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%'e propose an extension of the old, fairly successful, phenomenological prescription for adding
spin-1 fields to the chiral Lagrangian of pseudoscalar mesons to the case where the %ess-Zumino
term is present. This leads to the possibility of describing within the effective-Lagrangian frame-
work a whole class of "unnatural-parity" hadronic reactions. In particular, we study the well-

kno~n (pure hadronic) co~3vr and (radiative) co—+m. y processes, and find good agreement with ex-
periment, comparable to that for any of the current-algebra "theorems. " The construction of the
Lagrangian is seen to involve subtle theoretical issues. %'e are led to examine in more detail
VA'tten's "trial-and-error" gauging of the Mess-Zumino term and note that the Bardeen form of the
anomaly seems more suitable than the left-right-symmetric form for constructing an effective model
with phenomenological spin-1 fields.

I. INTRODUCTION

where F =135 MCV is the pion decay constant. Notice
that the quark model suggests that one deal with nonets
rather than octets. The chiral Lagrangian for pseudosca-
lar interactions at low energies takes the form

Wo ——— Tr(B„Ui3„U ) .
8

A chiral-symmetry-breaking term proportional to

g m, U„+H.c. ,

(1.2)

where the m~ are the "current-algebra" quark masses,
mocks up the transformation properties of the underlying
quark theory and can be added to (1.2). This will then sa-
tisfactorily describe the masses of the octet of pseudosca-
lars. The mass of the ninth pseudoscalar g' cannot be un-
derstood in the framework of mocking up the classical
transformation properties of the fundamental QCD La-
grangian. Ho~ever, it can be understood by introducing a
phenomenological pseodoscalar glueball field to describe

A widespread hope is that QCD at low energies can be
understood in terms of an effective Lagrangian construct-
ed out of phenomenological fields. In this approach one
aims to build on the successful chiral Lagrangians of the
last generation by including features specific to QCD.
Thc chiI'al models CRn bc considcI'cd to bc bRscd OIl thc
"order-parameter" multiplet M,b transforming like the
quark-field combination qz&qL, . The theory should con-
firm that M condenses in the chiral phase, (M,b )&0. In
this case it is often convenient to make a polar decomposi-
tion M= UH, whcI'c U = U and H=H, RIld approx1-
mate the "heavy" scalar fields H by a constant propor-
tional to the unit matrix. The usual nonet of light pseu-
doscalar mesons P can be related to U by

the quantum features of the U(l) axial-vector anomaly.
The closely allied trace anomaly of the energy-momentum
tensor can be similarly modeled with the aid of a scalar
glueball field and seems to provide an intriguing link with
confinement physics. Thus, one gets the impression that
modeling the symmetry properties of the underlying QCD
theory with spin-zero fields and, especially, taking into ac-
count the quantum anomalies yields a reasonable starting
point for further development. This is the point of view
we shall take heI'c. In particular, we would like to study
some aspects of the Wess-Zumino term which describes
the non aphelian -anomaly structure of QCD with the field
U of (1.1). This term was actually found a long time ago
as a "leftover" piece when the chiral model was coupled
to electromagnetism, but since it describes only physical
processes at least as complicated as KK—+3m, it has until
recently played no role in the discussion of purely hadron-
1c physics.

Our study shows that the bless-Zumino term can be
generalized to encompass simpler processes than KE—+3m.

if onc includes spiI1-1 Rs well as spin-0 mcsons in thc ef-
fective Lagrangian. The results we get for the vector-
meson co widths agree rather well with experiment. There
are a number of interesting theoretical issues which are
discussed at appropriate points in the text. Section II con-
tains a brief summary of the Wess-Zumino term and the
possible hadronic physics it may describe. In Sec. III we
review the old (reasonably successful) prescription for
adding spin-1 mesons to the spin-0 chiral Lagrangian and
suggest a generalization in the presence of the Wess-
Zumino term. The formal problem of "gauging" this
term as discussed by Vr'itten is reviewed in Sec. IV. Sec-
tions V and VI are devoted to a discussion of the influence
on our effective Lagrangian of the well known ambiguity
in the specific form of the non-Abelian anomaly in the
underlying quark theory. To reproduce the m —+@y
theorem one requires Bardeen's rather than the left-right-
symmetric form of the anomaly. The pure hadronic de-
cay 60~3'IIis found ln S'ec. VII to be well described by
our model. The present effective Lagrangian, used in con-
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junction with vector-meson dominance, can also describe
radiative decays of hadrons. In Sec. VIII we apply this
successfully to the simple process co~ny . .While the
specific processes discussed in this paper have of course
been treated in a similar fashion in the past, the distin-
guishing feature of the present approach is the determina-
tion of all vertices directly from the coefficient of the
Wess-Zumino term and Sakurai's p-meson coupling con-
stant. A brief summary and directions for further work
are given in Sec. IX.

a=(B&U)U 'dx"=(dU)U

P= U 'dU= U 'aU .
(2.1)

a and P transform as nonets under the left and right U(3)
fiavor groups, respectively. The Wess-Zumino term in the
effective action, I wz, can be presented in two alternative
ways

I wz=C f,Tr(a )=C f,Tr(P ) . (2.2)

Here the integral is over a five-dimensional manifold
whose boundary is ordinary Minkowski space. The con-
stant C is determined, by gauging (2.2) with electromagne-
tism and comparing with the current-algebra m ~2y am-

plitude, to be

—LXcC=
240m.

(2.3)

where X, =3 is the number of colors. Equation (2.2) is
not only elegant but convenient for practical calculations.
For example, let us find the first term in the expansion in
terms of pseudoscalars. This will come from the first
term of a=(2i/F )dP+. . . Then

2I ~z=c

=C 2

2L=C

f Tr(dg) +

f,d Tr[P(dg) ]+ .

+ 0 ~ ~

f d x e" ~Tr(PB~PBPB PBP)

+ 0 ~ ~ (2.4)

II. THE %ESS-ZUMINO TERM

This term ' ' ' can be most compactly written using
the language of differential forms. ' From the matrix U
in (1.1) we construct the two one-forms

QCD. He observed that, without I wz, the effective ac-
N

tion will only allow processes for which ( —1) ~, where

X& is the number of pseudoscalars, is conserved. On the
other hand, this is not a selection rule for QCD itself. We
see from (2.4) that I wz describes the low-energy limit for
reactions such as ECÃ~3m (me~3~ is prohibited by 6
parity). Unfortunately, this is not an easy thing to test.
At this point a very natural question is whether there

might be some easier way to test the physics represented
by I wz. To answer this question we start by noting that
VA'tten's criterion that a new term produce processes
violating ( —1) ~ conservation is simply another way of
saying that we look for new processes whose amplitudes
are (nontrivially) proportional to the Levi-Civita tensor

e„~p. This suggests introducing other low-mass particles,
such as spin-1 vector and axial-vector mesons, and focus-
ing on processes for which the product of an intrinsic par-
ity number for each particle is not conserved. [The intrin-
sic parity number is taken to be + 1 if the particle
transforms as a true tensor of the appropriate rank and
—1 if the particle transforms as a pseudotensor of that
rank (e.g., n, y, p, and A &, have numbers —1, + 1, +1,
and —1).] m.0~2y is such a process. We have in mind
the study of such purely hadronic examples as co~3m and
K*~Emw, for which experimental information exists.
This gives us a strong motivation for investigating the
proper way of adding spin-1 mesons to the chiral La-
grangian of spin-0 particles, including terms proportional
to the Levi-Civita symbol.

III. CHIRAL LAGRANGIAN %ITH SPIN-1 MESONS

B„U~(BpU igA„I U+igUAqs), — (3.2)

where g is the phenomenological gauge coupling constant.
Its magnitude is equal to W2f~, wherc f~ (Sakur»'s
notation) is related to the experimental p~2w width by

There is a very well studied and phenomenologically
successful traditional method' of adding spin-1 mesons
to the spin-0 meson chiral Lagrangian. This method is ul-

timately based on the old "vector-meson dominance"
pioneered by Sakurai. Although, as we shall see, certain
subtleties arise when it is applied in the presence of the
Wess-Zumino term, let us first review its salient features.
It is convenient to introduce left- and right-handed spin-1
mesons Al& and Az& which are related to the vector and
axial-vector mesons V& and 3@ by

AL„= —,'(V„+A„), Ag„—,'(V„A——„) . —(3 1)

The couplings of these mesons to (composite) matter
fields are considered to be the same as if one had a gauge
theory; namely, the derivative in (1.2) is replaced accord-
ing to the prescription

where M is ordinary Minkowski space and the general-
ized Stokes' theorem was used in the next to the last step.
(The relation d =0, which was used in the first step, sim-
plifies many manipulations involving differential forms. )

Witten has given an interesting motivation for the
presence of I wz in the low-energy effective action for

(3.3)

(3.4)

( q„ is the pion momentum in the p rest frame) yielding

(f )"P 30
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In deriving (3.3) we have assumed that tlM p'jT77 vertex has
a minimal momentum dependence. This actually corre-
sponds {in the notation of the second of Refs. 15 which
we are here following) to a suitable choice of the param-
eter g [see Eq. (24) and the subsequent discussion of this
reference]. A strong justification for this procedure is the
experimental near equality of the pm+ and pe% coupling
constants. It should, however, be stressed that this is not
a fundamental gauge theory. The way in which this
phenomenological prescription differs from a fundamen-
tal gauging prescription is in the necessity for vector and
axial-vector mass terms. Thus, one includes the following
spin- I-meson teIms

——, Tr(Fq, Fq„+Fq, Fq, ) mp T—r(A~I Aql +AqgA„R),
(3.5)

F„„=B„AI B„AI.—„ig[ AL—,„,Al.„],
etc., where for simplicity we have neglected SU(3) break-
ing. mz is the mass of the p meson. In this model the
difference between the mass of the p meson and the mass
of the A, meson is supplied by a partial Higgs mechanism
leading to the reasonably well-satisfied relation'

g2j' 2 ply—IP (3.6)

and thus not introducing the axial-vector fields has the
disadvantage that it leaves one with a set of fields which
do not even allow the kinetic terms [see (3.5)] of the La-
grangian to be globally chiral symmetric. The needed
generalization of I wz which forms the raw material for
our subsequent discussion has been discussed for different
purposes by Witten and in the original paper of Wess
and Zumino. Witten's form has the advantage of being
explicit, enabling one to read off various relevant vertices.
We shall give a rederivation of Witten's form in Sec. IV.
This will enable us to discuss some points of interest in
the present connection as well as to correct some small er-
rors in his expressions.

IV. VEESS-ZUMING TERM %ITH SPIN-1 MESONS

I wz(U) =C f,Tr{a ) . (2.2')

The points that we would like to discuss can be illustrated
simply by first considering the gauging of the Wess-
Zumino term under electromagnetism. We thus consider
the variation

In this section we would like to clarify some of the
steps involved in Wittens gauging of the Wess-Zumino
term,

(F is [see (3.7)J the pion decay constant. ) We note that
if the vector mass term in (3.5) were not present the ordi-
nary pion would be completely eaten up by the 3]—this
underlines the crucial manner in which the present La-
grangian differs from a true gauge theory. The pseudo-
scalar and axial-vector fields mix with each other and one
obtains the physical (tilde) quantities

5 U=ie[Q, U],
where Q is the SU(3) charge matrix

2
3

(4.1)

(4.2)

Under the local variation (4.1), I wz changes by

51 wz(U)=5Ci f,de Tr[Q(a —P')] . (4.3)

' —]./2

Z= I+
4m'

(3.7) From (2.1) we observe that the even powers of a and P
are exact f0%118, 1I1 particular)

0=dA —A =dc' —cK

How should this procedure be modified when I wz is
present? The most satisfactory answer to this question
should probably come from an attempt to derive a
phenomenological meson model directly from the generat-
ing functional of @CD. At the present time this seems
complicated so we shall simply generalize the prescription
above in the sense that we require the effective theory to
possess Rs much local-flavor 1nvariance Rs possible. In
other words, we attempt to mock up the non-Abelianga-
uor transformation properties of @CD with the
phenomenological V@ and A„ fields. Since I"wz is in fact
Rn anomaly term 1t is of course impossible to make the ef-
fective model invariant under the full U(3)L ~U(3)~
group of local transformations. One could choose to
gauge an anomaly-free subgroup like SU(2)L )&SU(2)z or
U(3)y, However SU(2)L &&SU(2)x does not permit us to
include the co meson which is very important for
phenomenological purposes. Furthermore, gauging U(3) z

O=dP+P =dP +P
This shows that the integrand of (4.3) is an exact form:

51 wz(U)= —5Ci f,d Ide Tr[Q(a'+p')]I

5A=de

and we consideI'

(4.6)

I'"(U,A)=I wz(U)+5Ci f,A Tr[Q(a +P )] . (4.7)

Thus, the variation of I ' '( U, A ) is

= —5Ci f,de Tr[Q(a +p )], (4.5)

where in the last step, Stokes' theorem was used and the
integral is over Minkowski space M =8M . We now in-
troduce the gauge field A& and the one-form A =Azdx&,
with the transformation property (setting electric charge
e=1)
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(4.8)

and a straightforward evaluation, paying attention to the
anticommutativity of one-forms, gives

5I'"(U, A ) =+10Cf,de 2 Tr[Q (a —P )

+Qd(U ')QdU] .

Q d(U ')QdU=d[aQU 'QdU —bQd(U ')QU] .

(4.11)

In the last expression a and b are arbitrary constants
satisfying a+b=l. Wittens choice at this step corre-
sponds to taking a =0, b =1. However, as we shall see,
parity invariance requires a =b = —,. %e can now proceed
by integrating by parts and bringing the differential d to
act on 3,

At this point, we cannot simply go to the next step in the
procedure by replacing de by A, since A =0. Instead, we
observe that the quantity inside the trace is a closed form.
It can actually be written as an exact form:

(4.10)

=10Cf,dedA Tr[Q (a+13)+aQU 'QdU

bQ —d( U ')QU],

and. thus, consider

(4.12)

I'2'(U, A)=I""'(U,A) —10Cf,A dA Tr[Q (a+13)+aQU 'QdU bQd(U—')QU] . (4.13)

This expression is now gauge invariant and is the desired gauging of the Wess-Zumino term. We can write its last term
in a more transparent form by noting that

Tr[aQU 'Q dU bQ d( U—')QU] = —,
' Tr[QU 'Q d U —QUQ d( U ')]+—d [ Tr(QU 'QU)],

2

where we used a +b = 1 and r =a b is an ar—bitrary constant. Therefore, from (4.7), (4.13), and (4.14),

I' '(U, A)=I wz(U)+5Ci f,A Tr[Q(a +P )]

(4.14)

—10C f,A dA Tr[Q (a+/3)+ —,QU 'QdU —,QUQd(U '—)] 5Cr f,dA d—A Tr(QU 'QU).

(4.15)

The last term of this expression involving the arbitrary
constant I is gauge invariant. It may be kept or it may be
dropped without affecting the gauge invariance of I
On the other hand, since

I.et us now discuss the gauging of an arbitrary sub-
group of U(3)L XU(3)z. Introducing the group param-
eters

(4.16)

this term is not parity invariant and we must choose
r=a b=0, for th—e parity invariance of electromagne-
tism.

As we shall see, a similar situation also occurs in the
gauging of non-Abelian subgroups of U(3)I. XU(3)~. In
this case, parity invariance may or may not be relevant de-

pending on the specific application that one has in mind.
Nevertheless, gauging of the %'ess-Zumino term accord-
ing to the trial-and-error procedure will always generate,
in addition to a term whose variation reproduces the
anomalies, a further term which is gauge inuariant and is
multiplied by an arbitrary coefficient. It should therefore
be dropped for the purpose of representing the anomalies
in an "irreducible" way. Such terms may always be rein-
troduced later, if they are needed for reasons other than
the anomalies.

EEL
—I 6'g

U—+e Ue

5AI. ——de, +i [eI,At ], (4.17)

5Aa dett +i [ez,Az] . ——

Trial-and-error gauging of the Wess-Zumino term
proceeds along the same lines and we simply quote the fi-
nal result:

where some of the ELor Eg may be zero de'pending on the
subgroup of interest and where A,'/2 are the generators of
U(3), we have the following transformation properties:



O. KAYMAKCALAN, S. RAJEEV, AND J. SCHECHTER

I ~z(UAs, Ast)=I wz(U)+5Ci f,Tr(Asa +AstP ) —5C f,Tr[(dAs As+AzdAs )a+(dAstA~+AssdAst)P]

+5C f,Tr[dAzdUAss U ' d—Astd(U ')As U]+5C f,Tr(Ag U 'As UP A—s UAss U 'a )

f,Tr[( Asa)2 —(AgP) ]+5Ci f,Tr(As a+As' P)

+5Ci f Tr[(dAst Ast+AstdA~)U 'ALU (d—As AL +As. dAs )UAst U ']

+5Ci f Tr( Az UAss U 'Aza+Ass U 'As, UAstP)

+5C f,Tr[Ag U 'As. U As. —UAstU '+ —,'(UAstU 'Az) ]—5Cr f,Tr(Fs, UFstU ') . (4.18)

Ag(x)~ —Ag~( —x),

U(x)~U '( —x),
(4.19)

all the terms in (4.18) will be parity invariant with the ex-
ception of the last term which will change sign under par-
ity. This provides another reason to put r =0.

The variation of I wz(U, As. , Az ) ~~de~ a gaug~
transformation gives, of course, the well-known anomaly
expression

This agrees with Vhtten's expression except that he
inadvertently omitted the term

5Ci, Tr AL n+Ag

and chose the arbitrary constant r to be 1. The last term
which involves r is manifestly gauge invariant (the field
strength two-forms Fs and Fst are defined as
Fz =dAz —iAs, Fss dAst iA——ss ) —and should be
dropped to give an irreducible gauging of I wz. If the
gauge group is such that one can define a parity opera-
tion,

equation D~J„=G with the covariant derivative of the
field equation D„F„„=J„. These two equations appear to
be consistent with each other only if the anomaly 6 van-
ishes. However, when mass terms for the spin-1 fields are
added to the Lagrangian the mutual consistency of these
equations is better thought of as a complicated equation
for the fields which may in fact be related to the mecha-
nism for chiral-symmetry breakdown in QCD. In any
event, it is almost certain that the low-energy effective La-
grangian for QCD involves many more new fields and in-
teractions so one should not worry too much about the
equations of motion. The effective Lagrangian is, after
all„being used as a handy mnemonic to read off the
relevant vertices. While it is true that one obtains the
baryons "for free" as solitons from (1.2), the usual bosons
of arbitrary spin are not expected to arise in this way if
one takes the results of the 1/N, approach' as a guide.

We would like our hadronic effective Lagrangian to
display the usual feature that the neutral vector mesons
dominate the electromagnetic form factors at low ener-
gies. This amounts to coupling vector mesons to the pho-
ton a„by the term"

5I"wz( U, As, Ass )

= —10Ci f Tr es (dAs. ) ——dAs (I,~R)—
2

v2e 2 0 & 2WpM= Ap mp p~+ 3 mq) con-
g

(5.1)

V. CONSISTENCY CHECK
FOR THE EFFECTIVE LAGRANGIAN

We notice that the expression for I wz(U, As. ,Az) in
(4.18) is manifestly invariant under global Us. (3)XU~(3)
transformations. Hence, it is a logical first candidate for
an effective term which mocks up the non-Abelian
anomalies and is constructed from phenomenological
meson fields. The gauge coupling constant g in (3.2)
should be introduced into (4.18) by the rescaling
Ai g ~g AI g and the phenomenologlcal fields should be
identified as in (3.1).

There is a possible immediate objection to this approach
in that one expects the equations of motion for a funda
mental theory with some gauged anomalies to be incon-
sistent. This is simply seen by comparing the anomaly

and considering that other hadrons interact with
through their couplings to the vector mesons. In (5.1) we
have made the nonet ansatz

p — (uu —dd ),I

2
lco- (uu+dd),
2

(5.2)

SS

This vector-meson-dominance approach agrees quite well
with experiment.

One can now imagine computing the amplitude for the
famous reaction m ~2@ in two ways. First, one could
use (4.15) to reproduce the current-algebra theorem.
From our present point of view, however, we would like
to calculate this process from I wz(U, As, Ass) together
with (5.1), employing vector-meson dominance. The
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(5.4)

A straightforward calculation of Fig. 1 yields

8m & (gyve) III~2 2 3
I' m ~yy)=

9
(5.5)

relevant vertex, as noted many years ago, is a trilinear in-
teraction among m. , p, and co and the diagram is shown
in Fig. 1. This vertex is completely predicted as a piece of
I wz(U„AI. ,A8) ln the present approach. Defining gvv~
by the coefficient of the appropriate term in the effective
I agranglan

~yves= g—vs&i.vaIITr(d" V'd V~&)

(&OIZI=+ I) ~

we identify, after some algebra and with use of (3.7) to
describe the pion —axial-vector-meson mixing

linear combination of them. To be able to renormalize the
theory it is important to choose counterterms in such a
way as to keep the vector current anomaly free. Now the
8110111810us VRrlatloll (4.20), 'tllollgll vcI'y sylllIllctrlcal, col-
responds to a situation in which both the axial-vector and
vector currents are anomalous. Although in this case
there is evidently no requirement of renormalizability (for
W,II) the fact that phenomenology implies that the pho-
ton couples through the vector mesons at low energi. es
strongly suggests that we try to mock up an anomalous
variation which leaves the vector currents anomaly free.
Such an anomalous variation was in fact the one chosen
by Bardeen 111 111S Orlgllial dlSCllSSlofl Of non-Abellan
anomalies. In Sec. VI we shall discuss the additional
terms needed in the effective Lagrangian for rep«ducing
Bardeen's form of the anomaly. We shall see that this
lcRds to flic formula (5.7) fol' gyve whlcll Perfectly Rgl'ccs
with the current-algebra theorem.

where m is the pion mass and a= », in this formula.
Thc current-algebra Icsult ls

2 3
0 m~I CA(m ~yy )= — =7.1 cV,

32K j' 2

which nicely agrees with the experimental value of 7.9 eV.
Comparing (5.5) and (5.6) shows that to reproduce the
thcoreM one 1cqu1I'es

We would like to find the extra term (counterterm) I,
which should be subtracted from (4.18) to arrive at
Bardeen's anomalous variation. The answer to this ques-
tion can be simply stated as follows. Given an action I"
~hose anomalous variation is

51'= —10iC ITr Ci (dAI ) — dAII —(L~R)—
2

(4.20')

Unfortunately, this is about 1.6 times larger than (5.4) so
the I'(m ~yy) predicted from (4.18) is considerably
smaHcr than the experimental value. Clearly the simplest
first candidate for an anomalous term involving the
phenomenological spin-1 fields is not a suitable one.

Now we note that the anomaly term in (4.18) was set up
in such a way as to reproduce the left-right-symmetric
variation 51 wz in (4.20). It is well known that the choice
of the anomalous variation is not unique but depends on a
choice of counterterms. For example, in ordinary elec-
troQ1agnctism onc could choose to have an anoIIlaly 1n thc
vector current, in the axial-vcctor current, or even in some

we consider the counterterm

1,=5Ci „Tr dAg A@+Ay Ag AL —I~A

+5C Tr Ag AI —AI Ag+ —,
'

ANAL . 6.1

It is then a simple matter of algebra to show that

5(I —I, )

=30C/ Tr(ER ci, )—
&&l &F +v11F~'

—6(Fy A +AFy A+A Fy) ——,A ],
(6.2)

Fv dV+ —(V +A ——),
2

FIG. 1. Feynmao diagram for m —+y y.

and V and A are the vector and axial-vccto«leids defined
jn (3.1). [Note t}le slightly ullconvcll'tlollRl factor 2 In
(3.1).] Equa, tion (6.2) is the Rnonlaly cxpl'csscd 111

Bardeen's form. Notice tllat lt
transformations where cl. ——c8. Thc counte«rm (6 1) is
also the one considered by Bardeen who ln fact first de'-

rived thc anomaly in its left-right-symmetric form.
It is interesting to note that I, ln (6.1) can bc gotten
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from I wz(U, AL, Az) in (4.18) by settmg Uequal t»:
I",=I wz(1, AL, Ag ) . {6.4)

This clearly shows that I" vanishes when U=1 which
was the boundary condition used by %ess and Zumino in
their original paper.

When the g~~ coupling constant defined in (5.3) is
computed from I wz one finds that the counterterm I,
gives a contribution which exactly cancels the second term
of (5.4) leading to g~~ of (5.7), and hence the m —&2y
current-algebra theorem. Hence, we will use (6.5) as the
preferred anomalous term for our effective Lagrangian.
IQ this wRy, with thc irlclusiorl of I ~ wc will obtain some
predictions for hadronic processes which agree well with
experiment.

An intriguing feature of I, in (6.1) is that it breaks the
global UI (3)&Uz (3) chiral symmetry down to
Ui (3)XU~(1). This can be seen by noting that I, is ob-
tained from the manifestly globally chiral-symmetric
form I wz( U, AL, AR ) by setting U = 1 which clearly
blcaks thc chiral symmetry. whereas, usually orle Rt-
tempts to formulate the effective theory in such a way
that the global chiral symmetry is present at the Lagrang-
ian level and only (spontaneously) broken on the physical
states, in the present case we are forced to introduce some
explicit breaking terms. This breaking clearly does not af-
fect any of the usual current-algebra theorems (which in-
volve amplitudes independent of e„p) and therefore can-
not be criticized on phenomenological grounds. It is not
difficult to see that any effective action which leads to
Bardeen's form of the anomaly violates global chiral sym-
metry since Bardeen's variation, unlike the left-right-
symmetric one in (4.20), cannot be expressed as a total dif-
fer ential.

The m —+3m decay is the roost well known purely had-
ronic process for which the product of intrinsic parity
numbers, as defined in Sec. II, is not conserved. It does
not seem to have been previously treated in the effective-
chiral-Lagrangian framework although it has been the
subject of numerous discussions by a variety of tech-
niques. An early approach by Gell-Mann, Sharp, and
Wagners (GSW) computed this process according to the
mph pole diagram which also enters into our model. In
those days the cop~ vertex strength was considered an ar-
bitrary parameter, whereas the present approach anchors
its value in terms of the strength of the %ess-Zumino
term and Sakurai's coupling constant. In the GS%"
model, which was motivated by dispersion theory, there
was no reason to neglect a possible four-point contact
term. A later current-algebra calculation by Ali and Hus-
sain included the contact term as a parameter but did not
directly predict its value. In the present model this term
is also predicted as a piece of the gauged Wess-Zumino

The effective term which reproduces the Bardeen form of
the anomaly is thus,

I wz«AI. Az) =I wz(»AL, Az) I wz—(1 Az Az) .
(6.5)

term (6.5). The contribution of the contact term turns out
actually to be quite small compared to the pole term,
thereby giving a justlficatioil for tile GSW model. It is
worthwhile to remark that the effective Lagrangian based
on the gauged less-Zumino term, while expressing the
same physics as many earlier models, is intended to give a
convenient, systematic and compact framework for dis-
cussing all processes related to the non-Abclian anomalies.
In such a framework the strengths of all vertices will be
determined by the coefficients of the Wess-Zumino term
Rnd thc phenomcnological p&K couplirlg corlstant g.

The needed Feynman diagrams for co~3m. are shown in
Fig. 2. In addition to the cop~ vertex described by (5.3)
and (5.7) we use the minimal pn.n. interaction term derived
from (1.2) with the substitution indicated by (3.2):

My' —Tr——( V~/ d" P),
2

(7.1)

It might be comforting to the reader who attempts to
check (7.2) [and (5.7)j for us to mention that we have also
checked these expressions by using the series expansion
method of Wess and Zumlno.

The amplitude for

co&(p)~7r+{q+)+m (q )+m. (q )

is computed to be

Mp=lE q~ q~ qpF,

I'= —3h+
SHS..=+, ,0 (S —q')'+ ~,'

This is related to the experimental width by

I (co +n+n m —)

(7.3a)

", I I dE+dE [(q )'(q+)

{~+~)2 (7.4)

where E arid E Rrc thc K Rnd & crlcrgics. A rlu-
merical evaluation of the integral (7.4) yields the predic-
tion

I (co~a.+m n. ) =7.6 MeV . (7.5)

4d

T
IIF
I

FIG. 2. Feynman diagrams for m —+3m.

as well as the contact term derived, after some algebra,
from (6.5)

Wyyyy=ihc& pTr( V~8 P 8 P 8 P),
(7.2)
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This corresponds to the parameter choices m =140
MCV, mz ——769 MeV, m =782 MCV, m /F =1.05, and

g given by (3.4). The experimental value is
I'(ol~n+I.r m )=8 9+. 0 3.MeV so the prediction (7.5) is
qultc rcasonablc —about 17% too low. Fox' comparison
the current-algebra prediction for Ir ~2 y in (5.6) is about
11% too low. As a rule of thumb current-algebra predic-
tions are expected to be trusted to about 20%. Thus, it
would be premature to consider corrections to (7.3) in-

volving, for example, a more complicated momentum
dependence at the paw vertex, %C note that the second
term of (7.3a) involving the sum of three different propa-
gators is fairly constant over the entire phase-space re-

gion. It dominates the first contact term. Actually, ig-
Qoring thc contact term xnakcs thc plcdictlon RlIDost pcf-
fect, but wc have no reason to regard this as significant.
For comparison the effective model based on (4.18) lead-

ing to 8 left-right-symmetric form of the anomaly would
give a prediction I (RI~Ir+Ir Ir )=2.6 MeV. This bad
result c811, as ln tllc dlscllssloll of Scc. V, bc tlaccd to too
small 8 value for g~~. (The contact term in this case is
Rlso very s111811.) This sltllatloI1 conf lHIls 'tllc llllportRncc
of Bardeen's counterterm (6.1) in thc effective Lagrangian.

The phenomenological Lagrangian under study implies
many predictions for both purely hadronic and radiative
pI'occsscs involving spin-1 IDesons. Fol thc fadlatlvc px'o-
ccsscs wc hRvc ln mind the ploccduI"c oUtllncd ln Scc. V,
based on vcctcr-meson dominance. The simplest radlatlve
reaction is the decay of a vector meson into a pseudosca-
lar and a photon. There are about a dozen of these pro-
ccsscs. Hclc we shall compute M~& p which ls thc onc
with the largest width and for which there is very good
experilnental information. In the present model, which is
essentially identical to the GSW model for this process,
the Feynman diagram shown in Fig. 3 involves the elpm.

vertex again. A straightforward calculation gives the for-
mula for the width,

I {co~moy)= g
~ q

3 Ag
64m' g &

(8.1)

This is in good agreement with the experimental value
I {co~Ir y) =0.86+0 05 MCV. Oth. er radiative processes
such as p+ —+m.+ y, E —+X y, q'~ p y, etc. can be re-
lated to (8.1) by simple phase-space and Clebsch-Gordan
fRctol s corrcspondIng to tllc Okubo-Zwclg-llzuka rulc
{which is implicit in our model). The situation has been
rcccntly I'cvlcwcd by 0 Donncll. There Rppcar to bc

FIG. 3. FcyIlman diagram for ~~roy.

some nontrivial SU(3)-symmetry-breaking effects; we
hope to return to this problem elsewhere.

Thc fadlatlvc IDcson decay ln conjUQctlon with vcctor-
meson dominance may lead to some other interesting pre-
dlctlons.

In a recent paper Freund and Zee have compared the
calculation of y —+3m using current algebra [essentially
(4.15)] with the calculation based on the GSW model. For
mutual consistency they found the well known relation
gzF /mz ——2 (1.67 experimentally). In our model, be-
cause of the presence of the contact term, this formula
would be slightly modified. We should remark, however,
that the implied extrapolations to zero momentum in-
volved in the use of the current-algebra formula for radia-
tlvc decays with thrcc of morc & xncsons sccxns R bit hard
to justify insofar as the very important p-meson form-
factor effects are being neglected.

In this papcI' wc have attcmptcd to gcncraHzc tbc old
phenomenological prescription for introducing spin-1
meson fields into the chiral Lagrangian of spin-0 mesons,
including thc %css-Zumino tcITA. The resulting Lagfang-
ian makes a very large number of predictions. We have
examined ln dctall thc pl.occsscs B ~7' ) (Rs 8 cllcck),
AP~K p, and Q)~3K. TBC I'csults Rgrcc 1"Rthcl well %'ith

experiment, comparable to any current-algebra predic-
tions. It appears that the underlying reason for this good
agreement is the connection of these processes with the
non-Abelian anomaly which has a specific structural form
in field theories. While these processes have of course
been computed with similar results a number of times in
the last twenty years, the distinguishing feature of the
present approach is the determination of all vertices
directly from the coefficient of the Wess-Zumino tertn
and Sakurai's p-meson coupling constant. An advantage
of working in the Lagrangian framework is that the vari-
ous assuxnptlons bclng made Rx'c xnolc clcally x'clatcd to
the symmetry structure of the underlying theory.

It would be desirable to try to derive the effective La-
grangian by making approximations directly on the gen-
erating functional of @CD. While this would be unlikely
to change the phenomenological consequences of our
model lt xnay shed some light on thc thcolctlcRl questions
we have discussed in the text, In particular, the explicit
chiral-symmetry breakdown U(3)L && U(3)II ~U{3)I
XU~(1) which appears to be forced upon us may get
clarified.

Finally, it seeIns very interesting to investigate in morc
detail tllc rich VRrlcty of pl'occsscs contained ln tllls
madel. We hope to report further results elsewhere.

Note added. After this paper was submitted for publi-
cation three papers have appeared which also deal with
the gauging of the Wess-Zumino term. K. C. Chou, H. Y.
Guo, and K. Wu [Phys. Lett. 134B, 67 (1984)] found an
interesting condition for the anomaly-free gauging of the
Wess-Zumino term and their final result, for the Wess-
ZllI111I10 actloll Rgl ccs with olll" (4.1 8) w1tll I' =0. Wc
disagree with their statement that Witten's formula [rath-
er than our (4.15)] is correct for the U(1) gauging. They
do not obtain our formula (6.5) for the effective actian
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which corresponds to the Bardeen form of the anomaly.
Similarly, H. Kawai and S. Tye [Cornell report, 1984 (un-
published)] obtained the same action using the methods of
Ref. 11. Finally N. K. Pak and P. Rossi [CERN report,
1984 (unpublished)] gave an explicit integration of the
%'ess-Zummo consIstency condj. tron and also d].scussed
the anomaly in Bardeen's form. Their result also agrees
with our (4.18) with r =0 as well as our (6.1). Our Eq.

(4.18), it should be recalled, also gives Witten's (non-
parity-invariant) result when we set r = 1.
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