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Backward-moving Altarelli-Parisi equations for transverse-momentum calculations in jets
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We develop equations for various jet-calculus propagators in which the mass of partons "evolves
down;" these are in some sense just the inverse of the normal Altarelli-Parisi equations in which the
jet mass "evolves up. " The new "backward-moving" equations are preferable for calculations of
transverse-momentum distributions because they have a simpler separation of the transverse and
longitudinal momentum variables.

I. INTRODUCTION

DJ(Q, Qp, x)= g f D,' g,gp,' —P,J(z),
C

with
ct, (p')F= 1n

2n b ct, (gz)

and (12m.b = 11K, 2'�)—
a( )=

bin(Q /A )

Equation (1.1) is most simply solved by taking mo-
ments in longitudinal momentum

'(Q', Qo', ) = f " '(Q, go; )

The equation then has solutions of the form

D,'(O', Qp', n) =(e "

with
1

(A„)tj——f z"PJ(z)dz .
Note that because of the very simple form of these equa-
tions, the solution also obeys the "backward-moving"
equation

' dz
DJ'(Q, gp', x)= g f DJ' Q, gp,' —P;,(z) .

(1.3)

(1.4)

Ever since Altarelli and Parisi wrote differential equa-
tions expressing the QCD evolution of form factors in
simple terms, the technique has been widely extended and
applied to predictions of properties of quark and gluon
jets. For example, the jet calculus of Konishi, Ukawa,
and Veneziano uses concatenations of basic "parton
propagators, " DJ(Q, Qp ',x). DJ gives the probability
that parton i of mass Qp will be found in a jet coming
from parton j with mass Q. It satisfies the Altarelli-
Farisi equation

We can think of the jet, beginning at Q, successively
branching and branching until the parton under observa-
tion at the end has mass Qp.

Because DJ is a totally inclusive distribution, the other
partons in the jet (those not being enumerated in DJ ) may
evolve as they like. Normally, one speaks of them as
though they also have mass Qp; however, because this
function sums over all possible final states, and because
the probability that they do something is 1, they may in
fact be at any stage of their evolution.

In order to study colorless clusters, Bassetto, Ciafaloni,
and Marchesini (BCM) made further refinements to jet-
calculus ideas. They defined some partially inclusive dis-
tributions; we will discuss these in more detail below.
They also extended Eq. (1.1) to include the transverse
momentum of the observed parton.

If we wish to write the generalization of Eq. (1.1) in-
cluding transverse momentum, we must note the kinemat-
ics of the situation, as described in Fig. 1. Because the jet
axis turns as more vertices are added at the large-Q end,
momentum transverse to thej et axis will contain factors of
x, the longitudinal-momentum fraction. Specifically, as
given by BCM in Ref. 3(a), Eq. (2.12), the nonsinglet dis-
tribution obeys the following equation:

(k i,zk~+ q

FIG. 1. Mass, transverse momentum, and longitudinal frac-
tion of partons in Eq. (1.5},computed relative to fixed axes. The
transverse momentum of the final parton relatiue to the initial

parton of mass k is thus pz —x k~; the momentum of this same
final parton relative to thej et axis after the branch is

Pj — (zkj +qz)= Pj —x kj — qj
Z Z
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k ~"'(k'Q 'p xk x)= f C~ f 5(z(1—z)k —g, —q, )
d a(k ) ' dz 1+z 2 2 2

dk2 2~ & z 1 —z + 7T

X~Ns I ',g, ';p, —xk, ——"q„—

(We will use capital script letters for double distributions in transverse momentum. Thus, if D is the distribution in x
alone, & is the distribution in transverse and longitudinal momentum. ) Note that in & we use the momentum trans-
verse to the axis defined by the incoming parton for that &, whereas in Fig. 1 the transverse momentum is measured rel-
ative to some axis fixed in space.

Equation (1.5) is annoying because of the mixture of longitudinal and transverse degrees of freedom. BCM dealt with
this by using a variant of the Fourier transform for the transverse momentum:

(k Q b;x)=fd pe ' g (k Q p.x) (1.6)

and then taking moments in x. The resulting equations

k d, ~(k', Q, ',b;n)='") 'z dzC, '+" t' T

f dqi &(z(1 z)k —qi )Jo— ~ k Qo
'

Z Z
(1.7)

can be solved numerically. However, this is not particu-
larly simple because the equation for a given b involves all
higher values of b.

The work of Odorico and collaborators, and Fox, Wol-
fram, and Field, on Monte Carlo jet evolution, has
demonstrated that the jet cascade can be computed direct-
ly as a decay of large-mass partons into partons with
smaller mass. Vfhen this approach is taken, one can start
with a parton traveling at large momentum in a well de-
fined direction; there is every reason to think of this as de-
fining the jet axis. The transverse momentum of the de-
cay products, relative to this axis, is simply additive as the
decay chain progresses.

Computation of the successive decays using QCD ideas

will give, at each step, a momentum transverse to the de-
caying parton; simple kinemati. cs then yields momentum
transverse to the jet axis. This is conceptually much
simpler than the turning of the jet axis which marks the
BCM approach.

One might therefore hope that differential equations
could be written for the evolution of parton masses down-
ward, analogous to Eq. (1.4) but including transverse
momentum. In this paper we show that such equations
can indeed be written for all jet-calculus quantities
currently used, and that they are easier to cope with than
the traditional equations because the transverse and longi-
tudinal degrees of freedom are better separated

II. BACKWARD-MOVING EQUATIONS FOR & (Q,k; pi, x}
The kinematics and concept of the backward-moving equations for Q' are given in Fig. 2. We will restrict ourselves to

the nonsinglet case here; the extension to the full parton matrix is obvious. From Fig. 2, we obtain
2d ~Ns(Q2 k2 )

' a(k z(1 —z)) dzpqg(
dk p —„2 3 q

qy
X f i

g(g 2 —k2g(z))~Ns g2 (z)k2 (2.1)

The function g (z) depends on which mass is used in the
propagator on the right-hand side. Actually, this mass is
not completely determined, although the masses k~, k2,
and k' at the vertex k' ~k& +k2 are constrained by
the kinematic relation

(Q', o, i)
zpi qi x

k

ki +e. k2 +e.k' = +
z 1 —z

(2.2)
(4, pi, x)

Hence, if we use e(z)k as the mass of the parent parton in
the vertex of Fig. 2, the function

g(z)=k'(1 —z)[ze(z) —1] .
(Note e& 1. )

FIG. 2. Kinematics for backward-moving equation. Again,
vectors are labeled with mass~, transverse momentum, and long-
itudinal fraction relative to a fixed axis. However, here the axis
is defined by the incident parton of mass Q, which we take to be
traveling very fast.
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In the leading-logarithm approximation, one typically neglects the change of the mass in the function being calculated.
This may be a poor approximation in practice; however, since we are chiefly concerned with the transverse-momentum
aspects of the problem in this paper, we will tend to write the same masses on both sides of the equations and we will use
g(z) as a generic function in the 5 function specifying q~ .

Because this equation contains x only in the longitudinal momentum variable on both sides of the equation, we can
take moments easily. A standard Fourier transform in transverse momentum then leads to the equation

—kz V (Q k b'n) = dz z "P~g(z)
2 2m

&& f dqz Jo(bqz)5(qq —k g(z))M (Q,k;zb;n) . (2.3)

We see that the equation for & at one particular b involves only smaller b values. Note that the b =0 solution is known
at all Q: it is the standard Altarelli-Parisi result given in Eq. (1.3). Hence, a grid can be established in b and the solu-
tion for higher values of b generated very quickly.

Because Eq. (1.5) and Eq. (2.1) look so different, one might question whether they have the same content. Our next
step, therefore, must be to demonstrate that in fact the solutions are the same. To tackle this, we convert the differential
equations into integral equations. For instance, Eq. (1.5) may be rewritten as

~NS(k2 Q
2.~ .

) 5(1 )52(~ )+ f f z +( z z I ~ pqg( )~NS ki2 Q
2.~

g 2 I &2
7T

(2.4)

This can now be solved by iteration to give

k' dk'2 ' dz~Ns(kz Q
2.~ .x) 5(1 )52(~ )+ 1 f z f ~ 11(ki2 2)5 1

x 52

zz' Px — qx —,qr +
z zz'

(2.5)

where

k' 1—II(k'z, z, qg )= P'g(z)5( ' —k'f(z)) .q

If we change the symbols for the masses of the partons under observation, and also reorder the integrations, this result
can be cast into the form

'dk' ' d

f Q dk f dz f q j 11(kp2 p I

2 ki2 &/z

Px —,q —,qx +'''
zz' z' zz'
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Similarly, Eq. (2.1) becomes the integral equation

(Q,k;pI', x)=5(1—x)5 (pI)

%'1th solution

Q' dk' ' dz a(k'z(1 —z)) qz
d qI 2,2 ~NS 2,2 pI —qI

I 2 f &2 ~ ~3 2m q
~ 9'i-

z z

(2.7)

(Q,k; pI,'x) =5(1—x)52(pI)

fQ dk f dz f 'qJ. ~,(k,2 z)5 x 52 pJ qi
I2 I &2

Z

(PI —qI)« —qIx6' + 0 ~ 4

z' (2.8)

II'(k', z, q )= P~s(z)5(q k' g (z)) .—
2m

We see that (2.6) and (2.8) are the same term by term provided that f(z) and g (z) are the same. Hence, the backward-
moving equations are indeed the inverse of the forward-moving equations and we may use them if we wish.

III. BACKWARD-MOVING EQUATIONS
FOR THE 1'

A. Longitudinal momentum only

Bassetto, Ciafaloni, and Marchesini found it con-
venient to define some new distributions called I". These
have the property that i is the "first" quark coming out of
ihe incident parton; only gluons have been emitted prior
to this. These are convenient if one wishes to construct
colorless clusters consisting of a quark, an antiquark, and
IIlultlplc gllloIls. Tllc forwal'd-Inov111g cqllatloIls foI tllcsc
propagators have been given in Ref. 3, and solutions were
dlsplaycd 111 Rcf. 7.

Because these equations are not so simple as those for
the B's, the solutions are not given analytically. It is thus
not possible to differentiate directly with respect to the fi-
nal mass Qo. Actually, this is just as well; as we will now
explain, it is necessary to distinguish between the mass of

the final parton under observation, namely, i, and the
masses of the gluons which are emitted prior to it in the
cascade.

The masses of these gluons are important, because we
wish to avoid decays of these into qq pairs. The restric-
tion that certain gluons go only into gluons is imposed
within these equations by the function o.: the probability
that gluons go only into gluons.

In order to obtain backward-moving equations which
are easy to interpret, we thus consider the situation in
which (a) the incoming parton has mass Q, (b) the outgo-
ing parton under consideration has mass k, and (c) all the
gluons in the final state "between" the incident parton and
the parton under observation are at Qo. We thus define
new functions G, (Q,k;Qo, x), with a being the incom-
ing parton and b the outgoing parton. Both a and b may
be either gluons or quarks.

The equations obeyed by these 6 s are depicted in Fig.
3. They are

—k Gf(Q, k;Qo, x) =Gf(x) V (k )+ g P s~(z)Gj

(3.1a)
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—k 6 (Q k 'Q 'x)=6 (x)V (k )+ P~~( )Gs

+ f P ~g(z)o.(A,(1—z)k, Q )GJ
27T Z z

(3.1b)

—k 6 (Q,k;Q;x)=6 (x)V (k )+ g f O' —P (z)

r

+-,' f Pss(z)Gs —o(A(1 —, z)k, g )+-,' f 'P ~(z)6&—
2~ z ' s z 2

(3.1c)

'a dz—k Gs(g, k;Qo ', x)=Gs(x)Vq(k )+ f Gsg —Pg"(z)

+ f O' —P~g(z)cr(A(1 —z)k, go ) .
2m. z s z

(3.1d)

We abbreviate the arguments in 6 functions on the right-
hand side of the equations, showing only those which are
different from the left-hand side. Also, the argument of
a( ) is understood to be k z(1 —z). The splitting func-

tions P used here are the usual Altarelli-Parisi P functions
without the 5-function singularities at the end points.
These have been accounted for in the "virtual potentials"
V(k ), defined in the caption to Fig. 3.

We then expect that G, (g, go ', Qo,x) will be the same
as the BCM I",(Q,go, x) function for the two cases with
outgoing quarks; the cases with outgoing gluons are not
used by BCM. Notice that by defining the new functions
in which only one final-state parton moves in mass, we
are able to write equations which look just like the BCM
equations and use the same function o.

We must now prove our assertion that these equations
have the same content as the forward-moving equations of
BCM. For this it is simplest to go into moment space;
Eqs. (3.1) then take the form

(q) — ( ~~
)

(c)

(g} — ( ~~ )

—k 6'f(g k Q n)=M(k Q
2 n)G'f

+X(k,go, n) g 6J,

6 (g' k'g, 'n) =P(k' Q 'n)6';

(3.2a)

FIG. 3. Backward-moving equations for the G functions. T
denotes k (d/dk ); differentiation with respect to the final ob-
served mass. =D denotes 0, the probability that gluons go
only into gluons. -M- and —C3= denote the virtual quark
and gluon potentials, respectively:

+S(k,go, n)G &, (3.2b)
V,(k')= — d +[—,'P, ( )+&,"( )],2'

—k Gs(g k Q n)=M(k Q n)6 V~(k2) = — dz [ , P ~q~(z)+ , P~q~(z)]-—
277

+X(k,go, n) QGs'
(3.2c)

Note that the same graphs describe backward motion of the 8'
function; one must just keep track of both sets of momentum in

writing the equations.
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—k2 G s(g, k;Qo, n) =P(k, go', n)6 s

+S(k, Qo', n)6 ss, (3.2d)

k' o. t' 1 —o. t'
2& Q

[1—o(k, go )]

AP( n )[1+cr( k, go )],
X(k2, Q,2;n) = ~s~(n),

2m.

M(k, go, n)=—

P(kz, go, n) = — f, , [1 o(t')]dt'— .
go~

+ C~a(k )[1—o(k2, go )]
4m

cr(k, go )Aq~s(n),
a(k )

where the functions M(k ), JV (k ), P(k ), and S(k ) are
defined by

a k2
S(k,go, n) = Ass~(n)

'77 f
a(k )

2m

Explicitly, for three flavors, we may define the matrix

P 0 0 S
0 I' 0 SZ'"'= 00PS
XAAM

(3.4)

Then Eqs. (3.2a) and (3.2b) may be summarized as

61 g 1

6) 6)2 2

2 z
dk2 61 61

Gf Gs

(3.5)

We again cast this into the form of an integral equation
and solve by iteration. The result may be rewritten as

(6 '„6 '„6'„6f)=(1,0,0,0)X(g', k'),
where the matrix X is

' dk'2 ' dk "2 kn2 d/t2X(g,k )=1+f, Z+(k' )+ f, Z+(k" ) f, Z+(k' )

(3.7)

I i(Q'*Qo') I I

I'2(g' Qo') I 2

Q dg2 P 1(Q2 Q 2) Q P 1
=Z+( ')—

I s(g' Qo') r
(3.8)

with the same Z as above. Their solution thus becomes

As was pointed out in Ref. 7, the equations for the I'
take the form

6,'(g', k', g, ';n) =X(g', k';n), ;,
6'f(Q2, k2;go;n) =X(g,k;n);4,
6 s(Q2, k2„go2,'n) =X(Q,k;n)4;,

6 ss(g, k;Qo,'n) =X(g,k;n)44,

I s(g, go ', n) =X(g,go', n)4.;,
I J(g,go', n) =X(g,go, n)J, ,

(3.10a)

(3.10b)

(3.10c)

V

I'(Q Q )'
I 1(g2 g 2)

2

p i(g2 g 2) =X(Q .Qo')

(Q2 Q 2)

(3.9)

&e note that the results of the equations may be written
in the form

and hence the 6,'(Q, go;Qo;n) agree with the 1,' for
the appropriate cases with quarks going out, as claimed.

B. Inclusion of transverse momentum

The inclusion of transverse momentum is very straight-
forward since the kinematics of this case is exactly the
same as in the case of the D functions. We thus can write
immediately
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d2
&'(Q' k Q p x)= Vq(k')&';(pj, x)+ f, f P»g'(z)5{q '—k'g(z))Sg ' '

~ —"

r

+ f f P g(z)5(q —k g(z))o(A(1 —z)k Q )9'»

(3.11)

and the method of solution will be the same as for the case of W s, with the slight complication of the added matrix
algebra and the auxiliary function cr

IV. KEEPING TRACT OF GI.UON MOMENTUM

A. The H functions

As discussed at length in Refs. 3 and 8, we would like to form colorless clusters containing a quark, antiquark, and
multiple gluons, and know the momentum of the entire cluster. This requires that, in addition to the quark momentum
used by the BCM I ' functions, we need the momentum of the gluons which come off before the quark in question. In
Ref. 8, a set of functions called H were defined, and the forward-moving equations for these written down. For con-
venience, we repeat these [here in O(a, P, y, 5), P is the mass of the (gluons + quarks) whose longitudinal and transverse

r

momenta are y and 5]:

—Vg(k ) @gq(k,p,x, pj —xki)
d ink

2~
dz cx( ) ~qqPg (z) 5(z(1—z)k —

q» )Oqq A{z)k „p,—,p» —xk» ——
q»

X ~ X

z 2m z z

d qg+g -Pg z — z 1 —zk —gg g A zk ~p, ~pg —x g
— qyz 2m z z

2~
+ —, I'g~z d ) d 2

— z 1 —zk —zk2 —1 —zk) —qg
1 —z 2m '7T X

X — o (ki, QO ) @ kz, (p —ki), , p —xk — q, (4.la)

—Vq{k ) @qq(k,p,x, p~ xk~)—
d ink

= f pgqq(z) f 5(z(1 z)k qg )@gq—k{z)k—,p, —,p» —xk~ ——qjz 2m. z z
r

+ f -- Pgqq f dk) dkz 5(z{1—z)k —zkz —(1—z)k, —q~ )
dz Q( ) ~gq z z ql x —z 2 2 2 2

1 —z 2m X

og(k)2, QO ) Oqq kz, (p —k)), , p» —xkj — q, . (4.1b)

In Ref. 7 the longitudinal-momentum distributions for the

H'= f dP f d pqO'(k, P,x, p»)

were computed as well as various related mass distributions. One feature of these longitudinal-momentum equations
which makes them more complicated than the ones for I' and D is that after moments of the distribution are computed,
equations for the nth moment involve all lower moments. However, solution by norlnal techniques is still possible.

When the full equations including transverse momentum (4.1) are considered, however, it becomes clear that the trick
used by BCM to separate the Fourier-transform variable from the moment-transform variable will not work here. If we
define

A (k,x,b)= f dp f d'pie ' 4 (k,p';x;pi)
we find that the transform of (4.1a) becomes
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—Vg(k~) A gg(k;x, b)
d ink

2~
Pg~~z 5z I —z '—q~'A q~ A, z 2; —;—e

T

+-,' f ' P«(z) f '5[z(1 z)—k2 ~, ']~& X(z)k'; —;—"

+exp —/b'q~ x (4.2)

8. I.ongitudinsl momentum only

Again we wish to write backward-moving equations which involve only simple QCD vertices and the BCM function
o. Apparently, the best way to do this is to define yet another set of distributions, 8'(Q, k;Qo;xi, x2), in which the
momentum x i of all the gluons (between the two partons at Q and k ) and the momentum xz of the parton in question
are separately handled. Both the function G and the function H can then be computed from the W's, using the relations

1 —x2
G.'(Q, k', Q, ;x,)= f dx, IV."(Q,k;Q, ;x„x,), (4.3a)

1—x&

H, (Q,k;Qo, x)= f dx2 f dxi5(x —xi —xz)W, (Q,k;Qo ',xi,xz) .

The 8' s then obey the equations (see Fig. 3) (again we suppress the first three arguments of 8'on the right-hand side
of the equation)

(4.3b)

This so mixes the transverse and longitudinal momentum that straightforward solution is not possible.
%e need an approach through the backward-moving equations to obtain any clue about the transverse-momentum

behavior.

i —Vg(k ) 8;g(Qz, k2;Qo, xi,x2)
d 1nki

P gg(z)

+2 —8'Ig xI —x2, 0 I —z, 0 P~gz +2 8;g xI, Pg ztt( ) g (1—z) ~gg dz ] cK( ) g x2 ~gg dz

2m
' z 'z z '

2m
' 'z g z

z
—Vg(k ) W/(Q, k;Q02, xi,x2)

d ink

&JJ( )IV x + f P'( )8' x — '
(A(1 —)k'Q ') (4.4b)

2
—Vg(k ) Wg~(Q2, kz;Qo~, x „x2)

d ink'

x2 P gg(z)

+ —, IVgg xi —x2, P (ggg) zo(A, (1—z)k, Q, )+ —,
&( ) g (1—z) xz

gg dz z z, ~( )
8'g~ x),

2%-
I

P «(z) (4.4c)

z
—Vg(k ) Wg(Qz, k2;Qoz, x„x2)

d ink

= f ~ "(z)IV' xi, —+ f ~gg(z)IV' x —x~( ) ~ ~(); (1-z) x2
2m

Q' g I 2 0'(A, l 1 —z)k, Qo ), (4.4d)
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which can be solved in the usual way by taking moments.
If we take double moments of Eq. (4.4b), we obtain ( m, n & 0)

—V (kz) WJ(g, k;Qp,'m, n)
d ink'

a(kz);;. = a(k )-Az'(n)Wf(m, n)+ Pz (n, m)o(k, go )G J(n+m)

a(kz) ««« —1 m
+ g . P&~z(n, j)o(k,go ) W j(m j,n—+j)2m, , J

a(k')a«' Qo') ss 3 ao
Ass(n) ——CF+CF=(k ) WJ(m, n) (4.5)2' 2 2m

with

k' dk'z 1

:-(k )=—f — a(k' )o(k' ), P(n„nz)= f dzz '(1 z) 'P(z) —.

This is similar to the equation for H in that it mixes moments. Solution for W(l„lz) requires solving for all G s up to
6 (1&+lz); for all W(1 j) uP to j= 1

& +lz —1; and for all W(i j) for i &1&, j &1&+lz i T—he. moments of H can then be
obtained from those of Wby

r

f 1 n yg

x "H, (Q,k;Qp, x)dx = g,. W, (Q,k;Qp, n i;i)—.
i=0

(4.6)

C. Inclusion of transverse momentum

The equation for W including transverse momentum analogous to (4.4b) is
r

, —V, (k') ~J(g', kz;Qo', xi, p i',x, p i~)
d ink'

2~
= f P&~s(z) f o(A(l —z)k, gp )5(qq —k g(z))

(1—z)
X ~; &1 —X2 &P j.—~

Z

xz xz Pi —qx
P x qj. +qx~

Z Z

2~ -2
+ f P"( ) f 5(q, ' —k'g( ))~,p', (4.7)

Although this looks somewhat messy, we again have the feature that no x's are included in the transverse-momentum
distributions. Notice that the full 9' and A functions may be computed from

~g(g k Qp Pl x) f d P j. f d'Pl5'(P. -PI.—Pj. )

1 1 —x&

x f dx ~ f dxz5(x —x~ xz) M, (g «k—;Qo,x ~«p q,xz«p f) «

1 —x$,(g,k;Qo,'pq«x)= f d p j. p
dxiMu(g «k «Qo '»i«p I«x px)

After computing moments, and Fourier transforming the two transverse-momentum variables separately, we have

z
—V~(k') M';(Q', k', Qp', m, b).,n«bz)

d ink

(4.8)

m

f dz o(k(1 —z)k, gp )P ~~s(z)Jp(kv'g (z)
~

b& —bz
~

)z "(1—z)IM;(m —j,b~, n +j,bzz+1, (1—z))J

a( ) -JJ-.+ P Jsj(z)dz Jo(bzk/g (z))z"Ms(m, 1~', n, zbz) .
Zm
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Since the moments needed for A are ones with both b values equal, we do not need to solve these equations in general
to deal with the H s. Instead we note that wtth b t =b, b2 =bg (g & 1), we obtatn

—Vq(kz) X i(g, k;Qo,'m, b;n, gb)
d ink'

Nl I dz o'(A(1 z)k—, Qo )P qqs(z) Jo(kv'g (z)b (1—g))z "(1 z)J—K J(m —j,b;n +j,b [1—(1—g)z])
2m'

+ I Pjsj(z)dz Jo(gbk&g(z))z"Mf(m, b;n, zgb) . (4.9)
2m

One can then set up a grid in b2, and solve as for the &'s.

In order to be able to separate the longitudinal and transverse degrees of freedom in the jet behavior, the backward-
moving equations must be used. These are more easily solved numerically than the forward moving equations. Howev-
er, they have the same physical content and the answers can be shown to be identical. Solution is in progress, and results
will be presented in a later paper.
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