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Since one-particle-exchange (OPE) mechanisms are predominant in all aspects of elementary-
particle dynamics, a novel class of polarization tests is proposed for such mechanisms. They test
whether a single particle of total angular momentum J is exchanged ("J constraints") and whether
the process can be factorized into two vertices ("factorization constraints"), but the tests are in-
dependent of more detailed dynamical features such as the exact nature of the coupling at the ver-
tices. Except for a restricted type of processes containing some low spin values, the constraints
reduce the number of reaction amplitudes and offer tests of OPE which are independent of the value
of J. The tests have a particularly simple form in a "magic" formalism in which the quantization
directions of the particles are in the reaction plane and are rotated from the helicity directions by a
"magic" angle which can be easily specified for a given s and t. The tests consist of measuring
whether a certain polarization quantity vanishes or not, thus providing sensitive "null experiments"
for the exploration of particle dynamics. The results are illustrated on the popular reaction

2 + ~ ~ 2 + ~, which is embodied, for example, in elastic nucleon-nucleon scattering. The tests

can be used either for one single-exchange mechanism or for a combination of such mechanisms
(even if they involve different J exchanges), as long as they all have the same type of parity.

I. INTRODUCTION

Practically all dynamical theories and models for
elementary-partide reactions are and have been some vari-
ants of a one-particle-exchange (OPE) mechanism. At the
same time we know that such theories and models
represent only an approximation to the actual dynamics of
such reactions. The validity of such approximations and
the nature of the deviations from it have therefore been in
the main focus of investigations for a number of decades.
Much of the recent quark dynamics is also a variation on
this same theme.

It is not easy, however, to test these OPE mechansims
in a way that is model independent and convincing, and
provides results in an easily interpretable form. Fitting
cross sections alone, especially with models containing ad-
justable parameters, is a highly unsatisfactory and inde-
cisive procedure, attested to by the cumbersome history of
the various Regge-pole models and their eventual failure.
In some instances the OPE mechanism is expected to con-
tribute predominantly in certain kinematic ranges (e.g.,
one-pion exchange to nucleon-nucleon scattering in high-
angular-momentum states), but such clearcut situations
are not too frequent.

The aim of this paper is, therefore, to use the polariza-
tion structure of reactions for experimental tests of OPE
mechanisms. Such polarization tests, in specific in-
stances, on an ad hoc basis, have been proposed in the
literature previously. ' It seems, however, very much
preferable and more economical to discuss this problem in
a completely general way, in terms which can then be
easily applied to any reaction and in any context. As we
will see, this is quite feasible.

The first task is a semantic one, namely, the analysis of
what is actually meant by "OPE mechanism. " This is
done in Sec. II. It is found that there are three types of
constraints arising from what we will call OPE. The first,
discussed in Sec. III, explores the constraints of having an
object of definite J in the intermediate state. We will call
this the J constraint. Then, in Sec. IV, we derive the con-
straints due to factorizability, including J constraints at
the two factorized vertices.

The third type of constraint arises from the particular
form of the couplings used at the two vertices. In this pa-
per we will not discuss this part of the problem, for the
following reasons.

(a) The first two types of constraints hold for any OPE,
and hence test the basic assumption that particle dynam-
ics is mediated by such a mechanism. In contrast, the
third type of constraints is more dependent on the specific
details of the dynamics, which can be varied in an almost
infinite number of ways, thus creating the kind of "slip-
pery" models which can, it appears, never be disproven by
experiments.

(b) Since there are so many different variants of OPE
models, their systematic discussion goes far beyond the
possible confines of one article.

(c) The existing literature is mostly devoted to the dis-
cussion of such specific models, and although the subject
has by no means been exhausted, it seems more
worthwhile to contribute in a direction which is signifi-
cantly different from the existing literature.

Section V offers an example, namely, the reaction
—,
' + —,

' ~—,
' + —,', on which the results of the previous sec-

tions are illustrated.
Finally, Sec. VI contains a summary and conclusions.
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II. VfHAT IS A ONE-PARTICLE-EXCHANGE
MECHANISMS

In the parlance of the last 30—40 years, OPE can mean
any of a number of things. It may be the lowest-order co-
variant Feynman diagram used to calculate amplitudes in
an M matrix, or used in an iterative way in some scatter-
ing formalism or relativistic wave equation. It may mean
such a reaction amplitude but "unitarized" in one of a
number of different ways. It may mean an OPE potential
inserted in a Schrodinger equation or in any of a number
of relativistic two-body equations. In the case when the
particle being exchanged is known to have a short life-
time, OPE may or may not include a recognition of this
through a phenomenological modification of the propaga-
tor. All this may be couched in the language of standard
field theory, or of dispersion theory, or of Regge polology,
or of gauge theory.

If one claims to offer tests of OPE, therefore, one must
be able to specify which of the above possibilities are
covered by such tests. This can perhaps be best done by
describing the particular features of the OPE that are be-

ing tested. There are two such features.
(A) The interaction takes place through an intermediate

state of a definite and fixed J. In this respect it does not
matter whether this state is indeed a one-particle state,
and, if so, whether that particle is observed on-shell in
other experiments, whether such a particle has a definite
mass, whether that effective mass is real or complex, etc.
All that matters is that the intermediate state possesses a
fixed and definite total angular momentum J. As men-

tioned, constraints from this condition will be referred to
as J constraints.

Some qualifications are in order in 1abeling an ex-
changed state by definite J. An exchanged particle is
necessarily off-shell spacelike (excepting massless particles
in forward elastic scattering) and does not have a rest
frame in which to define its spin. Such an off-shell ob-

ject, if it is an "elementary field, " is described by an ir-
reducible representation of the Lorentz group. That rep-
resentation reduces to the J,J—1,J—2, . . . , 1 representa-
tions of the rotation group for bosons and to two J, two
J—1, . . . , two —,

' representations for fermions. Various

constraint equations eliminate all but J when on-shell, but
off-shell these "auxiliary spins" remain. However, in any
covariant treatment of the OPE model the auxiliary spins
will not introduce independent couplings, since covariance
relates the auxiliary spin amplitudes to the J amplitudes.
In noncovariant approaches auxiliary spins never appear.
So for the exchange of a "particle" the complexity of the
amplitudes is determined by J alone. When a composite
object (e.g., two-particle intermediate state, resonance,
Regge pole) is exchanged, the meaning of J is more model
dependent (as a recollection of the discussion of nonsense
couplings in Regge theory will confirm).

(B) The interaction is describable in a factorized form,
that is, as a product of two independent parts, each con-
taining a set of physical particles plus the exchanged par-
ticle, such that the two sets are nonoverlapping and be-
tween them contain all physical particles of the reaction.
For the most common case of a four-particle reaction,

each part is a three-particle vertex with two (physical)
particles on-shell and the exchanged particle off-shell. In
determining the number of form-factors in each vertex, J
constraints for such a vertex must be taken into account.

To conclude this section, we want to emphasize a cru-
cial feature of our tests, namely, that they can be applied
not only to a single exchange mechanism but also to a
simultaneous dominance of several such mechanisms, pos-
sibly, each with a different J exchange, as long as they all
have the same type (e.g., natural or unnatural) of parity.
In other words, we are not testing for the dominance of
exchange mechanisms of a single given J, but for the
dominance of exchanges of one of two classes, the class
being characterized by the type of parity (natural or un-

natural) but otherwise possibly including exchanges with a
number of different J's. This feature greatly extends the
domain of applicability of the tests, since if we could deal
with only one particular exchange mechanism at a time,
or with exchanges of only one particular J, such a process
could be expected to be obscured by many other processes
in most kinematic configurations.

III. J CONSTRAINTS

The J constraints can be summarized easily. In a pro-
cess, as shown in Fig. 1, initial or final states in the t
channel which have

~
J,

~
&J cannot play a role. Since

each amplitude for the reaction connects an initial state
with a given S,"=s~,+s2, with a final state with a given
S2 =s 3 +s4 amplitudes involving at least one state(f)

with
~
S,

~
&J must vanish. This is true in all formalisms

in which the quantization directions are so chosen that no
orbital angular momentum can contribute. Thus, such
quantization directions must lie in the reaction plane.

The rest of this section will convert the above verbal
statement into quantitative results and prescriptions for
these J constraints.

To start with, we want to group the usual optimal
states (characterized by s, 's along some quantization

FIG. 1. Diagram of a four-particle process taking place
through an intermediate state of given J.
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n =s)+sq (S,—1),—sr+s2&S, &s~ —s),
n =2s~+I, s2 —s& —1&S,& —(s2 —s& —1), (3.1)

direction) such that states with the same total S, are to-
gether. We do this because in the J constraints only the
total S, matters and not the individual s, 's.

To do this grouping, visualize the optimal states
represented by dots and arranged in a matrix form as
shown in Fig. 2. It is evident from that diagram that the
"multiplicity" n of a S, set in terms of the optimal states
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To ascertain now what constraints a J exchange pro-
duces, superimpose a square of side 2J onto the diagram
in Fig. 3, concentrically with it, and count the weighted
sum of the points within or on the boundary of the
square. In Fig. 3 such a square for J=4 is indicated by
dotted lines and can be seen to contain 3225 amplitudes.
Thus, under J=4 constraint the remaining amplitudes
must vanish.

The quite high numbers for the s s in Fig. 4 serve only
to illustrate the general prescription. The practically
more realistic numbers for the s s are 0, —,', 1, and —,'.
The diagrams for some processes with such spin values
are shown in Fig. 4, together with the number of amph-
tudes under various constraints. NT is the number of am-
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FIG. 2. Optimal states arranged for grouping into sets of
given S,. For an explanation, see the text.
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We assumed here that s~ (s2. In a similar graph for s3
and s4 we can assume s3 Qs4.

The S, sets and their multiplicities can be charted using
a different type of diagram shown in Fig. 3. In it the
multiplicity of each point is given by the product of the
multiplicity of the row to which the point belongs and the
multiplicity of the column to which the point belongs.
The multiplicities of rows and columns are shown in Fig.
3 on the right and lower margins, respectively. The sum
of the points, each weighted by its multiplicity, gives the
total number of amplitudes for that reaction. In the ex-
ample in Fig. 3 this is 5)&11)&9X13=643S,which is
equal to the weighted sum

4(4 5X10)(2.5X6)+2X9X3X(2.5X6)

FIG. 3. Chart of the S, sets. For an explanation, see the
text. In this example s& ——2, s2 ——5, s3 ——4, and s4.——6.

plitudes without any J constraints and N; is that number
under the J constraints with J=i. These numbers can be
read off the diagrams immediately, using the previous
prescription. The Nz 's also given in Fig. 4 will be dis-
cussed in the next section.

We see from Fig. 4 that J constraints are effective even
in some simple reactions (like 0+ 0—+ —,'+ —,

'
), though

they are more likely to have a marked effect in the case of
higher spins (e.g. , —, + —,

' ~—,
' +—', ).

In Fig. 4 the reactions discussed are those with an s-
channel single-J intermediate state. Appendix A shows
how the argument can be carried over to the t channel.

So far we have only counted amplitudes but did not
analyze which amplitudes and which corresponding ob-
servables will be affected by J constraints. We now turn
to that question.

It is not difficult to find the answer. For reasons re-
ferred to earlier and discussed in Appendix A, we will use
the "magic" planar optimal formalism for the direct
channel. The amplitudes there are D(c,a;d, b), where c,
a, d, and b are the s, values of the third, first, fourth, and
second particles in the four-particle reaction A +B
~C+D. For a particular J constraint D(c,a;d, b)=0 if

I a,
—c

I
&J and/'or

I
b —d

I
&J that is, if at least one of

S,"and S,' ' in the cross channel reaction is larger than J.
How do these constraints on amplitudes manifest them-

selves on observables?
In dealing with the observables, we will use the notation

of Ref. 3, in which the observables for the reaction
A +B~C +D are denoted by l. (uvHp, UVHp, gcoHq,
:-QH~), where u and v are the spin indices for particle A,
the indices U and V refer to the spin of particle B, the in-
dices g and co to particle C, and the indices = and 0 to
particle D, and where each H can be either R (real) or I
(imaginary).

Let us first consider two amplitudes D(c&,a&,'d&, b&)
and D(c2,a2, d2, b2), both of which are J forbidden.
Then, as one can see from Eq. (2.30) of Ref. 3, the observ-
ables l. (a, a&Hp, b~b2Hp'c~c2Hq, d&d2Hg) [of which
there are, in general, eight (see Table I of Ref. 4)] all must
vanish, because then all the other amplitude products ap-
pearing in the above-cited Eq. (2.30) also vanish, since at
least one amplitude in each product will also be forbidden.
There is, therefore, a large class of observables which van-
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so do therefore the observables with the corresponding ar-
guments.

The above results are formulated in terms of the direct
(unaveraged) optimal observables in which the polariza-
tion states of all four particles are specified. In the exper-
imentally more accessible or at least more traditional ob-
servables we either average over one or several of the ar-
guments (corresponding to the use of unpolarized parti-
cles) or we take differences (i.e., measure the asymmetries
of various sorts). The J constraints will manifest them-
selves also in these observables. Consider, for example, a
reaction A +B~C+D, in which A is a spin- —, particle.
Consider now the amplitudes D(ci, —,,di, b&) and

D(c2, , ,'d2, b—2),and the corresponding observables

L ( ,' , ,bib—2—Hp,cic2Hq, did2H~) =L+ .

If we do not want to measure the polarization of /I or
want to measure only asymmetries with respect to it, we
have to consider also a second observable

L ( ——,
' —,', b &b2H—p&cic2Hq, d i d2Hq ) =L

and the associated two amplitudes D(ci, ——, ', d&, b&) and

D(c2, ——, ', d2, d2), and then measure L++L—:X or
L+ —L

If both of the observables L+ and L are J allowed,
these observables are not suitable for OPE tests. If both
observables are J-forbidden, they serve as OPE tests, and
so do X and m. But we have OPE tests also if, say, L+ is
J-allowed and L is J-forbidden, since in that case X =qr,
a result that in general one would obtain only as an ex-
trernely rare "dynamical accident. "

These general considerations will be illustrated on a
specific example in Sec. V.

IV. FACTORIZATION CONSTRAINTS

Nr=l2, No=2, N, =l2

QX/I ~ ~

o ~ ~ 2

l/2 l/2 ~ ~ ~ I

(q) (q)
Np=3, N! =7, (q)
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I 2 3 2 Nr =36, Np =6,
I i//I ~ e ~ ~ ~

N( ) 5 N(f)
~ o ~ ~ ~ 0

I/2/ il/2 ~ ~ ~ ~ ~

N! =28, N2 = 36

FIG. 4. J-constraint diagrams for some simple reactions and
the number of amplitudes under various contraints. For an ex-
planation, see the text.

ish under a particular J constraint, with arguments corre-
sponding to pairs of forbidden amplitudes, as explained
above.

But there are also other observables that vanish. Con-
sider two amplitudes D(c!,a&,di, b&) and D(c2,a2,'d2, b2),
such that ci+c2+ai+a2 ——2J+a, where j is the param-
eter in the J constraint we are considering, and a is a pos-
itive quantity. It is evident that at least one of these two
amplitudes will be J-forbidden, while the other may or
may not be. Even in this case, however, all amplitude
products in the above-cited Eq. (2.30) of Ref. 3 vanish and

N/=—[(2s &+ 1)(2sz+ 1)+ (2s3+ 1)(2s4+ 1)](2J+ 1) .

(4.1)

The overall reaction has, in general,

N = (2s i + 1)(2s2+ 1)(2s3+1)(2s4+ 1) (4.2)

The discussion of the factorization constraints will be
carried out in the following four steps.

(A) Constraints due to factorization into two three-
legged vertices, without regard to possible J constraints on
the two vertices themselves.

(B) J constraints on one such three-legged vertex.
(C) Factorization constraints with J constraints on each

three-legged vertex.
(D) Comparisons and summary.
We will now proceed to these four steps.
(A) To determine the constraints due to the factorizabil-

ity of the vertices in one-particle-exchange processes, we
must first consider the structure of the vertices separately.
A simple three-particle vertex, say, the lower vertex in
Fig. 1, has at most (2s|+l)(2sq+ 1)(2s3+ 1) amplitudes.
Then the number of three-point amplitudes involved in
the overall factorizable four-particle process with a J in-
termediate state is at most



POI.ARIZATION TESTS OF ONE-PARTICLE-EXCHANGE. . . 59

&Js,s, =
$1+$2

S12 Isl s2 I

(2S;„+1), (4.4)

where S;„ is Si2 or J, whichever is smaller. We can
write the result of this summation for three different
cases:

Ngg, , ——(2s, +1)(2s,+1), J)s, +s, ,

Ng. ..,——(2J + 1)(s i +st —J)
+(J+s2 —si+1)(J—s2+si+1),

$1+$2)J)$2 $1

(4.5)
Ng, g

——(2J+1)(2si+1), s2 —si )J,
where we chose si &s2 for specificity. These numbers are
considerably smaller than the product of the multiplicities
of the legs. Useful examples are tabulated in Table I.
Note that as long as all those legs are on-shell, the num-
bers obtained are independent of the choice of the "decay-
ing" particle.

(C) With the numbers obtained from Eq. (4.5) we see
that the total number of nonzero three-particle amplitudes
that contribute to the four-particle process with a J inter-
mediate state is

Ng ——NJ, , +Xgg g
(f) (4.6)

Generally, this number is smaller than the number of J-
constrained four-particle amplitudes, which is seen to be

amplitudes. So this first constraint of factorization will
reduce the number of independent amplitudes, providing
Xf (X, which is equivalent to

1 1 + 1
(4.3)2J + 1 (2s i + 1)(2s2+ 1) (2s3+ 1)(2s4+ 1)

As an example, consider a process involving —,+ —,

~—,
' + —,'. If J=G, then the inequality in Eq. (4.3) is satis-

fied and Nf =8 while N=16. On the other hand, for
J=1 the inequality does not hold and so no reduction en-
sues. An example for this situation is nucleon-nucleon
elastic scattering with one-pion exchange, except that in
that case the constraints of additional symmetries need to
be considered also.

(B) The counting of three-particle amplitudes above
does not take into account the J constraints on the three-
particle vertices. If we consider a real decay processs in
which J—+s&+$2, then s~, +$2, must not exceed J, as we
have previously noted. To count the number of nonzero
amplitudes, we can use the same enumeration procedure
as in the four-particle process. It is easier, however, to ob-

serve that for each si2 value, where Si2——si+ si, the
number of allowed (Sii), values is either (2Si2+1) or
(2J+1), whichever is smaller Then .the total number of
nonzero amplitudes
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first ease, including the reactions 0 + —,
' ~0+ —,',

0+0~X+Y, and X+Y~O+0, where X and Yare ar-
bitrary, we have J-constraint tests for low values of J but
not for higher J's. In the second case, including all other
reactions, the quantity Nqf', as a function of J, "satu-
rates" below the value of NT, thus providing tests of any
J exchange, and hence for exchange in general, that is, for
whether the reaction proceeds through a one-particle-
exchange mechanism at all. As one goes toward higher
spins, the difference (and even the ratio) between Nr and
NJ(f) becomes increasingly large

In summary, factorization reduces the number of in-
dependent quantities on which the J-constrained four-
particle amplitudes depend (Njf'), thereby reducing the
number of independent four-particle amplitudes. The to-
tal number of nonzero four-particle amplitudes Sq, how-
ever, is not reduced, but these XJ amplitudes no longer
form an independent set. It should be noted that the fac-
torization constraints constitute nonlinear constraints on
the J-constrained four-particle amplitudes. The form that
these nonlinear constraints take can be expressed simply
as

+DJ(c,a;d, b)D&(c', a';d', b')

TABLE I. The number of amplitudes for various three-
legged vertices. For the definition of the notation, see the text.

(2s1+ 1)(2s2+ 1)(2J+ 1)

~g=Wg ~ X&zs3s, . (4.7) =Dq(c, a;d', b')Dz(c', a', d, b), (4.8)

Examples are included in Fig. 4.
(D) We can see from the examples and from the above

general formulas that there are two different cases. In the

where the DJ(c,a;d, b) is an amplitude for 3 +B~C+D
with spin projections a, b, c, and d along some quantiza-
tion axes, and the exchanged particle is a spin-J inter-
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D (c,a;d, b) = g Dz(c,a;d, b)d, , d I, (8, ) .
J

(4.9)

mediate state in the crossed channel D+B~C+A, with
Dq(c, a;d, b) defined through the crossed channel angular
momentum decomposition of the optimal amplitude in
the helicity basis,

oo= D—II=..—~ssss=2(
I
a

I +
I
c

I

Cl.l. ———KI.L —— —(O,z;z, O) = —2(
[
a

[

—
)
c

(
),

Dzz ———Dss =4Reac*,

HLs~ = —HL~s =4Imac*

(5.3)

V. AN APPLICATION

The results of the previous sections will now be illus-
trated on a specific reaction, namely, on —,

' + —,
' ~—,

' + —,'.
This reaction was chosen for a number of reasons: It is a
relatively simple process, yet OPE constraints are well
manifested on it. It is also an experimentally well accessi-
ble and, in fact, quite well explored reaction, for example,
in the form of proton-proton elastic scattering about
which large sets of polarization data are available, some
of which have been phenomenologically analyzed. Final-
ly, the question of OPE is of considerable interest for that
reaction.

I.et us first explore the J constraints. As Fig 4sh. ows,
%0——4 while X& ——XT——16, so that the only J constraint
for this reaction is for J=O, which shows that if the reac-
tion is mediated entirely by the exchange of one pion
and/or one of each of some other scalar or pseudoscalar
particles, then, when only Lorentz invariance is con-
sidered, only four of the 16 amplitudes are nonzero.

In the cross channel, and hence also in the direct chan-
nel for the "magic" formalism (see Appendix A), the am-
plitudes that must vanish under J=0 constraint are

D ( —+;anything) =D (+ —;anything)

=D (anything;+ —)

=D (anything; —+ )

(5.1)

In simpler terms, only the following four amplitudes
remain nonzero:

=D(++,——)D( ——;++) (5.4)

When we impose the additional symmetries also, we get

(5.5)

so now we have only one independent amplitude if we
combine this with the J constraints for J=O. We get, in-
stead of Eq. (5.3),

oo= DL,L,
= H—ssss =—+DNN =+—Dss =41a

l
(5.6)

and all other observables in Table VI of Ref. 7 vanish.
For J& 1 we have a whole set of 36 relationships aris-

ing from Eq. (4.8). With the additional symmetries these
relations yield altogether three different relations,

2aJ ——+cJ, dJ ——+eJ, aJe~ ——+bJ (5.7)

where the signs depend on the intrinsic parity of the spin-
J exchange and the subscript J indicates that these are the
DJ(c,a;d, b) amplitudes of Eq. (4.9). Because aq and cq
are both multiplied by d (8) to obtain a, and c, respec-
tively, we obtain

a =+c (5.8)

for (natural/unnatural) parity exchange. The bz, dz, and
eq are each multiplied by different angular functions so
that no simple relation remains between d and e. Then,
substituting a =+c into the observables of Table VI of
Ref. 7, one obtains, for OPE constraints when J& 1,

CIL, KII ——(O,z;z, O—)—, Css ——+Kss,

So much for the J constraints. Let us now turn to the
factorization constraints.

The factorization constraints are expressed by Eq. (4.8).
In our example, for J=O, we get

D(++,++ )D( ——;——)

D(++;++), D(++, ——),
D( ——,++), D( ——;——) .

(5.2) HSNL —HSLN ~ HNSL +HNLS ~

while

(5.9)

It is easy to ascertain that once the additional con-
straints of parity conservation, time-reversal invariance,
and identical particles are also imposed, and the original
16 amplitudes have been reduced to 5, the above 4 ampli-
tudes are reduced to 2, namely, to a and c in the final no-
tation of Ref. 7.

All that now remains is to read off from Tables V or VI
of Ref. 7 the observables that vanish if only a and c are
nonzero. In this case, the constraints are very severe. For
example, out of the 26 observables listed in Table VI of
Ref. 7, only 10 are nonzero, namely, o.a, CLL, ALL, DLL,

Hssss DNN Dss +LSN and ~LNS
among them we have the relationships

CNX +XX~ CSL +SL & HSSX HSNS

for a =+c and

HNSS DLS HSSSL

(5.10)

(5.11)

for a = —c.
It might be mentioned that in special situations and us-

ing particular kinds of couplings, one can of course obtain
our results in other ways. For example, for the reaction
involving four spin- —, particles, scalar-meson exchange in
the usual coupling predicts only the identity operator
while the pseudoscalar exchange in the usual coupling
gives the operator (o ~ r)(o2 r) at long distances. These re-
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suits correspond to the a =+c result obtained above. The
advantage of our method is, however, that it does not de-

pend on the exact form of the coupling and holds for all
J's of the exchanged particle.

VI. SUMMARY AND CONCLUSIONS

We have seen that one can construct a novel set of po-
larization tests for OPE mechanisms, which tests are in-
dependent of the specific details of the various mecha-
nisms and which experimentally do not involve an exten-
sive program of measurements. Indeed, they involve only
the measurement of one or a few relatively easy polariza-
tion quantities, defined in the "magic" system in which
the quantization direction of the particles is in the reac-
tion plane and is rotated from the helicity direction by a
certain given "magic" angle which varies with s and t.
Such polarization tests can contribute decisively to the ex-
ploration of elementary-particle dynamics.
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APPENDIX A: CROSSING RELATIONS
AND PLANAR AMPLITUDES

a, b, c,d

)& ddd ( —Xz )D"(c,a;d, b ), (A 1)

where a, . . . , d are helicities for particles 3, . . . , D.
Furthermore D "(c, . . . ) are s-channel helicity amplitudes,
and a', b', c', and d' are helicities for 2, B, C, and D in
that t channel for which G(c', . . . ) are helicity ampli-

The J constraints and factorization constraints of Secs.
III and IV have been applied to the amplitudes for which
the spin- J particle is an intermediate state, that is, in the
t-channel physical region. Hence, the statement that a
particular set of amplitudes is zero is true for the t chan-
nel or crossed process. Of course the basis in which the
amplitudes vanish must be specified. A natural basis is
the t-channel helicity basis, for which there can be no "z
component" of orbital angular momentum for initial or
final state, in which case S~,+Sz,

~

is limited by J. The
same result will obtain for any basis in which the initial
quantization axis is rotated in the scattering plane from
the helicity direction, and independently for the final
quantization axis.

Given that a certain number of t-channel amplitudes
vanish, crossing guarantees that the number of indepen-
dent s-channel amplitudes is correspondingly reduced.
The simple question naturally arises: Is there a basis in
which the same number of s-channel amplitudes vanish' ?

To answer that question we first cross s-channel helicity
amplitudes for 3 +B~C+D to t-channel helicity am™
plitudes for D+B~C+A in the s-channel physical re-
gion, that is,

G (c',d';a', b')

tudes. The phase convention used here treats B and D as
"type-2" helicity states in the s channel and B and 3 are
type 2 in the t channel. The crossing angles are given by
complicated functions of the kinematic variables s and t
and of the masses.

Now Eq. (Al) has the form of a planar (type-2) optimal
amplitude in the s channel, that is, an amplitude in which
the spin-quantization axis for particle A is obtained by a
counter-clockwise rotation through Xz about the normal
to the scattering plane, and correspondingly for the other
particles. Direct comparison of Eq. (Al) with Eqs. (2.1S)
and (3.7) of Ref. 7 shows that the relation is precisely

D (c',a';d'b' Xc,X~.XD,X~)=G(c',d';a', b') . (A2)

Hence an s-channel amplitude with spin-quantization axes
given by the crossing angles, and components of spin along
those axes given by a' for 3, . . . , d' for D, is the same as
the continued t-channel helicity amplitude with helicity
a' for A, b' for B,c' for C, and d' for D. Thus if J con-
straints force certain G's to vanish, the equivalent s-
channel planar amplitudes will also vanish. This very
useful planar basis will be referred to as the "magic" pla-
nar basis.

For the case of four equal masses, the X's are given by

—st
gi cos~i

[s(s 4m )t(t ——4m )]'~

i =A,B,C,D, (A3)

9a /D +1 9B 9C ~

where s and t are the usual kinematic variables. This for-
mula can be expressed in terms of the center-of-mass
scattering angle as

4m2 2e
cosg& —— 1+ cot-

s 2

—1/2

(A4)

so that Xz varies from m j2 down to 0 as 0 varies from 0
to m..

APPENDIX B: SCALAR EXCHANGE
IN A "MAGIC" BASIS

To illustrate how the "magic" basis for spin quantiza-
tion makes J constraints manifest we consider the exam-
ple of spin-0 exchange in —,'+ —,

' ~—,+ —, in a covariant
formalism. We assume no symmetries other than Lorentz
invariance. Labeling the particles 2+B~C+D as in
Appendix A, the general form of the scattering amplitude
for spin-0 exchange in the helicity basis will be expressible
in factorized form as

D"(c,a;d, b)=[u, (p, )(a, +a~y5)u, (p, )]

X [ud(pd )(P, +Ppy5)ub(ps )] (Bl)

where a„a~, p„and p~ are scalar complex functions of
kinematic variables and the subscripts a, . . . , d on the
Dirac spinors label the helicities. Because parity conser-
vation is not assumed, both scalar and pseudoscalar cou-
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plings appear. To utilize the factorized form, let
2

D"(c,a;d, b) =
E+m I„Id (B2)

E p . 0I = —-a, — a sin —,+ m
'

m ~ 2 ' (B3)

where equal masses m for external lines will be assumed
for simplicity and the values for I „will be

0r++ —r =a,cos—,
2

'

can be obtained for I"&.
Next we are interested in amplitudes for spin-

quantization axes rotated away from the helicity direc-
tions but in the reaction plane. These are the planar op-
timal amplitudes. Such amplitudes are obtained by ap-
plying rotation operators to each leg of the reaction
separately, so that the planar amplitudes will also factor-
ize and we may consider the I and I" rotations separate-
ly. Let I and I ' be the corresponding planar factors,
that is,

E p . 8a, — a sin —,
m

'
m ~ 2 '

I, , = gd,', ( —Pg)d,', ( —P, )l'„,
c,a

(B4)

where E, p, and 8 are center-of-mass energy, momentum,
and scattering angle, respectively. Analogous expressions

I

where pz and pc are the clockwise rotation angles to the
new quantization axes, and similarly for I '. A straight-
forward calculation, using Eq (B3.) for I, then yields

Pw Pc —8 E=+a sin cos———cos
2 2 m

pA pc . 8
sin —— a cos

2 2 m

P~+Pc . 8
2 2

'sin

I ++ ——a, cos

r

PA Pc 8 E . PA Pc . 8 p . PA +Pc . 8cos—+ sin sin —+ — -a sin sin —.2 2 m 2 2 m 2 2
(B6)

Now, to choose planar angles for which the J=O con-
straint is manifest, we must satisfy I + ——0= I +.
From Eq. (B5) we see that, because of the sign change in
the a, term, the a, and a~ factors must vanish separately.
For the az term that requires

p~+ pc
2 2

=+—or pc ——+m- —p~ . (B7)

Then, to annihilate the a, factor, we must have

g . E . 0+(cosP„)cos——(sinP& )—sin —=0,
2 m 2

the solution of which is

cos pz —— 1+ cot-4m p6
s 2

(B9)

1/2

I ++ ——a, 1+ tan — cos—+ a sin —. (B10)
s p8 8 . 8

4m' 2 2 m ~ 2
'

This is precisely the equation for the crossing angle Xz in
Eq. (A4). So pz ——Xz gives the magic basis for which
I + ——0. Finally, the remaining I"s become
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