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It is shown that the current, dynamical, and constituent quark masses, when anchored to the pole
positions, are gauge-parameter independent both at the pole and in the deep-Euchdean region. The
implications of theoretical and phenomenological quark-mass scales for chiral-symmetry breakdown
and for the bridge between the relativistic theory of QCD and the nonrelativistic SU{6) quark model
are discussed.

I. INTRODUCTION

It is becoming increasingly clear in the relativistic re-
normalizable theory of quantum chromodynamics (QCD)
that there are two physically meaningful concepts of
mass: the perturbative or current quark mass m,„„which
occurs in the bare Lagrangian (presumably due to weak
interactions) and the nonperturbative or dynamically gen-
erated quark mass md~„which dominates low-energy had-
ron physics. ' Furthermore, it has long been expected
that the sum of m,„and md~„corresponds to the con-
stituent quark mass m„„, the latter setting the scale for
the nonrelativistic quark model. ' While it is now under-
stood that the flavor-dependent current quark mass is
gauge-parameter independent, ' it is thought that the
flavor-independent dynamically generated quark mass is
gauge dependent. ' If this were true, then our ideas about
dynamical breakdown of chiral symmetry and its link
to Ul dy would be obscured, and the connection between
the relativistic and nonrelativistic quark models'
would be severed.

In this paper we show that the dynamically generated
quark mass not only is gauge independent at the pole posi-
tion, but can be defined to remain gauge independent as it
runs with the aid of the renormalization-group equation. '

Moreover, we point out that the gauge-parameter-
dependent factors 3+ a and a (where a =0 in Landau
gauge), which occur in the self-energy components of
m,„,also appear in the same self-energy components of

yn ThUs, the sum of m curr and p2 dyn al g g
parameter independent at the constituent mass pole posi-

runnj. ng
m(p )=m,„(p )+ rnz„„(p ) also satisfies the
renormalization-group equation in a gauge-independent
manner.

An explanation at this point is perhaps in order con-
cerning our use of the word "pole position" of the quark
propagator. Even though the quark is never free in the
confined hadronic phase so that the singular pole of the
quark propagator is never achieved, it is valid to identify
the running quark mass m ds„(p ) at the value p =m ds„
as the self-consistent pole position of the propagator:

2= 2
mds~ md@~(p =—md@„) ~

Similarly, while the free-particle Dirac equation is not

applicable, it is meaningful to replace p by md„„when ex-
amining this "pole position" in the context of off-shell
quark %'ard identities.

We begin in Sec. II by reviewing how the gauge-
dependent factors 3 + a and a enter the self-energy com-
ponents of m,„„ in one-loop order, yet do not enter
m,„(p ) as defined at and away from the pole position.
Then in Sec. III we borrow the self-energy components of
md~„as calculated in one-loop order and again show that
md„„(p ) as defined at or away from the pole position is
gauge independent. We also demonstrate that the gauge-
dependent effective mass

m, tt(p ) = C/D, —
where C and D are the off-shell inverse propagator com-
ponents, appears in the induced pseudoscalar part of the
axial-vector vertex, ' ' thus manifesting the Nambu'-
Goldstone' theorem only at the pole position, where
m, ~~

——md~„ is gauge independent. In Sec. IV we incorpo-
rate the anomalous dimension and

d =12(33—2n~)

into the expression for the dynamically generated quark
mass as determined by the operator-product expansion
(OPE), but now for m d„„(p ) defined in a gauge-
independent manner. This running mass mds„(p ) can
also be fed into a manifestly gauge-independent quark
loop in order to calculate the Pohtzer scale for the quark
condensate (qq )o. The theoretical relation between mds„
and A and the phenomenology associated with the scales
of the chiral-symmetry-breakdown order parameters
md„„, (qq)o, and f is then considered. In Sec. V the
constituent quark mass m„„ is shown to be gauge-
parameter independent, but only at the pole position of
the constituent quark mass. The bridge between the rela-
tivistic theory of @CD and the SU(6) nonrelativistic quark
model is then discussed. Finally, in Sec. VI we summa-
rize our results and parallel the OPE, momentum-loop,
and axial-vector Ward-identity approaches to the dynami-
cally generated quark mass with similar attacks on the
~ ~2y amplitude in order to stress the importance of the
concepts of oldyn and m«„. The Appendix is devoted to
recovering the possible running momentum structure of
the dynamical quark mass in the context of the renormali-
zation group.
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II. GAUGE INDEPENDENCE
OF CURRENT QUARK MASSES

By way of review, we consider the quark self-energy
graph of Fig. 1, where the bare fermion mass is presum-
ably generated by the electroweak Lagrangian. In a gen-
eral covariant gauge, the gluon propagator p X2(p ) ywF p

8

Bp
(7a)

where the p function and the anomalous mass and wave-
function dimensions y~ and ywF are defined in the usual
way. " Then explicit substitution of I ' '(p) from (2)—(4)
to 0 (g ) yields

I' '(p) =p —m —X(p)

with renormalized self-energy

(2)

D„„(k)=( i—/k )[g„„—(1—a)k„k, /k2] (1)

combined with the QCD coupling gq(A, '/2)yzqV'" leads
to the second-order inverse propagator (in the absence of
dynamical mass)

IJ' X1(p ) + p X2(p ) y ywF
2 ~ 2

Bp Bp

which in turn leads to the anomalous dimensions

y = —g /2H,

ywF ———g a/6H .

(7b)

(%b)

X(p) = [ap —(3+a)m] — ln
4 g2

3 16m p
(3)

where I is now the renormalized Lagrangian mass and p
is a reference mass. If we partition X into the mass-shift
(X&) and wave-function-renormalization (X2) pieces

Gauge-parameter independence of X~, the non-wave-
function-renormalization part of the self-energy, implies
gauge-parameter independence of the anomalous mass di-
mension (%a), a result dictated by the gauge independence
of the pole mass in (5).

Finally, the running current quark of QCD retains the
deep Euclidean form'

2 2

X)(p )= —m ln
4m p

Xz(p )=a 2-ln
12m p

X(p) =X~(p')+X2(p')(p —m),

then (3) can be rewritten as

(4a)

(4c)

m, „~(p )=m,„(p) ln(p /A )
i ln(p /A )

where A is the QCD energy-scale parameter, and, with

p(g) = —(33 2nf)g /4—%H,

where d is obtained in the usual way:

(9a)

The field-theory mass is the zero of the inverse propa-
gator in (2), which occurs to order g when

p=m+X&(m )—=m„„ (Sa)

(5b)

0= p +p(g) +my (g)
a

Bp Bg Bm

+5(a,g) +ywF(ag) I'"(p),
BQ

g —m2 2

=m —m ln
4m p

which is then independent of the gauge parameter a.
The pole mass has also been shown to be gauge-parameter
independent to two-loop order. As expected, quantum
field theory conspires to keep this unphysical gauge pa-
rameter from percolating into what the theory believes to
be observable physics. Rescalings of g, m, a, and the re-
normalization subtraction point also leave the physics
unaltered according to the renormalization-group equa-
tion"

d = = 12(33—2nf )
2P(g)

for nf quark flavors. To one-loop order, d is also gauge-
parameter independent, reflecting gauge independence of
the anomalous dimension y~ to this order. ' We suspect
this result to hold true to all orders; p has been argued to
be gauge independent to all orders in the dimensional-
regularization [i.e., modified minimal-subtraction (MS)]
scheme, ' while y is gauge and scheme independent
through two-loop order. It should be noted that for in-
teractions that are not purely Lorentz vector, d can be
gauge-parameter dependent. Such is the case for the weak
interactions. Nevertheless, this gauge dependence of weak
contributions to fermion masses can be shown to cancel
explicitly in the ratios of running fermion masses.

III. GAUGE INDEPENDENCE
OF THE DYNAMICALLY GENERATED POLE MASS

While the current quark mass of Fig. 1 is a perturbative
quantity, the nonperturbative mass mz„„of Fig. 2 corre-
sponds to summing over all possible gluon exchanges in

FICx. 1. Second-order gluon radiative corrections to the quark
self-energy.

gluons
FIG. 2. Dynamically generated quark mass as nonperturba-

tive infinite sum of radiative corrections to the quark line.



30 ON-SHELL CONSTRAINTS FOR PERTURBATIVE AND. . .

all orders. Here we work in the chiral limit with m,„„=0
along with m =0, the latter being the bare mass in the
QCD Lagrangian. The dynamically generated mass md„„
then owes its existence to the mass-dimension-three quark
condensate (qq)&0. On dimensional grounds alone, we
therefore expect

2m, rf(p )
I;s(p» q'} ~ ri r s —,q„rs,

q

as found from the axial-vector Ward identity

—&q&r„,=s (p+ 2q)rs+XsS (p—

(15)

(16)

md„„(p ) ~ (qq )o/p (10)

The p dependence in (10) can be interpreted as the
gluon pole in the operator-product-expansion (OPE) graph
of Fig. 3, corresponding to the coordinate-space quark
propagator

f 1 x e'i'"( T1t(x)p(0))o

as first considered in Ref. 2. For the inverse quark propa-
gator, now expressed in the chiral limit as

S '(p) =p' —X(p),

it is possible to exploit again the OPE and show that (11)
has the gauge-dependent self-energy part

X(p )=— a m „„—(3+a) 4ma ( ) ( )

(12)

by inverting (16} (i.e., dividing by q&} and dropping the
transverse gauge-dependent part. In order to render (15)
gauge independent, we must go to the pole position
p =mdy„, at which point m, g~

——mdy„as weH, the latter
being gauge independent by (14). Thus, once again it is
pole mass [in (15)] which reflects the physical (Nambu'6-
Goldstone' ) induced pseudoscalar m =0 pole structure
of the axial-vector current. This gauge-independent result
was obtained by Nambu' for on-mass-shell free fermions
instead of the off-shell confined quarks considered here,
but the conclusion is the same in either case.

IV. INCLUSION OF THE ANOMALOUS DIMENSION
IN THE RUNNING NONPERTURBATIVE MASS

If we were to generalize Politzer's OPE analysis for
running nonperturbative quark mass in an arbitrary
gauge, we would find

r

1 g'(p') g'(p'}
eff P =

3 2 P 2)

We differ from Ref. 8 only in that the mass in (12) must
be the self-consistent dynamically generated mass X ((qq)~ )0

3+a (p')
(17)

~dyn ~dyn~P dyn (13)

rather then the Lagrangian mass m which vanishes in (11)
and (12) in the chiral limit.

Comparing (12) with (3), we see that the gauge depen-
dence for the current and dynamical self-energies is iden-
tical at the pole mass p=mdy„and p =md„„by (13).
Separating off the gauge-dependent self-energy part Xi as
in (4), it is again obvious the mass-renormalization part X&
in (12) is gauge independent at the pole:

where M is now the renormalization-point mass and the
gauge parameter a(p ) also runs. Once again, if we an-
chor meff to the pole mass p =mdyz equivalent to the
self-consistency equation (13), the gauge-dependent factor
a (p ) disappears as in (14). Since

is renormalization-point invariant, i.e.,

, &qq&o
1(p ™dyn) ™dyn ~s(mdyn

3 mdyn

((qq}M )o-(InM )

(14)
it is clear from (17) that'

This result follows directly from Ref. 2 in Landau gauge
with a =0 (up to a factor of ——,', missed in Ref. 2). The
work of Ref 8sugge. sts that the gauge independence of
(14) holds only in four dimensions.

There is a second dynamically generated quark mass
m, f~ defined directly from the inverse quark propagator
S '=C+Dp as m, ff= C/D. It appears in th—e axial-
vector vertex part

FIG. 3. Leading operator-product-expansion gluon pole
graph for Tg(x)g(0)

2 1 —1
( 2) M

(Mp) ln(M /A )

ln( /A )
(18)

in the deep-Euclidean region. %'e require that this non-
perturbative running mass (18) satisfies the self-
consistency equation (13) and is therefore gauge-
parameter independent even for p &mdy„.

While (18) is a stronger relation than (17), the
coordinate-space OPE condensate scale of (14) or (17) is
lost. It can, however, be regained by direct computation
of ((qq)M )o via the momentum-space graph of Fig. 4 us-
ing only' ' the running mass (18). In particular we have
for three-quark colors

md„„(p ) o:p (Inp )"

is independent of M. We may express this result in a
manner analogous to (9) as
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X'

FIG. 4. Momentum-space quark loop for ((qq)M)0. The
dark circle represents a dressed quark propagator with mass
mz„„(p2}.

&(qq) ).= —3X4 „dp ...{p')
(19a)

may (M )M ln(M /A ),
4 d

(19b)

—((qq)M)0 —— a, '(M )M mz„„(M ),
4m

which is then the obvious generalization of the gauge-
independent pole mass relation (14). Apart from recover-
ing the Politzer scale of (17) (for a =0), the momentum-
space-loop graph of Fig. 4 contains no explicit gluon
propagators; consequently, this figure and (19)—(20) are
manifestly gauge independent.

In the Appendix, the pole mass of the fermion propaga-
tor is shown to satisfy a gauge-parameter-independent
renormalization-group equation from which either the
[g (p )] structure of (9a) or the p z[g2(M2)]" OPE
structure of (17) are realizable.

Having discussed mz„„(p ) from the coordinate space
OPE, the momentum space Feynman integral (19), along
with the renormalization-group approach of the Appen-
dix, we now extract the scale of mdy„ from the quark con-
densate determined' at M = 1 GeV with value

{(qq)M ~o=(249 MeV)

Since M-1 GeV roughly corresponds to the strong-to-
weak-coupling freeze-out region, we can combine (10)
and (13) to obtain

mph'„(M )=mph„ /M (21)

Then, substituting (21) back into (20), we recover (14) or'
'~ 1/3

mph„—— — a, (M )((qq)M )pyIl 3 s =319 MeV (22)

for the accepted value a, (1 GeV )=0.50, the latter ob-
tained from the ss P meson, the cc P meson, nonleptonic

where we take the renormalization-point deep-Euclidean
prescription for M in {19a)as corresponding to the upper
limit in the integral. We have also employed (18) in the
deep-Euclidean region with y = —p, d p =imydy, an.d
mz~„{—y) =mz~„{y) for y & 0 in order to go from (19a) to
(19b). Then using the asymptotic-freedom QCD cou-
pling'

a, (p )=ird/1n(p /A2),

we may convert (19b) to

hyperon decays' and the phenomenologically determined
AMs(5)=150 MeV, and AMs(3)=250 MeV for five and
three quark flavors, respectively ' [recall the gauge in-
dependence of 13 in the MS renormalization program' ].
The fact that mq„„ in (22) is near the weak-binding value
mq„„=mz/3= 313 MeV is as expected; other estimates of
mdy„range between' 310 and 320 MeV.

Apart from the phenomenological determinations of
md„„, there is a recent theoretical calculation based on
the gap-equation approach of Nambu and Jona-Lasinio. '
The chiral-invariant Lagrangian (with mo ——0) is parti-
tioned into a massive free-particle part and a counterterm
at mass md„„. The second-order radiative corrections in
Fig. 1 then refer to the "physical" pole mass in the chiral
limit mz„„which is kept independent of p . To order g,
the self-energy preserves this mass md„„ if we have to
one-loop accuracy a mass shift, including finite surface
terms calculated in the MS renormalization scheme

X mdyn ln
2 + (23a)

a, (p )=ird/ln(p /A ),
the renormalization scale p in (24) can be eliminated in
favor of A, leading to

3/6
mdyn =&e (25)

This mass represents the summation of the "leading-
logarithm" components of the self-energy graphs in Fig.
2. [Note that naive application of this approach to (23)
rather than (24) could not have resulted in an expression
like (25) which is independent of p.] The exponent —, in
(25) stems from the surface term of —,

' in (23a). While the
latter is a Landau-gauge result, if one works in a general
gauge, (23a) is more complicated but the end result (25)
remains unchanged. In Ref. 22 it is shown that (25) also
holds in two-loop order.

Again we observe that (25), although first derived in
Landau gauge beginning with (23a), is in fact gauge-
parameter independent because the self-consistency (pole)
condition (23b) ensures that the gauge parameter a enters
into only the wave-function renormalization, but not into
mz„„as in (5) and (12) at p=mq„„and p =m~„„. Thus,
assuming that {25) is vahd even in higher orders and
remains gauge independent, it is a fundamental result re-
lating the nonperturbative mass parameter to the energy

where the subtraction point mass p, as in (5a) now replaces
the usual QED ultraviolet cutoff. When (23a) is com-
bined with the analog of (5a) or (13), the self-consistent
pole-mass equations

(23b)

for mo ——0, the nonperturbative mass m&„„&0 cancels
out. The renormalization-group-improved version of the
gap equation (23) is then

2
o's mdyn 1

ln
KG p 3

Since
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fmgnqq™dyn . (27)

When this is combined with (18) and the Feynman loop
for the axial-vector matrix element {0

~ A„~ m. ) in Fig. 5
as q~O, we obtain

scale A of QCD. In fact, (25) is the QCD analog of the
BCS equation for the superconducting gap energy "
5=2raze, where twice the Debye energy 2~a is the ul-
traviolet cutoff (of order melting energy) suppressed by
the exponential factor e —10 . In (25) the QCD ener-

gy scale A acts as an infrared cutoff enhanced by the ex-
ponential factor e '~ = 1.18. For AMs(3) =250 MeV corre-
sponding to a, (1 GeV) =0.50 and a, (3 GeV) =0.28, (25)
predicts

(26)

but since A =267 MeV increases a, only slightly higher to
a, (1 GeV)=0.52 and a, (3 GeV)=0.29, the associated
value md„„-315 MeV is almost as reasonable a conse-
quence of (25) as is (26).

One immediate application of the deep-Euclidean
gauge-independent form (18) and scale (22) is in the calcu-
lation of the infinite-range integral for the pion decay con-
stant. ' In the chiral limit, the Goldberger-Treiman re-
lation at the quark level extracted from the axial-vector
current (15) is

V. GAUGE INDEPENDENCE
OF CONSTITUENT QUARK MASSES

Away from the chiral limit, the quark masses in the
uaI k propagatoI' and ln the I'enorIDallzatlon-group

analysis are the sum of the flavor-dependent perturbative
or Lagrangian masses and the flavor-independent nonper-
turbative quark mass ' all of which run:

m;(p )=I;,„„(p )+md„„(p ), (30)

where i =u, d, s are the SU(3) quark flavors. Since the
gauge-dependent structure of the self-energy parts in (3)
and (12) are identical at the constituent pole position, now
at

~dyn 319 MeV
g « f. 90MeV

The gauge-independent nonperturbative running quark
mass thus plays a key role in (20), (22), and (29), and as
such, unifies the quark nonperturbative "order parame-
««" of QCD: &qq)o, indy„, f . The superconductivity-
type relation (25) then relates all of these nonperturbative
energy scales back to the QCD energy-scale A in a gauge-
independent manner.

3X4 g iyidyn(p )
n' n'Igloo

( 2 )
4

2= . 2~i,con=mi{p =~i,con ) ~

(28a)
the gauge-dependent coefficients a cancel at

(31)

2
-0.92,

iyidyn 0 [y +indy„'( —y)]2
(28b)

converging in the ultraviolet region due to the p struc-
ture of (18) for the numerator mass in {28b) and in the in-
frared region due to the p of (10) in the denominator
mass in {28b). In the infrared region we may alternatively
cut off mdy„(p ) at mdy„-315 MeV. The dimensionless
bound-state m.qq coupling constant is then

(29a)

quite close to the ratio determined directly fmm the
Goldberger-Treiman relation (27) using (22) along with
the chiral-limiting value' ' f =90 MeV:

FICx, 5. Pion matrix element of the axial-vector current.

in analogous fashion to the quark-loop integral (19a), so
that the nonperturbative mass scale mdy„&0 cancels out
as in (23). The resulting dim ensionless integral for
y p2 is11, 12

2= . 2~(P= ni, coni p =mi, con

both in (3) and in (12). This occurs self-consistently for I
in {3) now corresponding to m; co„with radiative correc-
tions computed fmm Fig. 1 and in (12) with mdyn re-
placed by m; „„which are the masses in the quark con-
densates {uu )0, {dd )0, {ss)oaway from the chiral limit.

As a further check on the consistency of (30) and (31),
we note that mc„~(p ) and md„„(p ) are separately
gauge-parameter-independent solutions of the pole-mass
(i.e., constituent-mass) renormalization-group equation
developed in the Appendix when the self-consistency re-
quirement (31) is imposed. Consequently, the sum of
these two masses in (30) is also a solution.

Given that the constituent quark masses determined by
(30) and (31) are gauge independent and run in a manner
consistent with the renormalization-group equations, we
may express {30)in each flavor sector according to'0

~(p') =yyi.. (p')+indy. (p')

for average nonstrange mass I= (m„+ m~)/2 and

m, (p2) =m„(p ) + may, (p ) .

The nonrelativistic SU(6) quark model and, specifically,
the observed baryon magnetic moments require

m,o„=340 MeV, m, «„-510MeV . {33)

Evaluating (32a) at p =m„„, (32b) at p =m, „„,em-
ploying (31), and the flavor-independent dimensionful re-
lation (21) below freeze-out (at M-I GeV), the ratio of
(32b) to (32a) leads to the unique current quark mass ratio
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PP1$

m . curr

3~$ con m con

Pl~con ~dyn S,Con

=3.5 to 6.8 (34)

for md~„-295 —320 MeV and constituent quark masses
(33).

Apart from the debate between strong- and neutral-
PCAC (partial conservation of axial-vector current)
current quark mass ratios, ' ' we stress that (34) is (i)
freeze-out and running-mass independent since the p 's in
(32) are below —1 GeV, and (ii) completely gauge-
independent and therefore believable if m q„„=310+10
MeV. Only if md„„-m„„will the ratio in (34) approach
the strong-PCAC ratio -25. But then (32b) implies
m, ,„(1GeV )-370 MeV, still too high to satisfy
strong-PCAC advocates. However, (34) as it stands is
perfectly compatible with neutral PCAC. Whatever the
outcome, we are hopeful that (32)—(34) buoyed up by the
gauge independence of the quark masses will provide a
tight link between relativistic QCD and the nonrelativistic
quark model.

VI. CONCLUSION

In this paper, we have shown that when the current,
dynamical, and constituent quark masses are anchored to
their respective pole positions, then their running values
remain gauge-parameter independent for covariant gauges
throughout the deep-Euclidean region. This result is not
surprising in that QCD parallels QED because the vector
nature of the massless bosons in both theories blocks the
gauge parameters from percolating into the "physical"
quantities.

Apart from the gauge independence of the quark
masses, we have focused on the nonperturbative mass
scale of md„„as seen from three independent formal
viewpoints: (i) Operator-product expansion of P(x)g(0) in
coordinate space, (ii) momentum-space quark-loop graph
for ((qq)M )p, and (iii) axial-vector Ward identity and the
PCAC induced pseudoscalar pole term m~„„/q . These
three steps have their analogs in the m. ~2y problem: (i)
Point splitting of the axial-vector current
P(x+@)yzy5$(x —e) in coordinate space leading to the
anomalous divergence term, (ii) momentum-space
(quark-) loop graph for n ~2y using g qqqy5qm leading
to ' E~r —— (a/m f ), and (iii) axia—l-vector Ward iden-
tity with the anomalous divergence term and PCAC lead-
ing to E~r —— (a/~f ), in complete —agreement with

(ii) and experiment.
The parallel between md„„and m ~2y convinces us

that one cannot dismiss the theoretical or phenomenologi-
cal consequences of this nonperturbative flavor- (and
gauge-) independent quark mass md„„. It is related to the
other dynamical chir al-breakdown order parameters
(qq )p f~ and to the QCD energy scale A. Its flavor-
dependent partners, the nonstrange and strange constitu-
ent quark masses then provide a strong link between rela-
tivistic QCD and the nonrelativistic SU(6) quark model.
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APPENDIX: CiAUCxE-PARAMETER-INDEPENDENT
RENORMALIZATION-GROUP EQUATION

FOR THE NONPERTURBATIVE POLE MASS

Following the methodology of Ref. 15, we begin by in-
troducing a renormalized fermion mass parameter mR
that is nonvanishing even in the limit that the bare La-
grangian mass mo is zero, the chiral limit. Formally, this
construction is possible through the relation

m„=z '(A/p, g) mp(A) (Al)

—Pig
BmR

A(KP, . . . ) .

Our concern, however, is with the propagator pole,
which is mRG(p)F '(p) evaluated when p is equal to
(mz, ~, ) . It is precisely this self-consistency condition that
ensures gauge-parameter independence of the pole mass in
Sec. III. Define a quantity

m~(, (Kp, mR, gR, aR,p) =mRG(Kp, . . . )F (Kp, )

=mRg(KP, . . . ) . (A3)

The dimensionless quantity g(KP, . . . ) satisfies the
renormalization-group equation

provided mo and Z approach zero at the same rate as
A~ oo. ' The parameter mR is not to be identified with
the physical fermion mass m~~„which is defined to be
the pole of the renormalized fermion propagator S(p). In
order to develop a renormalization-group equation for
m~, ~„we note that the unrenormalized fermion propaga-
tor is subtraction-point independent:

fz2 '(A/V g..*a..)S '(p»e, mR, gR aR)1.
dp

One can obtain the renormalization-group equations given
in Ref. 14 for the dimensionless coefficients F and G de-
fined by

PE(P 1™RgR aR )™RG(P P mR gR aR )

provided rescalings of the momentum are consistent with
the absence of canoni. ca1 mass dimensions in I' and G. In
other words, we demand that

& (KP I™RgR aR) =& (KP/P mR/P gR aR)

for A =F,G, in order to find that

P A(KP, . . . )=—K A(KP, ~ ~ ~ )
a

Bp BK
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+P(g) —[1—1' (gR)lmR +1'

Bmg

such that g(l,gR)=gR, m(l, mR)=mR. These solution
properties are satisfied provided

Xg(~p, . . . )= —5(uR, gR ) g(~p, . . . ), (A4)
BQg

dtc' dg(& gR) dg'

P[g«' g'R)l P(g') ' (A8)

P(gR)=i
&

gR«/I, g..) I~., „

is negative, and where y~, defined by

Pl g IC' K
m(K, mR)= cxp 1'~(g(& igR)) g

K

(A9)

with solution

Xg(~, . . . )=0,

g(x,gR, mR, IJ ) =g( l,g (a,gR ),m (~,mR ) )

&~" &R ~ y (g')dg'

P(g')
(A6)

Note that all p dependence of g must run through a such
that «-p '. Running values of g(v, gR), m(a, mR) are
solutions to the homogeneous renormalization-group
equation

+P(gR)
BK Bplp

g (~,gR)
y,

( )
——0, (A7)

mRr (gR) =V mR(»I )
Bp

=mR(»p)A In[Z~(A/p)],
BA

is also negative [y (g)= g /2—tr ] Gau. ge-parameter-
dependent wave-function anomalous dimensions

y(g) =pz, '(A/p)-(az, /aI )

appearing in renormalization-group equations for F and
6 do not enter into the equation for g. From Sec. III, we
know that the explicit gauge-parameter dependence of
g(ap, . . . , aR ) will vanish provided a =m~I, /p. Hence, if
this self-consistency requirement is met, the right-hand
side of (A4) will vanish. Formally, m~, I,(m~, I, )

=mRg(x), where g(v) is the solution to the gauge-
paraI11ctcr-Independent IcnoITIla11zation-group equation

T

—~& +P(g)
&

—[1—1' (gR)lmR
&

+}
BK BmR

We note that the solutions (A6) contain an arbitrary func-
tion of g (~,gR ) and m (~,mR ). Such solutions are yggr,

however, arbitrary functions of p when p dependence is
dctcrmtncd by thc Icp m p()Ie self coIls1stcllcy colldlt1011
For example, a solution for the pole mass that has no
dependence on powers of p is obtained from (A6) by de-
fining

g( l,g(~,gR ),m (a, mR ) )=N,
where W is some arbitrary constant. %C see that no
powers of ~ are present in the solution for g(a. ), leading to
the result

mpoIq(lcp =mpoIe) =NmR (A10)

This solution corresponds to the current quark mass. Of
course, g (R', gR ) can enter any solution of g(v) to arbitrary
powers, as g (x,gR ) is a solution of (A7), the homogeneous
renormalization-group equation. The true significance of
(A9) is that the power of gR, the unrescaled coupling, is
not arbitrary; gR dependence follows from insisting
that g(a) not depend on powers of a, which are inverse
powers of p '. Indeed, this gR

Id dependence corre-
spo11ds to thc [g (p )l dcpcIldcllcc occllrrlllg wlt11111 ('9a),
as g (p) is the unrescaled coupling in (9a).

A solution for m~1, (ap =m~, &, ) that goes like p
(llcIlcc, ltkc K ) Is obtaIncd by 11av111g

g( l,g (II',gR ),m (R, mR ))—[m (a., mR )]

Then we see from (A6) and (A9) that

P~)-~'[g'(~, gR)/gR'] ', (Al 1)

a solution which correlates p dependence of the dynam-
ical pole mass with gR2~ dependence of the unrescaled
coupling. Such a correlation is manifest in the [g(M)]~
dependence of the unrescaled coupling occurring in (17).
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