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Kaon decays and a determination of the scale of chiral symmetry
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Using effective chiral Lagrangians, we consider the occurrence of quadratic terms in the AI =I
E—+3m matrix element. The inclusion of higher-derivative Lagrangians leads to a significant im-
provement over the usual current-algebra analysis. This allows an extraction directly from experi-
mental data of Az, a measure of the scale of chiral symmetry. %'e give an operational definition of
the chiral scale, and find A&-1 GeV. The issue of uncertainty in the phenomenological determina-
tion of the S parameter is clarified.

E. INTRODUCTION

One of the most important features of the strong in-
teractions is the existence of an approximate, dynamical
chiral symmetry. ' All indications are that the basic
features of chiral invariance emerge from quantum chro-
modynamics (@CD) with the only explicit symmetry
breaking being due to the (small) quark masses. This
means that very-low-energy physics is described in terms
of the pseudo-Goldstone bosons of the theory, pions and
kaons, with interactions being strongly constrained by the
chiral structure. Modifications to the low-energy predic-
tions of chiral symmetry are suppressed by factors of
q /A&, where A~ is a scale parameter which indicates the
energy above which the predictions must be modified. We
shall call Az "the scale of chiral symmetry" and, in this
paper, determine it from data on nonleptonic kaon decays.

Internal to the low-energy dynamics of pions and
kaons, the most important dimensional parameter is
E =0.094 GeV. If this were also the scale A&, then the
predictions of chiral symmetry would be worthless. Con-
versely, the success of current algebra and PCAC (partial
conservation of axial-vector current) indicates that the
scale must be rather larger, at least greater than mz.
Indeed, it has been proposed theoretically that A&-4~I
(Ref. 4).

Kaon decays can provide an empirical estimate of Az.
This occurs because the lowest-order prediction of chiral
symmetry allows constant plus linear terms in the ampli-
tude for K—+3tr, but forbids quadratic contributions.
(The reader unfamiliar with the terminology will find it
defined in Sec. III.) Higher-order terms can be systemati-
cally studied via the effective-Lagrangian technique and
can introduce quadratic dependence in the matrix ele-
ment. This quadratic dependence can be used to extract
the strength of the higher-order Lagrangians, which may
in turn be converted into an estimate of scale A&.

Specifically, there are three aspects of this study on
which we wiH focus. At the most superficial level, we are
updating the phenomenological analyses of the kaon sys-
tem. In the late 1960's, chiral symmetry was applied to
kaon decays, using an assumed linear momentum depen-
dence for the E 3' amplitudes. There is a long-
standing ( —20%%uo) discrepancy between the chiral-

symmetry prediction for the E—+3~ amplitude and its ex-
perimental value. In addition, newer, more precise experi-
ments have confirmed quadratic momentum dependence
in the E—+3m amplitude. Here we demonstrate that
higher-order effective chiral Lagrangians can provide an
explanation of both of these features, allotting a descrip-
tion of the amplitudes good to about 10%. At a slightly
deeper level, the result so obtained reveals something
about chiral symmetry itself. The quadratic terms which
we find are relatively small. Barring accidental cancella-
tions, this implies that the scale parameter of chiral sym-
metry must be somewhat above m~. As we argue expli-
citly later in the paper, there is no unique way to charac-
terize this scale. However, we shall provide a definition
of A& which measures the effect of higher-order terms in
physical amplitudes. While not unambiguous, this does
provide a new and independent probe of the chiral scale.
Finally, a third aspect of interest which emerges from this
study is an estimate of the chiral-symmetry uncertainties
in the calculation of the so-called 8 parameter, a low-
energy matrix element occurring in the K E system. As
defmed and discussed below, the 8 parameter is not
directly probed by the experimental data of this study.
However, its determination does rely on linear momentum
dependence in kaon decay amplitudes, which is the subject
of this paper. Again barring accidental cancellations, the
demonstration that quadratic effects are small should
plausibly apply to it also.

We begin our discussion by noting that the lowest-order
prediction of chiral symmetry for the b,I= —,',
X~~~+a -~' amplitude is

12

A"""'=A, 1+3 I' =(0.75+0.18K)X10 ',

where we use the variables

I"=(s3 — )/so+m

X =(s2 —si )/m

s& =(ptc —pt) ~ sp= 3 (mx +mi +m2 +m3 )
2 1 2 2
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=0.75X10 '. (3)

The above amplitude is an example of one with constant
plus linear (in Y) dependence. The M= —, rule can be
used to obtain aH the other X~3m amplitudes.

By means of a study of effective Lagrangians in Sec.
III, we shall demonstrate that the only possible forms for
higher-order terms are

Aq"' =a([—', mx (mx —3m )

+3m (mx +3m ),Y m—Y ]

+&z[9mx (mx —3m 2) ——', m z(mx2+3m z)Y

+ —,'m (Y +X )] . (4)

These two amplitudes have quadratic dependence (in X
and Y), in addition to constant and linear terms. The data
indicates the presence of each type of term9

A'"~'= [(0.915+0.0024)+(0.258+0.004) Y

—(0.0037+0.0011)(Y'+ X'/3)
—(0.0125+0.0012)( Y —X /3)] X 10 . (5)

The quadratic terms appear small, but in fact are quite
sizable [note the attendant factors of m in Eq. (4)]. If
we fit a, and az to the measured quadratic pieces in Eq.
(5) (thus yielding a, =3. 1 X 10 /mx", a, = —0.95
X 10 /mx ), we determine

w q""=[(o.2o+o.o7)+{o.13+o.ol) Y

—(0.0037+0.0011)(Y + —,X )

—(O.O125+0.OO12(Y' ——,'X')]X1O-'. (6)

We can then use this amplitude to form a definition of the
chiral scale Az by considering the ratio of quadratic to
linear amplitudes and, since there are two additional
powers of momentum, relating this to the ratio of the
overall mass scale mx and the square of the chiral scale

ping& g quad2

p 2 g linea, r

This ratio of the quadratic amplitude Aq"'d(X, Y) to the
linear amplitude A"""'(X,Y) is essentially uniform over
the Dalitz plot, and yields the scale parameter

Ay ——970+ 140 MeV, (8)

where the error is only the experimental error on the
quadratic terms Asecon. d {independent) procedure, in-
volving a least-squares fit to the entire amplitude with an
assumed 10% theoretical uncertainty, yields a good fit
(X =1.8 for 2 DOF) with

Ao is predicted in terms of the dd'=1/2 amplitude for
X~~m+m- by'

2' Amp""'(Z, ~+~-)
6I'~ PP2 g —PP1 ~

Here the quoted error is due to the 10% uncertainty as-
sumed. Here the uncertainties quoted are merely statisti-
cal and probably should be taken "curn grano solis. "
Since there are two independent amplitudes with opposite
sign coefficients, there is clearly some sort of cancellation
taking place. Nevertheless, we feel that these values of Az
do provide a reasonable (though rough) estimate of the
chiral scale.

In the remainder of the paper we present in detail the
analysis which has been sketched above. Section II is de-
voted to a discussion of the effective chiral Lagrangians.
In Sec. III we consider evaluation of the kaon decay rates
and compare them with the data. Section IV contains
further discussion and a summary.

II. EFFECTIVE CHIRAL LAGRANGIANS

One of the most efficient ways to obtain the predictions
of chiral symmetry is to use nonlinear effective Lagrang-
ians. For example, in the chiral limit the strong interac-
tions of pions and kaons can be described by the Lagrang-
ian

2

I „„„s—— Tr(a~MR'M ),strong (10)

(12)

where U~ (UR) is a 3&&3 unitary matrix describing the
left (right) transformation. Expansion of the exponentials
to order P yields the usual kinetic energy piece plus
Weinberg's results for vrmscatterin. g [and its SU(3) gen-
eralizationsl. " The masses of the pseudoscalars can be in-
corporated by an explicit chiral symmetry breaking term

L~g ss Tr(@AM +M I) (13)

with Vl =a +bk3+CAs.
In principle, there may also be chirally invariant terms

with more derivative factors, for example,

Tr([a„M,a"M'][a„M,a"M']) . (14)strong

However, at low enough energies (q /A ~~ 1) these terms
are always unimportant. The success of the Weinberg
predictions for mm scattering requires that A be much
larger than m . Note that these higher-derivative terms
are required in the {still speculative) soliton or Skyrme
models of baryons. ' One explicit example which has
been worked out' uses the above Lagrangian with A=1
QeV.

The weak interactions in the standard model involve
only left-handed fields and hence are a singlet under
right-handed transformations. For the dominant LU = —,

'

piece, the left-handed transformation property must be
that of an octet, i.e., (8,1} under (I.,R} transformations.

M =exp(ik, P/I )

with I'~=94 MeV and Trk, "A, =25" . Under left-handed
and right-handed SU(3) chiral transform ations M
transforms as
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The lowest-order Lagrangian with this feature was written
down long ago by Cronin:"

Lo gT——r(A6B&MB"M ) . (15)

Any possible (3,3) terms, induced by exphcit breaking
from the quark masses, can be removed entirely by a diag-
onalization of the mass terms in the Lagrangian. ' This
Lagrangian incorporates the unique form of the K~m. ,
E—+2~, and E~3m amplitudes which results when one
expands them to first order in bilinear momentum factors
(i.e., P;.Pj), demands consistency in all soft-pion limits,
and imposes the theorem which requj. res the K—+2m am-
plitudes to vanish in the SU(3) limit. ' It has been used
successfully to relate K~2ir and K~3ir amplitudes. '

Again, other effective Lagrangians with more deriva-
tive factors, but respecting the (8, 1) transformation prop-
erty, can be constructed. For example, one of these is

(16)

Here A must be large enough noi to destroy the relation
between K—+3m and K +2'. (N' o—te that, having four
derivatives, L,

' contributes to K~3m. but vanishes for
K~2m. and therefore cannot reproduce the same results
as Lo.} There are, in addition, many other possible forms
of these higher-order terms. The remainder of this section
is devoted to classifying these possibilities and reducing
them to a manageable number by the use of various iden-
tities.

It is most convenient to work with objects which are
automatically singlets under right-handed transforma-
tions. For example, the current

Xp ——(BpM )M (17)

Xp~ULXp UL

under left and right transformations. Note that since
MMt=1,

definite CP properties. To this end, define

Yp„——Y~ —Yp~,

Ypv= Ypv ~

which transforms under CP as

Yp~~ Yp~ o (25)

The combination which is the sum of F and F and can
be written in terms of X&, so we need not consider it
separately. %e will use the shorthand notation

Y—:g" Yp

Quantities involving Z&„k, such as

Tr( A,+„„kXt"g"k),

(26)

(27)

L, , =Tr(Z, FF), ,

L i
——Tr(A,6',Fi"),

L i' ——Tr(i(,6F)Tr( F),
L i" ——Tr(16'„)Tr(Fi' ) .

(28)

However, the latter two can be shown to vanish because

can always be rewritten in terms of X and F by integra-
tion by parts to shift one factor of the derivative from Z
to elsewhere in the expression.

There is a useful partition of the Lagrangian into
classes containing two, one, or no factors of F„„. The
physics of each class is distinct. Those with two factors
of F can contribute to all of K~ri., K~2m, and K~3m.
Those with one factor of F, and hence two of X&, have no
E—+m matrix element, but do contribute to E—+2m and
K~3m. Finally, those with no factors of 1; and hence
four factors of X„,contribute only to K—+3m.

To demonstrate how the analysis proceeds, let us con-
sider a set of Lagrangians from the first class, e.g. ,

(19)
TrY~ =O. (29)

Higher-order Lagrangians can be obtained by stringing
together four factors of X&, but they can also involve ob-

jects containing more derivatives, such as

F„,=(BpB~)M (20) A
i(ij ~ki 3 ~ij~kl +2~il~kj (30)

Also, by integrating twice by parts, I. I can be
transformed into L i. Other terms with additional factors
of A, matrices [e.g., Tr(A6A, "Fi(,"F)]can be reduced to the
above set by use of identities such as

Zp k
——(BpB i)kM}M

In this case, M~M =1 implies that

F„+F~„———(X„X„+X~p).

It is advantageous to use the CP properties of the currents
in order to simplify matters. Under the CP operation,

X„~—(X„)
( )

Fq, ~(Fq„)

Let us construct a combination of F and Ft which has

Thus the form L i uniquely characterizes this class.
In class two, we have Lagrangians such as

L2 ——Tr([A6, FjX„X"),
L 2

——Tr( I F, jt,6 J FpX"),
L 2' ——Tr(A,6' YX"),
L 2"——Tr(A6F)Tr(X„X"),

L z"' ——Tr(A6X&X")TrF,
L z

"=Tr(A6X~ F)TrX,i',
(31)
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L4 Tr(A, 6X——~X"X+"),

Lg ——Tr(A, 6XpX~"X ) .
(32)

Higher-order momentum dependence can also be gen-
erated by extra derivatives appearing in the strong-
interaction sector of the theory Th.e analysis here is
simpler than for the weak-interaction sector. In the first
class one has only

L,'„,„s——Tr( YY), (33)

and by parity invariance there are no possibilities in the
second class (of the form YXX). In the third class, there
are again many independent Lagrangians; however, we
will not need to specify them.

To summarize, we have identified a set of effective I.a-
gl'R11glRlls (LDLL i pLlyL3, L4,L&) which exhaust the possi-
bilities for the behavior of the weak interactions up to
quadratic order (i.e., four factors of derivatives). In the
next section we apply these to kaon decays in order to es-
timate the relative sizes of their coefficients, and hence
determine the chiral scale.

Chiral symmetry can be used to predict the E—+3m de-
cay parameters (amplitudes and slopes for both XI=—,

'

and M= —,') in terms of K—+2~ amplitudes. ' We shall
in this paper deal with only the dd = —,

' effects as the data
is sufficient for our purpose in this sector. The specific
numbers are taken from the recent review by Devlin and
Dickey (DD). We follow DD in the form of our
parametrization of the M= —,

' amplitude (which we take
to be the bZ = —,

'
piece of KI. ~m+m ~ }, .

L1——Tr( [A,6, Y~„]X"X"},
L1 ——Tr( I A,6, Y'„„IX"X"),

L p' ——Tr( A,6X"Yp~"),

L,"' =Tf(&6Y„,)Tr(X"Y"),

L p"' T——r(A6X~X, )TrY"",
L p'"' ——Tr(A, 6X„Y"")TrX„.

In this case, I.2"', I.z"", I.3"', and I.3""vanish identically
since Tr Y=TrX„=O. The requirement that the I.agrang-
ian be CI' even removes most of the rest; Ll, L1', L2",
I.3, I 3', and L, 3" are a11 CI' odd. This leaves only I.2 and
L, 3 remaining in this class.

In the third class there are many possibilities and we
have not identified the minimal number of independent
Lagrangians. However, as we shall see in the next section,
there are only two kinematic possibilities for K~3~
which can emerge from any Lagrangian of this class.
Hence, as far as K +3m is —concerned, we get the max-
imum possible information from any two independent La-
grangians. Actually, most of what we do is not dependent
of any use of specific I.agrangians from this class, but for
definiteness we shall sometimes quote amplitudes result-
ing from the following two examples

A =a+bY+c(Y +X /3)+d(Y' —X /3) (34)

with experiment yielding, in units of 10

a =0.915+0.0024,

b =0.258+0.004,

e =—0.0037+0.0011,

d = —0.0125+0.0012 .

In the Particle Data Tables, the overall amplitude is divid-
ed out, and results are quoted for linear and quadratic
dependence of the Dalitz plot (i.e., amplitude squared}. '

We note the clear evidence for quadratic terms.
If c =d =0, then PCAC requires a unique form of the

amplitude
2

mm F (36)

from which we directly infer

=0.252 .b

Q

This is quite close to the experimental value,

—=0.282+0.005 .b
Q

Likewise the amplitude, as given by Eq. (3) is found to be
close but about 20% too low. The uniqueness of the
linear form Eq. (36) (with c =d =0) is important in our
study of higher-order Lagrangians. If, as we shall find to
be the case, some of the higher-order Lagrangians do not
for some reason contain quadratic terms, then they must
have the general form displayed in Eq. (36) and cannot be
distinguished from the lowest-order Lagrangian. Only if
"c"and/or "d" are nonzero may we isolate the effect of
higher-order Lagranglans.

In calculating the E~3'IT decay matrix elements one
must include both the direct weak interaction connecting
K to three final-state pions plus the pole diagrams where
K~m is weak and there follows a strong-interaction pro-
CCSS '7T~&'IT'lT Of wllC1'C K~K'TT1T lS followed by K~TT.
For the lowest-order Lagrangian I.o, Cronin has done the
calculation and obtains the required form, Eq. (36).' We
have repeated his calculation for L i, Lz, L1, L4, and L &

In what follows we neglect terms of O((m /mx) ). This
is justified within our work because terms proportional to
TTl Rfc too 8111811 to pl'ovldc ally slg111flcRllt coi11pRflsoll
with experiment. In addition there is some ambiguity in
K—+3m which enters at O((m /mx. ) ) duc to the particu-
lar choice of M as an exponential, Eq. (12).'

We find that the direct plus pole contributions to
K +3m sum to zero fo—r L i, Rnd hence L i does not contri-
bute to K~2m or K +3TT, except at O(m~ )..—We find
that L& and I-3 do not generate any quadratic terms in
the amplitude, and hence must have the form of Eq. (36).
We have explicitly verified this. These do not lead to any
new physics and thus cannot be distinguished from Lo.
In addition, we have considered what happens when, in
the pole diagrams, the lowest-order strong-interaction La-
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grangian is replaced by L,'„,„s. Again one obtains the
linear amplitude only.

The above considerations imply that any possible
higher-order behavior can originate only from effective
Lagrangians (either strong or weak) which contain four
factors of X„. Since the power series for X„starts off
with the terms

X~ = Bpg A, +P

and K—+3m involves four meson fields, the resulting am-
plitude must contain a factor of the momentum for each
of the four fields. There are thus only two possible com-
binations for ICI ~m+vr m consistent with the symmetry
of the m+m required by CP invariance,

+ ~2(&V+poV-+km-po S+) .

As it must, 2""' vanishes when any of the pions is taken
soft. Working out the kinematics, we obtain the result
given previously in Eq. (4). As an example of how this
may be generated, let us consider

L quad g I + g
A2 A~4 5

which leads to

g
2 p 2

(42)

The above result is quite important in the consideration of
quadratic terms in E—+3m, as it expresses the PCAC con-
straints on these elements. If our proof were more
elegant, rather than exhaustive, we would be tempted to
call Eq. (40) a theorem.

It is easy to see that the addition of the quadratic terms
yield a clear improvement for the predicted IC~3~ am-
plitudes. For example, if we fit a~ and a2 to the quadra-
tic coefficients c and d, we obtain

ai ———(3.1+0.3)&(10 mx.

a2 ——(0.95+0.16)&( 10 mx.

and a total amplitude,

A "'=[(0.95+0.07)+(0.31+0.01)I'

error to 10% in order to approximate the theoretical un-
certainties. In the case of c and d, this 10%%uo was added
directly on the experimental errors. The result of this fit

g I
——2.6& 10 /mg

a2 ———0.76 X 10 /mx

with the total amplitude

2'"=0.94+0.29I' —0.034(I"+X /3)

—0.0105(F —X /3) .

We see that the two procedures agree very well. From the
quality of the fit Q' =1.78/2 DOF) we can say that
PCAC with quadratic terms agrees well with experiment
at the 10% level. Thus we have shown that inclusion of
higher-order chiral terms has the potential of clearing up
the longstanding discrepancy between the experimentally
determined M = —,

' K~3m decay amplitude Eq. (5), and
that predicted via PCAC/current-algebra techniques Eq.
(3) and, in addition, of yielding quadratic terms in the am-
plitude of the size observed experimentally.

Although one could terminate the discussion here with
this rather successful phenomenology, it is tempting to at-
tempt to use this result in order to draw conclusions con-
cerning the chiral scale A&. What we desire is an answer
to the somewhat vague question: How large are the ef-
fects of higher-order (in the particle momentum) terms in
the chiral expansion'? Using the coefficients of
phenomenological Lagrangians is ambiguous, as we show
below. Thus, we feel that the best measure of the size of
higher-order effects is obtained by calculating how much
of the full amplitude comes from lowest order and how
much arises from higher order. When combined with the
characteristic scale of the process (mx ), this may be con-
verted into a scale Az. We therefore define

)2 g quad/g Bnear
E

and we find

Az ——970+140 MeV (fit to quadratic dependence)

Az —993+50 MeV (fit to the full amplitude) .

Another way to quantify the results is to say that the
higher-order effects enter at the 25% level in kaon decays.

We feel that a definition of A& such as given in Eq. (7)
is perhaps superior to employing the phenomenological
Lagrangians L4,L5 directly. If we were to pursue the
latter course, it is straightforward to deduce that

—(0.0037+0.0011)(I"+X'/3)
—(0.0125+0.0012)( I' —X /3)] (43)

Trk, 6X~X"X~
Lal ~gz =3.6 && 10 w~ TrA6X&X +

(0.51 CxeV)

in good agreement with experiment. Here the quoted un-
certainty arises solely from the statistical errors given for
the empirical coefficients c and d.

A second procedure which, in general, is independent of
the first is to perform a least-squares fit to the fu/l ampli-
tude. The experimental errors on the constant plus linear
terms are much smaller than the theoretical errors on the
PCAC extrapolation. We have thus chosen to expand the

TrA, 6X&X~&X"

(0.76 CieV)
(45)

Clearly, the "scale factors" appearing in this approach, al-
though still larger than the kaon mass, are rather below 1

GeV. The problem with investing such an estimate with
undue significance is that the definition and normaliza-
tion of operators appearing in phenomenological I.agrang-
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ians is somewhat arbitrary. For example„ instead of the
operators 1.4,1.s of Eq. (32), one could choose a different
set and obtain which appear quite different, such as

L al —ig2 =3.6X 10 m~ Trk, 6X&X~

IV. CONCLUSIONS

We can summarize our results as follows. For kaon de-
cay amplitudes, the constraints of current algebra and
PCAC involve rather substantial extrapolations away
from the physical region. It is insufficient to posit that
momentum dependence is absent from the decay arnpli-
tude; otherwise contradictions occur between alternative
soft-pion limits. In fact, given the chiral (8L, lg) content
of the underlying effective Lagrangian, the constant term,
in a power-series expansion of the amplitude in the parti-
cle momenta, is absent. The next order, quadratic in mo-
menta, turns out to provide a reasonable though imperfect
description of the decay data. In this paper we have
shown that the contributions which are quartic in momen-
ta can be inferred from the X,Y terms in the measured
K~3m amplitudes. Moreover, we argue that it is natural
to interpret the relative size of the leading and next-to-
leading contributions in terms of a scale parameter Ax as
in Eq. (7),

2yA 2 g quadyg linear

Our two determinations yield Ax ——0.97 GCV (fit to quad-
ratic terms only) or A2 ——0.99 GeV (fit to full amplitude).
In either case, the rather substantial value of Ax suggests
why the leading order in amplitudes describing low-energy
phenomena such as kaon decay accords a reasonable
model of the associated data. (We note that the empirical
scale A& is qualitatively in accord with the theoretical
value 4mF =1 GeV of Ref. 4.)

%Shat can be said about nonleptonic transition operators
with chiral transformation properties distinct from the
(8L, , 1~) studied here? The presence of weak M= —,

' ef-
fects and also electromagnetism implies the existence of
operators transforming according to (271, 1~ ) and
(8L, , 8g) chiral representations. ' In leading order, the
(27I, lz ) effective Lagrangian has two derivatives

8827
1.' "-C . . 6 Trk, ;XpAJX&I J (46)

where C is a Clebsch-Gordan coefficient and indices ij

Tr(A, 6[X~,X„][X",X"])+
(0.84 GeV)

Tr(16[X„,X,I [X",X"
I )+

(1.2 GeV)

An additional ambiguity occurs because of cancellation
between the two amplitudes a&,a2. Since these coeffi-
cients have opposite sign, there is considerable cancella-
tion which takes place in the overall decay amplitude, less
so in the case of the quadratic terms. For both these
reasons then, it seems reasonable to utilize the experimen-
tal decay amplitude directly in estimating chiral scale A&.

(soon 0 is'&
—,Fg Mg

(48)

where 0 is the chiral four-quark operator
dI ~qs dl I &s [I ~ =y"(1+@)]. There has recently been
substantial interest in the value of 8 due to its importance
to estimates which bound the t-quark mass. Unfor-
tunately, 8 is sensitive to details of quark wave functions
so its theoretical determination is subject to the usual dif-
ficulties of strong-interaction dynamics. Its extraction
from experimental data therefore takes on added signifi-
cance. The basis for a phenomenological determination is
the observation that the AS =2 operator 0 belongs to the
same 27-plct as thc M =

2 operator which 1llduccs thc
weak decay E —+m ~ . An intermediate step in the
analysis involves the reduction: E m m amplitude-
—+EC m' amplitude. This is accomplished with current
algebra and PCAC. In doing so, a quadratic momentum
dependence was assumed for the M = —,

' Knnamplitu. de

(vr (q )m (qo) ~H„= ~E (k))

=iA (3k2+qo —4q ), (49)

where A =1.2&(10 mx ' is inferred from the K m vr

decay rate with m 2) mixing subtracted out. The question
of a "chiral uncertainty" in this procedure pertains to
whether the employment of quadratic momentum depen-
dence as in Eq. (49) is reasonable. Our conclusion, based
on the study of the M = —, Knurl amplitude described in
this paper, is that a good first approximation vahd to
about 25%, is indeed given by Eq. (49).

Of course, the quantities germane to the 8 parameter
are M= —, and lr mm instead of M= —, and Knmm. In
spite of this, we feei relatively secure in claiming that
chiral uncertainty in the phenomenological determination
of 8 is not qualitatively substantial. Surely, one would
expect that momentum dependence in the exotic LE = —,

'
channel is, if anything, modest compared to that in the
M = —,

' channel. On a dynamical basis, there is no reason
to suspect rapid momentum variation (as, for example,
due to low-lying resonant states) for M =—', . The use of
chiral symmetry is one of the most reliable tools in low-
energy dynamics and the data studied here does not give
any reason to doubt its applicability in the determination
of the 8 parameter.
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are summed. As with (81,1&) amplitudes, the leading
terms are quadratic in particle momenta. The (8,8) opera-
tor requires no derivatives in leading order

I.""-Ta~z,M' . (47)

Finally, let us consider how our calculation clarifies the
issue of chiral uncertainty in a phenomenological deter-
mination of the 8 parameter. 2 The 8 parameter is a di-
mensionless quantity appearing in the E -K complex
and is defined by
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