable agreement with experiment is obtained. The
formula involves the square of the hadron masses and clearly indicates factors due to color, SU(6), and
internal quark motion.

The relativistic harmonic-oscillator quark model provides
a unified calculational framework for the hadrons. The
spring constant is flavor independent and taken to be
co=1.05 GeV2 SO that the Regge trajectorieS are produced
for both rnesons and baryons. Various forms of the model
have been used to investigate nucleon electromagnetic form
factors, ' —gq/gy, 3 meson decays, " and several other impor-
tant hadronic processes.

The quantum-chromodynamic picture, described by De
Rujula, Georgi, and Glashow, has considerably enriched
the quark model. This additional feature adds short-range
forces dominated by one-gluon exchange, which provides
for a rich hadron spectroscopy. Kim7 has proposed a model
for a relativistic bound-state perturbation theory which em-
ploys relativistic harmonic-oscillator wave functions. This
model produces a fully relativistic Fermi-Breit formula
without making the usual static nonrelativistic approxima-
tion. The purpose of this note is to use the prescription of
Ref. 7 to derive a formula that directly relates the 5-N and

p -m hyperfine splittings by calculating wave-function overlap
integrals.

This note does not intend to illustrate that a one-gluon-
exchange mechanism with harmonic-oscillator wave func-
tions can produce a spectroscopy that fits well with experi-
m.ental data. This task has been accomplished in a series of
papers on baryons by Isgur and Karl, ~ who use a nonrela-
tivistic harmonic-oscillator model. Meson masses have also
been treated with oscillators. 9 Also, other confining poten-
tials have been shown to work well. ' However, a common
feature of these spectroscopic models is the independent fit-
ting for mesons and baryons. This note demonstrates that
the unified picture of hadrons provided by the relativistic
oscillator formalism' is capable of expressing the meson
hyperfine splitting in terms of the baryon hyperfine splitting.

The reader can refer to Ref. 7 for a detailed description of
the Kim model. Briefly, the matrix element due to the ex-
change of a massless gluon between two quarks (labeled 1

and 2) in a baryon is given by the real part of
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~here pq, p2, and p3 are the initial four-momenta of the
three quarkS; pj' and p2 are the fOur-mOmenta Of the firSt
two quarks after the exchange of a massless gluon with
four-momentum q =pt' —pt= —(p2' —p2); and X; is a static
Dirac spinor for the ith quark. Baryon-wave-function over-
lap integrals are given in Ref. 7, where approximations are
introduced to isolate the Fermi-Breit spin-spin term.

The calculation involving (1) has been performed for this
note with no approximations; the spin-dependent shift in
the square of the nonstrange baryon mass is

A similar calculation for the mesons gives
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where Tg is the strength of the meson quark-gluon cou-

pling; mt = m2= m~; and x'=co/v2 with u= m~+ M'/2, M'
being the unperturbed meson mass.

The ratio of' the baryon and meson hyperfine splittings is
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where

where Tg is the strength of the baryon quark-gluon cou-

pling with g having appropriate dimensions; m, = m~= mq is
the nonstrange-quark mass; and x = co/u with
u = m~+M/3, where M is the unperturbed baryon mass.
The spin-independent contributions are irrelevant since they
cancel in forming differences of nonstrange hadron masses.

6(x,x') = —32X + 72X —4XX

576 —48X —108X'+ 9XX'

and the hadron symbols represent the masses of the respec-
tive hadrons. A factor of ~ is due to color, the SU(6) fac-

tor of —', is due to mechanical spin, and 5(x,x') is the
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correction due to internal quark motion. The orbital factor
is determined by M M', m~, and m.

The square of the unperturbed baryon mass is

(W'+ a')/2 = —' f (0 939)'+ (1.232)'] =1 200 «&',
therefore, M= 1.10 GeV. For the mesons,

(m'+ 3p')/4= [(0 138)'+ 3(0 770)']/4= 0 45 GeV'

which gives M'=0. 67 GeV. The nonstrange-quark mass is
m~=0. 336 GeV, determined from the proton magnetic mo-
ment in this type of quark model. Since the Regge slopes
fix m = 1.05 GeV2, all four input parameters are determined.
The theoretical value for the ratio (4) is then R,~co, =0.98,
in reasonable agreement with the experimental value
R,„~,= 1.1. If M, M', and g are chosen to fix vr(140),
p(770), and X(940), then the theoretical value for 5 is

1200 MeV, in good agreement with the experimental value
of 1232 MeV.

In summary, the unified theory of hadrons provided by
the relativistic harmonic-oscillator model is successful in re-
lating meson and baryon hyperfine splittings, where the
Regge slope parameter m plays an essential role. Note that
many other models employ the usual linear mass formula
for baryons. However, the baryons satisfy the well-known
Gell-Mann-Okubo mass formula to within 1.5% when the
squares of the masses are taken. Some authors" contend
that a mass-squared formula for baryons is preferred when
the decuplet baryons are considered along with the octet
baryons. In the relativistic harmonic-oscillator model,
mass-squared formulas are obtained for both mesons and
baryons in the spirit of a unified picture based on the Regge
plots. ' Finally, the mass-squared shift due to the hyperfine
interaction is a natural outcome of the covariance of the
perturbation formula.
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