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Wc prcscllt R lcadIIlg "order pcrtllrbatlvc QCD calclllatloll of F-mcso11 hadroproduct1011 Rlld evalu-

ate the central and diffractive production cross sections at current (E, =27.4 GeV} and Tevatron
(43.3 GeV) Fermilab energies.

I. INTRODUCTION xT 2pF sin——&/(s)'r (2)

The hadroproduction of open charm is of considerable
experimental and theoretical interest. Experimentally,
these particles were observed to have unexpectedly large
cross sections, ' the mechanism of which was not under-
stood for quite some time. Further, it is of interest to
note that the existence of all (e.g., A+ and D) except the
Ii(cs) is well established. However, the F is expected to
decay into v, +w 10—20% of the time, and the decaying

will produce an additional v„one of two yet-
undiscovered members in the third lepton-quark genera-
tion. The IDost promlslng production reaction wouM 1n-

volve the most energetic (Fermilab), most abundant (pro-
ton) beam in a fixed target.

Perturbative quantum chromodynamics (QCD) can be
used to calculate open-charm production. QCD calcula-
tions for large-momentum-transfer inclusive processes
employ factorization, which separates (short-distance)
hard-scattering quark and gluon subprocesses from
(large-distance) "soft" effects, which are incorporated in
structure functions. To what extent this factorization can
be justified is in itself an active area of research. We as-
sume the validity of such a factorization.

We show that second-order diagrams contribute signifi-
cantly to the hadroproduction of charm quarks. Quark-
antiquark fusion is primarily responsible for central
charm production (see Fig. 3), while some gluon-gluon an-
nihilation processes demonstrate the non-Abelian charac-
ter of QCD. Diffractive production, gluon-charm and
quark-charm elastic scattering, provides the major part of
the total cross section, and particularly so at large
momentum transfers.

The momentum fraction parallel to the pp axis is

(3)

wllcrc 8 ls tllc center-of-mass scattering angle) and t11c

kinematic invariants are

s =(p~+PII) =E.2 2

t =(pa pF)—2

= mF' E, I [mp—'+E, (xF2+xT )Ir ]'r'+xp/2I

(4R)

(4b)

u =(pa-pF)'

=mp E, [(mF —+E, (xp +xT )'~ )'~ —xp/2],

(4c)

where mz is the I'+ mass and we have chosen to neglect
the proton mass.

The cross section for the process shown in Fig. 2, ex-
pressed in terms of the interaction cross section of the
constituent partons (quarks and gluons), is generically

II. THE CALCULATION

We consider the inclusive process

a~ +as +++&

shown in Fig. 1, where the F+ has a momentum fraction
transverse to the pp axis given by FKx. 1. Kinematics of the process pp —+I'+X.
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given as

2o = dx, dxb G, /g(x, Q )Gbgti(xb Q )

&& &(ab +c—d), (5)

where x„xb are the momentum fractions carried by the

interacting partons and G,&z, Gbzs specify the probability
distributions of these partons in the colliding protons. Q~
is the momentum transfer involved.

Accordingly, we write the differential cross section for
the process pp —+I'+X as

E~, ——IJJ dxi dx2dx3 Gg/p( xf, Q ) Gb~~( x2, Q )D,~b(x3)—5(s+t+u —2m, ) ~ (ah~cd),
d pF af

where xi and x2 are the proton momentum fractions carried by a parton while x3 is the fraction of c-quark momentum
carried off by the I' . a, b, c, and d identify the interacting beam, target, charmed, and residue partons, respectively.
The total differential cross section is found by summing over all subprocesses shown in Fig. 3. G,&z(x;, Q ) is the prob-
abihty of finding a parton of type a with momentum fraction x; in the proton at a particular Q2. The fragmentation
function D,&z(x3), is the probabihty that a charmed quark will constitute a I' which carries a fraction x3 of its
momentum, and is taken to be a constant in Q here.

Using the subprocess invariants

S =X1X2$

t=m, +xix3 (t —mF ),—1 2

u =mq +x2x3 (u mF —),—1 2

we rewrite the differential cross section as

do 2 2 2 d &(ab ~cd)
Eb —— dxi dx2 G,~&(xi, Q )Gb~&(x2, Q )D,~z(xs)x&x2I(s/ir)[xi(t —mb )+x2(u mz —)]I

de 0 0 CEt

x3 ———[xi(t —mF )+x2(u —mb )]/xix2s .
x, =[xb.+(x~ +xz. )'i ]/2,
xb ——[—xb ~(xF +xT )'~ ]/2.

(1 la)

The region of x i and x2 integration is constrained further
due to the allowed region for t, these kinematic con-
straints are

The subprocess contributions of Fig. 3 are conveniently
written as

[xixb/(xi —x, )] &x2 &1,

x, /(1 —xb) &xi &1,

(10a)

(10b)

(a)

g~

a/

FIG. 2. A parton subprocess in a nucleon-nucleon interac™
tlon.

(c

FIG. 3. Second-order subprocesses for charm-quark produc-
tion in hadron-hadron collisions. (a) Quark-antiquark fusion, (h)
gluon annihilation, and (c) quark-charm and gluon-charm dif-
fractive graphs.
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do'
(qq~cc) =

dt
A (s, t, u),

3$

P +y —2m~ cx
A(a, p, y)=

do' 3oo——(gg~cc ) = —8 (s, t, u ),dt

(12)

12P'y' 2 mc ~
a' 3 p'y'

8 P'y' —2m, ~(m, '+P)
PI2

d&~ (qc —+qc) = A (t,s,u),
33'0 —6

p'y'+ m, 2(y —p)
CK

do' Oo
(gc~gc) = 8(t,s, u ),dt

+ (p~y, p'~y')

=27.4 GGV

=43.368~
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FIG. 4. Subprocess and total differential cross section versus
longitudinal momentum fraction at E, =27.4 GeV. Bashed
curves refer to xT ——0.3 while full curves are for xT ——0. 1.

XF~
FIG. 5. Subprocess and total differential cross sections versus

xF at E, =43.3 GeV. Dashed curves are for xT ——0.3, full
curves are for x =0.1.
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where

P'—=(m, —P), y'—=(m, —y), a"=—(a —4m, 2)

distribution functions. The fragmentation function D, ~~
impHed from e+e inclusive data is

D,qs (x)-( I —x)", 0 & n & 1,

&o——--, yo ——(s —m, ) /s .
3$

normalized using the flavor-momentum sum rule,

g I xD g ~(x)dx =1 .

The strong coupling strength a, is

( 2) 12m

251n(Q /A )

where Q the momentum transfer is calculated as

Because noncharm-meson productloIl I'equlres the
creation of a cc pair in a vacuum which is suppressed due
to the large charm-quark mais, we assume that only the
charmed pseudoscalar mesons are produced by the c
quark. Further, we assume

(u+t+s)

D (x)=2(1—x) for n =1, (20b)

The other tnain ingredients of a perturbative QCD cal-
culation such as the present one are the fragmentation and

wlllch 1s lowcl' 'tllR11 Fcyll1nall-F1cld by about 20%.
In considering the distribution of charm in the proton,

G~~» we ignore the 1Iltrlnslc charm contrlbutlon. %e
take the charm to be generated by the QCD evolution of
thc structure fuIlctlo1ls: Rt low Q tllc pioto11 s charm
content is undetectable but at Q )4m, there is sufficient
resolution to find the c quark deep inside the proton.

XT

FIG. 6. Diffractive subprocess cross sections versus xr st
E, =27.4 GeV.

XT

FIG. 7. DifflRctive SUbplocess cross sections versUS xy a,t
E, =43.3 GeV.



F. HUSSAIN, K. KHAN, SAJJAD MAHMGOD, AND K. RASHID

Hence, to evaluate the flavor-excitation cross section we
take as the @CD-evolved charm distribution ' '

G,&~(x, (Q })=Nx' '(1 —x)"

at an effective average value (Q ). The normalization
constant X is fixed by the result

paraIDetrizations suggested by Buras and Gaemers '" are
followed as regards the Q dependence of nucleonic distri-
butiOIlS.

The sea and gluon distributions along with their Q dis-
tribution have been worked out by Me11en inverting the
appropriate moments predicted by @CD. We use the
paraIIlctrization g1vcn by GwcIls and Rcya.

1

X X @yp X =0.005, (21b)

G,~~(x) =0.70x (1—x)3 . (22)

Por the va1cncc quarks, 1Q a pl oton %'c shall Usc
counting-rulelike input distributions at Q =Qo . The

which is the level of charm found at Q =4m, 2 in a QCD
moment analysis. ' The parameters I and k are chosen to
be & —,

' so that xG, qz(x) resembles the momentum distri-
bution of the valence quarks. For l =k =3 we find

For the subprocesses of Eq. (12) we evaluate the dif-
ferential cross section [Eq. (6)]. In Figs. 4 and 5 we show
the results over a range 0.1&x+&0.8 at different fixed
transverse momentum fractions xr. The plots are for
center-of-mass energies of 27.4 and 48.3 GeV correspond-
ing to proton beam energies of 400 and 1000 GeV. As is
clear, the major contributions to I'+ production come
from gluon- and quark-charm diffractive scattering which
exhibit a maxima around x~——0.2—0.3 at xT ——0.1, @which

shifts to lower x~ as we go to xT ——0.3. The contributions
of the qq fusion and gluon-gluon annihilation graphs are
appreciable only for small xz, xr, and fall rapidly with
1ncrcaslng xy and xT.

b E, =43.3GeV

I
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FIG. 8. Total differential cross section versus x~. (a)
E, =27.4 GeV. (b) E, =43.3 GeV.

FIG. 9. Diffractive subprocess cross section (gc~gc) vs xp
for different charm-quark distributions. a and a' refer to
E, =27.4 CxeV, and 1 and b' to E, =43.3 GeV. For a' and
b'„xT——0.5 and the scale is to be multiplied by 10,whereas a
and b are at xT =O. 1.
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and Fig. 8 which plots the fall of the total cross section
with rising xz.

Thus, we note that the diffractive production of charm
can explain the large observed cross sections. ' Further,
one can expect the forward xz region to be a good place
to search for heavier flavors, such as b and t

In order to investigate the dependence of our calcula-
tion on the particular choice of charm distribution [Eq.
(22)], we have repeated calculations of qc and gc subpro-
cess using a softer charm distribution,

G, i~(x) =3.15x (1—x)~ .

The results are plotted in Figs. 9 and IO. Figure 9 corn-
pares predictions for qc~qc subprocess for the two
charm distributions used [Eqs. (22) and (23)]. The differ-
ence becomes significant for large xF and xT. Similarly
the plot, Fig. 10, for xr dependence of these diffractive
subprocesses exhibits small differences which, however,
are not essential for a qualitative understanding.
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FIG. 10. Subprocess cross sections versus x~ for x~ ——0. 1

and different charm distributions.
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