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We present and test two new methods for the numerical solution of the relativistic wave equation

(=V24m )2 (—V2 b m, )24V (r) —M(T) =0,

which appears in the theory of relativistic quark-antiquark bound states. Our methods work direct-
ly in position space, and hence have the desirable features that we can vary the potential V(r) local-
ly in fitting the g4 mass spectrum, and can easily build in the expected behavior of V for r—0, .
Our first method converts the nonlocal square-root operators to mildly singular integral operators
involving hyperbolic Bessel functions. The resulting integral equation can be solved numerically by
matrix techniques. Our second method approximates the square-root operators directly by finite
matrices. Both methods converge rapidly with increasing matrix size (the square-root matrix
method more rapidly) and can be used in fast-fitting routines. We present some tests for oscillator
and Coulomb interactions, and for the realistic Coulomb-plus-linear potential used in ¢F

phenomenology.

I. INTRODUCTION

The discovery of the # and Y resonances and their in-
terpretation as bound quark-antiquark states (cc and bb,
respectively) has prompted an interest in describing such
systems in terms of an effective local interaction potential.
Because of the large masses of the charmed and bottom
quarks, a description based on the nonrelativistic
Schrédinger equation gives a plausible first approximation
to the true relativistic problem, and good fits to the ¢ and
bb spectra have been obtained with a variety of models.!
However, relativistic effects are already important for
charmonium. While some progress can be made by calcu-
lating relativistic corrections to the Schrodinger spectrum
perturbatively,” relativistic effects on the wave functions
are hard to treat this way.> The resulting uncertainties af-
fect the calculation of physically interesting quantities.
Leptonic and hadronic decay widths, for example, depend
on the square of the g wave function for small quark
separations where relativistic effects can be large.> The
E1 transition rates are also quite sensitive to small
changes in the wave function.* It is clear also that light-
quark systems can be treated adequately only by including
relativistic kinematics from the beginning.>°

The correct quantum-field-theoretic description of rela-
tivistic bound states is given by the Bethe-Salpeter-
Schwinger equation.” We consider here a standard ap-
proximation to this equation obtained by replacing the in-
teraction kernel by an instantaneous local potential, and
by neglecting spin and the coupling of the “large-large”
and “small-small” components of the wave function.
This leads to the spatial wave equation

[(_V2+m12)1/2+(__V2+m22)1/2+ V(r)—M]lﬁ(F):O ,

(1)

where the kinetic terms involving the operation
(—V24+m?)'? are nonlocal and are defined in terms of
their Fourier transforms. This spinless Salpeter-type
equation retains the relativistic kinematics and is suitable
for describing the spin-averaged spectrum of two bound
fermions of masses m and m, and total energy M.

A basic problem in the use of Eq. (1) to describe g7 sys-
tems is the fact that the (effective) potential V() is not
completely known. Its short-distance behavior is deter-
mined by QCD to be approximately Coulombic,
V(r)~ —4ag(r)/3r, with ay(r) a logarithmically varying
running coupling. The long-distance behavior inferred
from lattice gauge theories or the string model is linear,
V(r)~Br, with B related to the string tension. While a
combined Coulomb-plus-linear potential gives reasonable
fits to the data,! the ¢7 states are in fact sensitive to the
precise form of ¥V in the joining region, and this must be
determined empirically by adjusting V(r) to fit the ob-
served spectrum. Other quantities such as decay and tran-
sition rates can then be used to test the model.

Unfortunately, neither of the two techniques used in the
past for solving Eq. (1) numerically is well adapted for ef-
ficient variation of the potential. The first is to Fourier
transform the equation and work in momentum space.’
The kinetic-energy terms in Eq. (1) are then diagonal, and
the equation can be solved as an integral equation using
standard matrix techniques. However, the transformed
potential V(p) appears nonlocally in momentum space,
which lessens our intuition on how it should be varied. In
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addition, ¥(p) must either be specified analytically in
terms of a few parameters, or the entire (large) potential
matrix must be recalculated at each step in the fitting pro-
cedure. The second method® is to expand the wave func-
tions in some complete set of basis states for which the ki-
netic terms in Eq. (1) are simple (e.g., harmonic-oscillator
or trigonometric functions), compute the overlap integrals
of the potential, and solve the resulting eigenvalue prob-
lem for the energies and expansion coefficients. Because
the overlap integrals have to be calculated, this method
again requires either that the form of the potential be

given analytically, or that large matrices be varied. With
]

d2

2 © ., '
[M,,—V(rq)]unz(r)=; fo dr'Gi(mgr,mgr') 7

where
Yt () =(1/7)ty (1) Y1 (F)

and G;(x,x’) is an expression involving hyperbolic Bessel
functions. For /=0,

Go(x,x")=Ko( |x —x'|)—Kp(x +x') . (3)

To solve this equation numerically for confining poten-
tials, we map x onto a finite interval, approximate the
second derivative by finite differences and the integral by
a weighted sum, and solve the resulting matrix eigenvalue
problem. This method is quite flexible and allows us to
build in known information about the behavior of u,;(x)
for x —0, but requires care in the construction of the in-
tegration coefficients because of the logarithmic diver-
gence of G(x,x’) for x —x’'.

In our second method for solving Eq. (1), we construct
a symmetric parity-conserving matrix D representing the
positive operator

d> 1U+1)
D= —E;;+‘—;§—‘-+m2 (4)

Using the eigenvalues and eigenvectors of this matrix, we

then construct a matrix A such that 4 2=D. Equation (1)
can be written formally as

[M, —V(r)]u,(x)
172

I+ upi(x). (5

d? 2
=Tt T

We find that replacing the square-root operator by the
matrix 4 yields essentially the same results as obtained
with the integral version of the operator described above.
This method has the advantage that one less numerical
approximation is required than in the integral scheme
(since no integrals appear) so the convergence with in-
creasing matrix size is faster. It is also easier to imple-
ment for arbitrary angular momenta.

We first review briefly in Sec. II solutions of Eq. (1)
found previously for the harmonic-oscillator and pure
Coulomb potentials which will serve as checks on the nu-
merical methods employed here. In Sec. III we discuss

either method it is difficult to apply standard fitting tech-
niques to adjust the potential.

In this paper, we describe two new methods for solving
Eq. (1). These methods work in position space so that the
potential remains local. Furthermore, we solve directly
for the wave functions, and avoid any expansion in basis
states. As a result, the potential can be varied easily. The
kinetic terms, however, remain nonlocal.

In our first method, we convert Eq. (1) to an integral

equation (we consider here the equal-mass case
mp=m;=m, )
1
+ 2D 2 @
r

r
the position-space formulation of the problem. We derive

the integral equation in Sec. IIIA and the square-root
method in Sec. III B, and present a number of test results
in Sec. IIIC. We conclude with some remarks on future
applications in Sec. IIID. In the Appendix, we give a new
derivation of the behavior of u,(r) for r—0 when the po-
tential has a Coulomb singularity at short distances.

II. OSCILLATOR AND COULOMB POTENTIALS

It will be useful to have solutions of Eq. (1) obtained by
independent means to serve as checks on the numerical
methods we will employ. We will use the Salpeter equa-
tion with the oscillator potential ¥ (r)=+r2 and the pure
Coulomb potential V' (r)=—a/r. The oscillator problem
can be converted to Schrodinger form and solved by stan-
dard numerical techniques.®* The S-wave Coulomb prob-
lem has been solved analytically.® Although the pure
Coulomb potential is not confining, our methods generate
many bound states before entering the continuum, so this
check is useful. Also, the singular nature of the Coulomb
potential leads to nonanalytic behavior of the Salpeter
wave function at the origin, and we will want to take this
behavior into account when calculating solutions with
more interesting QCD and phenomenologically motivated
potentials.

For an oscillator interaction, the Salpeter equation may
be written as

[2(p2+m ) >+ 52— M(T) =0, (6)

where we have expressed p, mgy, M, and r~1in units of
k173, with k the spring constant of the oscillator. If we
convert Eq. (6) from position to momentum space and use
the substitution r2—>—Vp2, we obtain the Schrodinger-
type equation

[—3V,2+2(p2+m, )2 —MI%(B)=0 @)

considered in Ref. 3. The momentum-space wave func-
tions are of the form

Ui (B) =6 (D) Yim (), )

with normalization
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1 0
— (p) |*p%dp=1. )
2 fo |éu(p)| P dp
The radial wave functions R, ;(r) vary as r! near the ori-
gin, and the functions r"’R,,, ;(r) have the limiting values

_._1___ e 142
27220 + D! Jy #nitorp!*dp . (10)
Equation (7) can be solved numerically using standard
methods.” The eigenvalues for general n,/ and the value
of (r~1R,;)(0) give simple checks on the accuracy of our
position-space integration of (the equivalent) Eq. (6). We
could also Fourier transform 9(B) to obtain the complete
position-space wave function, but have not found this to
be necessary.
The Coulomb problem is more complicated. The S-
wave Salpeter equation for the static Coulomb potential,

(r~'R,)(0)=

a

2<—V2+mq2)1/2-7—M Ry(r)=0, (11)

was investigated analytically in Ref. 8. The exact bound-
state eigenvalues are given by®

2mq
T (14+-a*/4nH)1?

The S-state radial wave function Ry(7) was furthermore
shown to diverge for »—0 as (mr)~"°, where vy is given
exactly by

M, , n=12,.... (12)

a ™0
1—v0+200t > (13)

Expanding the cotangent for mv/2 small, one obtains

’IT2 a"'
-1 4

2 40

2
voz%+f:7+ 5 (14)

The divergence is weak for the values of a=+a, of in-
terest for g7 states. For example, if we take a=0.25, a
value appropriate for charmonium, vy~0.086583. This
mild divergence is a consequence of our static Coulomb
approximation. It is not present in the complete Bethe-
Salpeter-Schwinger wave function because of radiative
and retardation effects which modify the Coulomb singu-
larity and the wave function at distances 7 < mq‘l.

The analysis of the singularity of R, ;(r) for r—0 was
extended recently to general / by Castorina, Cea, Nardulli,
and Paiano.!° We give an alternative derivation of their
result in the Appendix, and show that the function
r~!R,(r) diverges as r ! for r—0, with v, that solution
of the equation

Ll —tv+2)C(3vi+5
2, ( 21’+2)(f'+2):a (15)
Tl —5vi+ DI (5v+1)

m
4

2
o My w et ,
[M—V(r)]¢(r)=—8;2— fo dth— fdsr exp | —

which vanishes for «—0,
a Vrl

vy=—— +0(a?)
"2 ru43)

a
~—, I>>1.
W >> (16)

III. POSITION-SPACE FORMULATION

A. The integral equation

Because of the appearance of the nonlocal kinetic
operator (—V2+m?2)1/2, it is natural to seek an integral
form of Eq. (1). Many equivalent forms of this equation
may be found. We choose one which avoids direct en-
counters with 8-function contributions and principal-
value or finite-part integrals.

The kinetic operator may be defined in terms of its
Fourier transform,

(_V2+m2)1/2¢(i:>)
3 ==
= [av [ —1-’—(‘2’ e T e m Y e L (17
T

We rewrite this equation by extracting the operator
(—V24+m?) from the right-hand side of Eq. (17) and per-
forming the integration over the momenta, and find that

(—V2+m?)!2p(T)

Kim|7T-T"])
==V, 4mg) [ d3r'—‘4'—ﬂ—'¢<?') :

m
27 |T—T

(18)
Here K(x) is the modified (hyperbolic) Bessel function of

the second kind of order one, with the asymptotic
behavior

K, (x)~(m/2x) 2 =%, x >>v*. (19)

An application of Green’s theorem yields the form we
shall use,

(_V2+m2)1/2¢(f>)

_m_der,Kl(m—’lr—r |)(

= —V, A mIYE) .

_.,,l

| T—T
(20)

This form shows clearly the nonlocality of the operator
over regions of extent ~m ~ .
By using Eq. (20) and the integral representation

v
f°° dt
0 tv+1

we can write Eq. (1) in the form

z

2

Kv(z)=% e—t—T/A (21)

2
1

2 2, 2y, M, 2 2,0 =
(ré4r )+—21—r-r (=V, " 4+m YT )+ (m—m,) . (22)

We can now separate the angular dependence of ¥(T) by using the identity
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— =
r-r

ea

=41 3 i(arr') Yy, (6,0) Yoy (6,0) 23)
ILm

where
if(2)=(7/22)" 1} ;1 jo(2)

is the modified spherical Bessel function of the first kind of order I. The solutions of Eq. (22) are clearly of the form
Y1 (T)=R; ()Y}, (7). By using Eq. (23), the relation

1d,d IU+1)
r2 dr dr r2

V2R (P Y}, (P) = RPN Y, (P, (24)

and making the change of variable u =1/¢, we finally obtain the radial equation

2
L (r2 41

2
m ) ©
[M—V(r)]R,(r):—z—:r— fo dr'r? fo du exp ~ 7 2 il(%mlzrr')

1 ._i_r’zi+__h_l(l+1) +m12

>< — ——
v dr  dr r?

Ri(r")+(m—my) . (25)

We may evaluate the integral over u easily by writing the Bessel function i; as

I .
()= |+ | |14 | sinha (26)
u t dt tu
The result is
m 2 ®© 2
(M — V=" [ " ar'Gymyrymyr) | -y LD 4 2 60 4 my—omy) @7
T Y0 dar' r'
where we have introduced u;(r)=rR;(r) and a kernel G, given by
19 Il

Gy(x,x")=22"*! el o (V) —2)2K)((y =)' —(y +2)' 2K ((y +2)/)] , (28)
with

y=x2+x"? z=2xx'. (29)
The kernels G;(x,x’) for the three lowest / values are

Golx,x")=Ko(|x —x"| )—Ko(x +x') , (30a)

G(x,x")=Kp(|x —x'|)+Ko(x +x’)—;1-c~,[ |x —x"|Ki(|x —x"|)—(x +x")K(x +x")], (30b)

)2 "2
Gylx)= | =20 ]Ko( x—x' )= | 2EEEE Kol +x) = |21 | |x —x' [ Ky x —x'|)
x°x x°x xx
3 2 ) p
——— | =41 [(x +x")K(x +x') . (30c)
xx' | xx

In each case, Gj(x,x’) has a logarithmic singularity for x’=x.
In the case of equal quark masses, m,=m,=m,, we can remove the quark mass entirely from the kinetic energy term
on the right-hand side of Eq. (27) by using a scaled radial variable x =m,r, with the result

1
2m,

d> | 1(+1)
———+ 1
dx;2 xr2 +

M—v |-
m

1 ® ’ ’
, u(x)= - fo dx'Gy(x,x")

uy(x’) . (31

q

This form of the equation is especially useful when the quark mass is to be varied, since the complicated kinetic energy
operator needs to be calculated only once.

We will be primarily interested in QCD-motivated potentials in actual applications, that is, potentials which are of
Coulomb-type near the origin. The wave functions u;(r) then behave as P for r—0, where v, is determined by Eq.
(15).1° 1t is convenient for numerical purposes to work instead with functions which approach constant values for »—0,
and can be approximated by low-order polynomials. We therefore define functions w;(r) by
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—v;+1
! w](r) ’

u,(r):rl
and rewrite Eq. (27) as

2
[M . V(r)]w,(r):—'-n—l— fow dr'("'/r)l_v1+
T

o dr'’? r’

The rapid variations of the wave functions near the origin
are now encompassed in the kernels. For potentials
without a Coulomb singularity, we set v; equal to zero.

To solve Eq. (33) numerically, we convert it to a matrix
eigenvalue problem. We map the infinite interval [0, co ]
onto the finite interval [0,1] by the change of variables
t=(14x/b)"!, where b is a scale adjusted to keep the
wave functions of interest centered in [0,1], make the
space discrete by dividing the interval into n 4 1 regions
with ¢;=j/(n +1), and approximate the derivatives in
Eq. (33) by finite differences. In the work reported here,
we used mainly a five-point central difference scheme, ex-
cept near the end points. There we used lopsided
(Markoff’s forward difference) schemes so that only infor-
mation about the system in the sector r>0 appears.
While one might consider using the parity of the wave
functions, w;(—r)=uw,(7), to continue to r <0, and then
applying central difference formulas throughout, such a
construction assumes that the wave functions have a con-
tinuous polynomial structure across the origin. This is
not the case for the Coulomb eigenfunctions w; which
have discontinuous first derivatives at r=0, and using
such a method would slow the rate of convergence with
decreasing mesh size.

We approximate the integral in Eq. (33) by a weighted
sum, typically of five-point (Bode’s rule) form away from
singularities. Near the logarithmic singularity of G;(x,x’)
and at the »—O0 (z—1) edge where plnt diverges for
1=0,1, we construct weights which integrate the divergent
quantities exactly for w;(r) a low-order polynomial.!! We
consider here only the /=0 case, and thus construct
weights such that »" ~*Go(mr,mr’) is integrated exactly
(—1<n<3 for a five-point scheme). Furthermore, to
avoid problems at r=0,00 (#=1,0) because of infinite
contributions from Coulomb and confining potentials, we
do not include those points explicitly, but use open-point
integration schemes to include the end intervals.

These discrete approximations reduce Eq. (33) to a ma-
trix eigenvalue equation of the form

1
Gl(mlr,mlr')

d? 2(1—1/1—{-1)1 V1(21+1—V1)+

(32)
o m2 w(r')+(my—m,) . (33)
[
ZC,-jdjkwk+ Viw;=Muw; , (34)
jk

where the c;; are the integration weights incorporating the
kernel, and the dj; are the derivative coefficients includ-
ing diagonal contributions from the v; dependence and the
rest mass terms. The mass can be completely factored out
of the kinetic matrix in the case m,=m,, Eq. (31), so in
that case the kinetic matrix need only be calculated once
for a given scale b. Equation (34) can be solved using
standard matrix routines. While the matrix is full, the
matrix elements are large only near the diagonal, and the
results are quite stable.

The present method has the advantage that as much in-
formation about the nature of the wave functions as
desired can be built into the kinetic matrix. We did find
that the non-Hermiticity introduced in the matrix by the
Markoff forward-difference approximation for the deriva-
tives led to spurious states appearing in the numerical
solutions if the differentiation scheme was too large.
These solutions had highly oscillatory wave functions and
did not seem to affect neighboring states.

B. The square-root scheme

In Sec. IITA we used the discrete form of the right-
hand side of Eq. (33) as a numerical approximation to the
operator (—V2+m?)!/2, That method had the advantage
that detailed information about the form of the wave
functions for »—0 could be built in, improving the accu-
racy of the values of the wave function inside the Comp-
ton wavelength. We now develop a different approxima-
tion to this operator in which no integrals appear, reduc-
ing the number of numerical approximations by one. We
will not be able to build in the type of information
described above, but will nevertheless gain substantially in
the rate of convergence of the eigenvalues.

We begin with the kinetic operator (—V2+m?)!/2, use
the fact that ¥(T) is of the form R;(7)Y),, (), and expand
the square-root formally. This gives

k

D 1 R (1Y (P) (35)
r

|
) 172
(=V24m?)2Y(T)=m |1—?V2 R(r)Y}n (F)
o0 1 1 k
=m 2 [2 ) (—Vz)le(r)Ylm(?)
k=0 |k m
) k
-3 - N 4> 24d
=m k§0 k {mz ] dr2 r dr
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The radial wave functions R; for the free wave equation
V-p=Mq) vary as r' at the origin. It will be convenient
to use instead functions

v(r)=r~'*1R(r)

which vanish linearly with » for all /. Pulling the factor
r!=1 through the differential operators and resumming
the series, we find that

(—=V24+m)V2 YD) =r' 1A (m,Doy(N Y}, (F),  (36)
where A is the operator

A(m,l)

=p~i+ —=—+

A2 2d  1U+1) 12
e LA L N 2 1—1
dr* rdr R } ’

a2 ad A L7
=\ = +m ) . (37)
Equation (1) can now be written as
[A(m,D)+A(my,D+V(r)]o)(r)=Muy(r) . (38)

In the equal-mass case, we can again remove the m depen-
dence from the kinetic term by using the scaled variables
x =mgr(my=my=my).

Our objective now is to approximate the operator
A (m,]) by a finite matrix without going through the in-
termediate step of introducing integral operators as in Eq.

D=p—i+1 _d 24 l(l+1)+m2 S

dr? rdr r?

2
d .g_l__‘i_+2_l+ 2.

0 @ (39)

The operator in brackets in the first form of this equation
is positive definite and Hermitian, hence has real positive
eigenvalues. The similarity transformation which gives
the second form of the equation preserves this property.
Let A be the (infinite) diagonal matrix of eigenvalues of
D, and U be the corresponding matrix of eigenvectors.
Then

D=UAU"!, (40)
and 4 is given by
A=UAYUT, (41)

where A'/? is the diagonal matrix of positive square roots
of the eigenvalues.

To obtain finite matrix approximations for D and A,
we make a change of variable r =f(¢) which maps the in-
finite interval 0 <7 < oo to the finite interval 0<t <1 [we
will use B(t)=bt/(1—t?), which actually maps
— o0 <F < oo symmetrically to —1<¢<1]. In terms of ¢,

B 21 14 _ 2 .

1
B By BB |a T g

Bl

D=— (42)

dr?

(33). As a first step, we introduce an operator D =42,

We then subdivide the interval 0 <t <1 and approximate

TABLE L. Test of the square-root method for the integration of the relativistic oscillator equation,
Eq. (6), with m;=1.310. E,=M,—2m, and m, are given in units of k!/3, where k is the spring con-
stant of the oscillator. N is the size of the matrix approximation to the square-root operator. The scale
size b in the mapping r =bt /(1 —t?) is b=4 in units of k ~'/3. The rows labeled Miller were calculated
by integrating the equivalent momentum-space Schrédinger problem in Eq. (7) using Miller’s method

(Ref. 9) with N=200.

En,l

N n=1 n=2 n=3 n=4 n=35
=0 21 1.6596 3.5283 5.1657 6.6533 8.0267
25 1.6595 3.5282 5.1656 6.6548 8.0349
49 3.5280 5.1654 6.6553 8.0394

77 8.0395
Miller 1.6595 3.5280 5.1654 6.6553 8.0394
I=1 21 2.6663 4.3929 5.9424 7.3659 8.6859
25 2.6663 4.3931 5.9435 7.3706 8.7015
49 4.3932 5.9441 7.3737 8.7122

77 8.7125
Miller 2.6663 4.3932 5.9441 7.3737 8.7124
=2 21 3.6109 5.2261 6.6993 8.0612 9.3230
25 3.6109 5.2265 6.7021 8.0722 9.3538

49 3.6110 5.2268 6.7039 8.0794 8.3761
77 8.0796 9.3766
Miller 3.6110 5.2268 6.7039 8.0796 9.3765
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the derivatives by finite differences. This construction
gives a finite matrix D as an approximation for D. It is
essential that D (like D) have real positive eigenvalues.
This puts some constraints on the differentiation schemes
used. We have found it satisfactory to use central differ-
ence approximations except near the end points where we
used small lopsided schemes. We use the fact that the
eigenfunctions of D vanish at r=0 to include that point
in the differences, but can omit the row and column for
t =r=0 from the matrix. We also omit the row and
column for ¢t =1,r = «, thus imposing the boundary con-
dition that the eigenfunctions vanish there.

The rest of our construction is straightforward. We di-
agonalize b using standard matrix routines, calculate the
matrix of eigenfunctions U and the diagonal matrix of
positive roots of the eigenvalues A 172, and use Eq. (41) to
obtain the approximate square-root operator

A=UA20 ", (43)

The original continuum eigenvalue problem, Eq. (38), is
now replaced by the finite matrix problem

[A(my,D)+A(my, D)+ V15 =M?; , (44)

which is readily solved.

As we will see in the next section, this method has the
advantage of very rapid convergence of the eigenvalues as
the size of the matrices is increased. It has the disadvan-
tage that we cannot build in the known #' ™" behavior of
v(r) for r—0 in the case of realistic gg potentials with
Coulomb singularities at the origin. The eigenfunctions

of the free operators D and A do not have this behavior.
As a result, the eigenfunctions converge slowly for
mr <<1 in the presence of a Coulomb potential, and are
best calculated in this (very limited) region by extrapolat-
ing from larger r, or by the use of our first (integral-
equation) technique.

C. Numerical tests

We have applied the preceding methods for the
position-space solution of Eq. (1) to problems with oscilla-
tor, Coulomb, and Coulomb-plus-linear potentials to test
their speed and accuracy. The results are impressive.

The solutions for the oscillator potential are very well
behaved. In Table I we show the rapid convergence of the
relativistic eigenvalues with increasing matrix size using
the square-root scheme, and compare our results with
those obtained by integrating the equivalent momentum
space equation [Eq. (7)] using Miller’s method.!® The re-
sults obtained with the integral-equation method are
essentially identical. The parameters used in this calcula-
tion correspond to quite relativistic particles, and the
wave functions we obtain are significantly different from
nonrelativistic oscillator wave functions, as discussed else-
where.> As shown in Table II, the convergence of the ra-
dial wave functions r"R,,,I(r) to their limiting values at
r=0 is also quite rapid, although less so than the conver-
gence of the eigenvalues.

A second, more stringent, test of our methods is shown
in Table III, where we compare the /=0 eigenvalues ob-
tained numerically for the Coulomb potential V = —a/r
with the exact results® given by Eq. (12). The agreement

TABLE II. Test of the square-root method for the integration of the relativistic oscillator equation,
Eq. (6), with m;=1.310. All lengths are in units of k ~!/3, where k is the spring constant of the oscilla-
tor. N is the size of the matrix approximation to the square-root operator. The rows labeled Miller
were calculated by integrating the equivalent momentum-space Schrédinger problem in Eq. (7) using
Miller’s method (Ref. 9) with N=200 and then using Eq. (10).

(Ry1/7')(0)

N n=1 n=2 n=3 n=4 n=>5

=0 21 1.536 2.208 2.743 3.297 3.632
25 1.533 2.189 2.716 3.165 3.656

49 1.530 2.175 2.661 3.077 3.446

77 2.173 2.658 3.068 3.431

Miller 1.530 2.173 2.657 3.067 3.427

=1 21 1.388 2.636 3.963 5.379 6.936
25 1.385 2.615 3.949 5.278 7.029

49 1.382 2.598 3.878 5.220 6.600

77 1.381 2.597 3.874 5.209 6.592

Miller 1.381 2.597 3.873 5.206 6.587

=2 21 1.025 2.331 4,081 5.963 9.655
25 1.021 2.321 4.026 6.138 9.017

49 1.019 2.304 3.985 6.054 8.467

77 2.303 3.982 6.044 8.478

Miller 1.019 2.303 3.981 6.042 8.473
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TABLE III. Numerical tests of the integral equation and square-root methods for integration of the
spinless Salpeter equation, Eq. (11), for the Coulomb potential V(r)=—a/r for a=0.25,
mi=my;=m=1.45 GeV, and /=0. Here E,=M,—2m. The exact values are from Eq. (12). The
scale factors b are used in the mappings r =bt/(1—t?) (square-root method) and r=b(t!—1)
(integral-equation method) described in the text. The results are for a 101 X 101 matrix.

E,, exact E,, square root E,, integral b
n (GeV) (GeV) (GeV) (Gev—}h
1 —0.022 394 —0.02306 —0.02251 2
2 —0.005 648 —0.005 74 —0.00556 4
3 —0.002514 —0.002 54 —0.002 44 8
4 —0.001415 —0.00143 —0.00140 16
5 —0.000906 —0.000912 —0.00085 32
6 —0.000 629 —0.000 635 —0.000 65 32
7 —0.000462 —0.000465 —0.00043 64
8 —0.000354 —0.000358 —0.000 34 64
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is quite satisfactory considering the smallness of the ener-
gies on the natural scale 2m,=2.90 GeV defined by the
equal-mass kinetic operator 2(—V2+qu)l/ 2, We have
found in general that the eigenvalues obtained using the
integral-equation method converge less rapidly to their
limiting values with increasing matrix size than those ob-
tained using the square-root method, presumably because
of the extra numerical approximations involved in the
evaluation of the integrals. Some evidence of this
behavior appears in Table III, where the results quoted for
the integral-equation scheme are already inaccurate in the
second significant figure for n >5 as judged by more ex-
tensive calculations.

We also show the scale parameters b used in the two
similar, but not identical, mappings from the infinite in-
terval 0 <7 < « to the finite interval 0<¢ <1 used in our
procedure. It is essential for obtaining accurate energies
and wave functions that all loops in a given wave function

be well represented on our finite mesh. This requires that
b be increased roughly as n? as we look for higher states
in the nonconfining Coulomb potential. The results given
in Table III for the square-root method are taken from the
rather wide regions of stability of the eigenvalues with
respect b, e.g., 2<b <32 for n=1, 16 <b for n=4. (For
realistic confining potentials for the gg system, all the low
states can be studied using a single value of b.) We note
these energies are systematically too negative by amounts
which decrease rapidly with increasing n. We attribute
these small discrepancies to the failure of the polynomial-
ly behaved wave functions in the square-root scheme to
account adequately for the r " behavior of the exact
I=0 wave functions R, o(r) for r—0. This leads to a
small underestimate of the average kinetic energy. In
fact, the ground-state energy is given accurately by the
integral-equation method which incorporates the r 0
behavior exactly. This effect is negligible for realistic

TABLE IV. Convergence of the eigenvalues with increasing matrix size N in the square-root method
for integrating the spinless Salpeter equation, Eq. (1), for V(r)=—a/r +Br with a=0.25, B=0.18
GeV?, and m;=m,=m,=1.45 GeV. Here E,=M, —2my, and b is the scale factor used in the map-

ping r =bt /(1—t?) described in the text.

E,; (GeV)

N n=1 n=2 n=3 n=4 n=>5
=0 25 0.4924 1.0022 1.3925 1.7252 2.0205
b=7 GeV~! 33 1.7258 2.0228
41 1.7259 2.0234
49 1.7260 2.0236
77 2.0237
I=1 25 0.8345 1.2481 1.5960 1.9033 2.1793
b=8 GeV~! 33 1.5962 1.9042 2.1838
41 1.5962 1.9044 2.1845
49 1.5963 1.9045 2.1848
77 2.1850
=2 25 1.0962 1.4601 1.7792 2.0663 2.3264
b=9 GeV~! 33 1.4602 1.7796 2.0681 2.3330
41 1.7797 2.0685 2.3344
49 2.0686 2.3348
77 2.0687 2.3350
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TABLE V. Convergence of the wave functions wj ( 0)=(mqr)v’r—’ X Rp,1(7) | =0 With increasing ma-
trix size N in the square-root method for integrating the spinless Salpeter equation, Eq. (1), for
V(r)=—a/r +Br with a=0.25, B=0.18 GeV?, and m,;=m;=m,=1.45 GeV. b is the scale factor
used in the mapping » =bt /(1—t2). wy(0) is determined by extrapolation as described in the text.

w,,1(0) (GeV!+372)

N n=1 n=2 n=3 n=4 n=>5

1=0 25 0.777 0.773 0.790 0.808 0.788
b=7 GeV~! 49 0.780 0.775 0.789 0.805 0.825
77 0.779 0.774 0.788 0.803 0.819

101 0.779 0.773 0.787 0.803 0.819

I=1 25 0.265 0.365 0.445 0.524 0.523
b=8 GeV~! 49 0.264 0.364 0.443 0.511 0.577
77 0.264 0.365 0.442 0.510 0.572

101 0.264 0.364 0.442 0.510 0.572

1=2 25 0.0683 0.115 0.159 0.212 0.223
b=9 GevV~! 49 0.0681 0.144 0.159 0.203 0.248
77 0.0680 0.144 0.159 0.203 0.247

101 0.0680 0.114 0.158 0.203 0.247

confining potentials.

In Tables IV and V, we show the rate of convergence of
the eigenvalues and the wave functions at the origin ob-
tained with the square-root method for a realistic
Coulomb-plus-linear potential for the c¢ system. The fi-
nal results obtained for the two methods for N=101 are
compared in Table VI. The convergence of the eigen-
values with increasing matrix size is very rapid in the
square-root scheme, and matrices of size N=25 or 33 give
energies accurate enough for phenomenological purposes
(accuracy ~1 MeV or better in total masses >3 GeV).
This method is easy to implement, and is quite fast. Once

TABLE VI. Comparison of the integral equation and
square-root methods for integrating the spinless Salpeter equa-
tion, Eq. (1), for V(r)=—a/r +Br with a=—0.25, B=0.18
GeV?, m, =m,=my=1.45 GeV, and /=0, using a scale param-
eter b=7 GeV~!, and matrix size N=101. Here
E,=M,—2m, and w,,,o(O):(mqr)voxR,,,o(r) | r=o in the relativ-
istic case, and w, o(0)=R,(0) in the Schrodinger theory. The
results obtained using V(r) in the nonrelativistic Schrodinger
equation are shown for comparison.

Integral equation Square root Schrodinger

n E, (GeV)

1 0.4925 0.4924 0.5166
2 1.0023 1.0022 1.0556
3 1.3928 1.3925 1.4779
4 1.7263 1.7260 1.8451
5 2.0240 2.0237 2.1768

W, 0(0) (GeV372)

1 0.780 0.779 0.699
2 0.774 0.773 0.639
3 0.787 0.787 0.617
4 0.803 0.803 0.604
5 0.819 0.819 0.595

the kinetic matrix A is set up, the potential matrix may be
added and the eigenvalues determined in less than 1 sec of
CPU (central processing unit) time,'? certainly adequate
for potential fitting.

The convergence of the wave functions at the origin
shown in Table V is less rapid than the convergence of the
energies, but results sufficiently accurate for practical
purposes can again be obtained using rather small ma-
trices. Because the square-root method does not treat the
wave functions quite right for »—0, we obtained the
values of (r"'~ R, 1)(0) shown in Table V by least-squares
extrapolation from larger r, omitting the smallest two to
four values of r depending on the matrix size. This pro-
cedure is satisfactory as shown by the comparison with
the corresponding integral-equation results in Table VI.
We should perhaps emphasize that, because of the
Coulomb singularity, the rate of convergence of the wave
functions is slowest near the origin. The wave functions
for erq"1 converge rapidly, and are essentially identi-
cal in the two methods.

Finally, in Table VI we compare relativistic results for
the energies and wave functions at the origin with the
nonrelativistic (Schrédinger) results for the same poten-
tial. The relativistic corrections to the spectrum are quite
large even though the cC system is usually considered to
be fairly nonrelativistic. As a result, empirical potentials
adjusted to fit the observed spectrum will differ in the rel-
ativistic and nonrelativistic treatments, with the relativis-
tic potentials being more confining as observed in Ref. 3.
We note also that the trends of the relativistic and nonre-
lativistic wave functions are markedly different, an effect
which is significant for leptonic widths.®

D. Future applications

We are currently using the square-root matrix method
for solving the Salpeter equation to fit the spin-averaged
spectra and leptonic decay widths of the ¢¢ and bb sys-
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tems, and will ultimately include light-quark systems.
Our initial objective is to obtain a good empirical poten-
tial which incorporates linear asymptotic behavior at large
r and the expected Coulomb term with an r-dependent
running coupling at small r, and is adjusted between to fit
the observed spectra and leptonic widths. The square-root
scheme is well suited for this problem since reliable ener-
gies may be obtained from small matrix sizes, and we may
vary V(r) quite freely (a problem in other methods>9).
To simplify the calculations further, we use a relation be-
tween the value of the wave functions at the origin and
the inverse density of states derived elsewhere® to calcu-
late the leptonic widths (including radiative corrections),
and only use the wave functions as needed to correct this
relation.

Our methods are easily applied also to the unequal-
mass case, and by introducing spin-dependent terms in the
potential we hope to extend our analysis to most g7 and
qQ systems.
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APPENDIX

We will show here that the solution of Eq. (27) for a
pure Coulomb potential behaves near the origin as

R,(r)~r1—v’[1+ar—|- ], (A1)

where v; is given by Eq. (15) and a is determined below,
Eq. (A11). The leading behavior for /=0 was established
in Ref. 8, and that result was recently generalized to arbi-
trary ! by Castorina, Cea, Nardulli, and Paiano.'® The
derivation here is somewhat different from those given
previously.

We begin with Eq. (25) with V(r)=—a/r,

. 1
if(gm2rr’)

+l(l—i—l) m 2

) Rl(r')+(m1——>m2) . (A2)
rl

The terms on the left- and right-hand sides of this equation which are most singular for »—0 have no natural scale. As
a result, the equation can only be satisfied if R;(r) behaves as a power for r—0. We assume the behavior in Eq. (A1),
substitute in Eq. (A2), and retain only the most singular terms. The result is an equation which determines v,,

I—v

2
—1 my © , A= ©
ar =v1(2l+1—v,)—21-7_— fo dr'r’ " fo du exp

We next make the substitutions r'=re?, v =+m?r2e®

out of the equation to obtain the relation

_1 il (I—v)e o —v coshf; —my
a—ﬂ_vl(2l+1——v1)f__wd9e fo dve i (v)(e

The exponentials in the last factor can now be replaced by
unity for »—0. The integral over v can be evaluated,

J.” dve=reh%ym) =Qy(cosho) (A5)
and we find that
a=2v,21+1-v) [ 7 d6Qs(coshB)cosh(l —v)6 .
T 0

(A6)

The final integral can be identified as a special case of a
product formula for Legendre functions'#

m
— % — 41 (r24r?)u

2

i(xm%rr')+(my—m,) . (A3)

u in the two terms on the right and scale an overall power of r

2r299/2u+e—m22r2e8/20) (A4)
|
J.” 40 0i(cosh)coshmo d6
_Id—m4+1) O
T LU 4m+1) Q0 +ie)Qr(0—~ie)
_EF(%I+%m+%)F(%I—%m+%) e
4 T +Im+D)D(F—tm+1)

The result is an equation which determines v; in terms of
10
Qa,

Il —3vi+3$)0(3v+5)
T —5v;+1D(3v,+1)

a=2v, (A8)
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where the proper solution is the one which vanishes for
a—0,

_a Vil
27 (1 +3)
We remark that the right-hand side of Eq. (A7) is con-

vex upward between zeros at v; =0 and v; =2/ 42, is sym-

metric under the substitution v;—2/+2—wv;, and has
poles at v=2/ 4+3+2n. There are no positive solutions for

v; compatible with the boundary conditions on Eq. (A2)

except that given by Eq. (A8), and none at all for a > a,,

where a, corresponds to v; =1 +1,'°

2

v +0(a?) . (A9)

[(+1+1)

7 (A10)
il

a,=

The first negative solution occurs for

|
Vi =—2+ o+l +

o(a?),
VaT(+73) *

(A11)

corresponding to a term in R;(r) roughly of order r? rela-
tive to the leading term.

It is straightforward to extend the calculation above to
obtain the coefficient a in Eq. (A1) [but no higher terms:
the powers v~ intervene, and the exponentials in the last
factor in Eq. (A4) cannot be replaced by unity]. The re-
sult is

a =_“_81‘1/[%a2+1+1_v,(1_§v,+%)] . (A12)
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