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A cosmological wave function describing the tunneling of the Universe from "nothing" into a de Sitter
space is found 1n a simple minisuperspace model. The tunneling probability ls pi'opoi tional to
exp( —3/862p„), where p„ is the vacuum energy density at an extremum of the effective potential V(P).
The tunneling is most probable to the highest maximum of V(4).

Modern cosmology gives Bn cvolutlonaly plctUfc Gf thc
Universe. It aims to describe how thc Universe has evolved
to its present state flolH 8 ccI'tain iAItlal stBtc. The differen-
tial equations describing the cvolUtloA BI'c derived from
known 18&s Gf physics; howcvcl, there arc no laws dctcr-
IHlnlng thc lnlt181 conditions. This sccIHs to lndlcBtc that
GUr Understanding of thc UAlvcrsc is bound to bc incom-
plete: we w111 have to say, in cffcct, that the Unlvcrsc is
what It ls bccBUsc lt was what ls was.

I have rcccntly suggested 8 cosIHologlc81 model ln which
thc Unlvclsc ls CI'cated by quantUIH tunneling froIH noth-
ing to dc Slttcl' space, where by nothing I IHcan 8 state
with no classical space-time. In this model the initial state
Gf thc Unlvcrsc ls dctclmlncd by thc laws Gf physics, Rnd

no initial or boundary conditions arc required. In the
present pBpcl' I wGUld like to give 8 fUrthcr discussion Gf thc
IHodcl. IA particu18r, I will discuss thc sclTliclassical %'Bvc

function of the Universe and the relation to the work of
Hartle Bnd Hawking and correct Rn crI'Gr in thc Grigin81
vcI'sion Gf thc model.

Let me first summarize the model of Ref. 1. Consider a
systcIH of intclactlng grBvltBtiGARl Mld IHattcl fields, where
foI' simplicity the ITlattcl fields BI'c rcpl cscAtcd 4y 8, single
Higgs field @ with an effective potential V(@). If P=q is
the true minimuro of the effective potential, then we re-
quire that V(q) —0, so that the cosmological constant is
small today. Besides @=rt, V(@) can have other extrema.
If @= qua is such an extremum, V'(@c)= 0, then
$= @a=const is a solution of the classical field equation for
$, U@+ V'(@)=0. The vacuum energy density at @=pc
will, in general, be nonzero (and positive): p„= V(ga) & 0.
Thc IYlodel of Ref. 1 ls based on 8 solUtlon of thc combined
Einstein and scalar field equations in which $ = @a and the
gravitational field is described by 8 closed Robertson-%'81ker
I11etl'1C,

ds'= dt' a'(t) [dx'+ sin'x(de'+ —sin'9d@') ]

a(t) =0 'cosh(Ht)

lt dcscl'lbcs 8 closed UAlvclse which cGAtracts Bt E c 0, then
boUAccs Bt 8 IT11AIIT1um size 0 mill

=0, and expands at
t&0.

This behavior Is slIHllar to that Gf 8 bubble of tI'Uc vBCU-

Um surrounded by 8 f81sc vacUUIH. Thc radius of the bub-
ble is given by

However, ln the BctU81 history of thc bubble thc t Q 0 pBlt
ls absent: thc bubble tUnncls qURAtUID mechanically frolH
R = 0 to 8 = Ra, and then evolves according to Eq. (4) with
t & O. By analogy, it was suggested in Ref. 1 that the
Unlvcrsc could have cIHclgcd at thc bounce point having 8
finite size (a = H ') and zero "velocity'* (a = 0); its fol-
lowing evolution is described by Eq. (2) with t & 0.

To describe the tUAAcllng ploccss I Used thc bounce solU-
tlon of thc Euclidean field equations, which can bc ob-
tained by changing t —i r in Eq. (2):

This is thc well-kAowA de Sitter lnstanton, %'hlch describes
R four-sphcI'c of I'BdlUs 0 . This comp8jct lnstanton docs
Aot have an asymptotic legion and CRA be interpreted as
describing a tunneling to the de Sitter space (2) from noth

Ing.
For norIHR1 qURAtUIH tunnellngs thc tUAAcling probabll"

ity P is proportional to exp( —Se), where SE is the Euclide-
an action for the coI'responding instanton. For the de Sitter
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instanton,

(6)

term in Eq. (12b) is negligible, and 'p —'PI+I(a). The wave
function grows exponentially towards a =0 (as it should).
The tunneling amplitude is proportional to

and I concluded in Ref. 1 that P~ exp(3/8G p„). Here, it
will be argued that the correct answer is given by
P~ exp( —~SE~). The basi~ ~e~s~~ is that the under-barrier
wave function contains growing and decreasing exponentials
with roughly equal coefficients, but the growing exponen-
tial, of course, dominates. Note that in the usual case of
bubble nucleation the Euclidean action is positive definite,
a11d so i' i =Ss.

The problem of determining thc tunneling amplitude can
be approached by solving the "Schrodinger equation" for
the wave function of the Universe. In the general case, thc
wave function V(gj, It ) is defined on a space of all possible
three-geometries and scalar field configurations (super-
space). The role of the Schrodinger equation for + is
played by the %heeler-DC%itt equation, s which is a func-
tional differential equation on superspace. Here, wc shall
employ a simple minisuperspace model, in which we restrict
the three-geometry to be homogeneous, isotropic, and
closed, so that it is described by a single scale factor a. The
scalar field @ is restricted to a constant value at one of the
extrema of the effective potential: P = Po. Then the
Wheeler-DeWitt equation for W(a) takes the form"

2

a ~ a~ — a (1—H a ) %(a)=03'7T

Ba Ba 26 ~

Herc, thc parameter p depends GQ Gnc s cholcc of factor ol'-

dering. Variation of p affects V(a) only for a & G'i', such
values of a are unimportaAt for our discussion, and we shall
set p = 0. Theli Eq. (7) takes the form of a one-
dimensional Schrodinger equation for 8 "particle" described
by a coordinate a (I), having zero energy and moving in a
potential

U(a) = — a'(1 —H'a')
2 2Gj

The WKB solutions of Eq. (7) in the classically allowed
region (a & H ) are (disregarding the preexponential fac-
tor)

+'+'(a) = exp i „'),p (a') da' +
'

~H

and the under-barrier (0 & a & H ') solutions are

I ~-1
q"t+I (a) = exp + J [p (a') )da'

p (a) = [ —2 U (a) 1
li'

Tunneling through the barrier corresponds to the choice of
thc GUtgolng wave fol a ~ H

(12a)

Then the %KB connection formula9 gives the under-barrier
wave function of the form

Except in the immediate vicinity of a =H ', the second

t'0
exp —

Jl, ip (a') ada' = exp( —3/16G'p„)

and thus the tunneling probability is P~ exp( —~Ss~) with

Ss given by Eq. (6).
The usc of the semiclassical approximation is justified if

I.SEI )) 1 or p„« G . Tltis conditionis satisfied in most
grand unified theories.

Here„ I should mention an alternative approach to the de-
finition of the wave function of the Universe. Hartle and
Hawking' have suggested that W(g, $) is given by a path in-
tegral over all compact Euclidean four-geometries and scalar
field lllstoIles bounded by t11e collflguratlol1 (g, tj5):

+(g, 4) = J)ldg„.1[de)exp( —SE[g„„,@l) . (13)

This definition seems to be very similar to ours. Indeed, a
compact four-geometry bounded by g can be thought of as
interpolating between a point ("nothing") and the three-
geomctry g, However, the wave function for a dc Sitter
universe obtained by Hartle and Hawking and by Moss and
Wright'0 using Eq. (13) is different from the one obtained
here. They find W(a & H ') —'p "l(a) and +(a )H ')
—~I+I(a)+O'I'l(a). This wave function corresponds to a
"particle" bouncing off the potential barrier at a =0
under the barrier lII'(a) is exponentially suppressed. It
describes 8 contI'acting Rnd I'ccxpandlng Unlvcrsc. IA fact,
this CGUld bc anticipated, slncc, by constlUct1GA, thc wave
function (13) is real. Thus, the Hartle-Hawking approach
automatically gives 8 time-symmetric picture of the
universe: a contracting and rcexpanding universe in the
case of 8 dc Sitter space RA«I Rn osclllatlng UA1vcl'sc ln morc
complicated minisupcrspBcc ITlodels.

Thc cl cation-fl olTl-noth. lng picture can also bc formu-
lated in terms of path integrals. One can define W(g, @) as

+(g, g}= J' [dg„„][d@lexp(iS [g„„,@1)

where the integration is over compact Lorentzian four-
geometrles and scalar field hlstorles bounded by the three-
geometry g with the field configuration @ and lying to the
past of (g, @). (This corresponds to using Teitelboim's
causal propagator" for the gravitational field. ) In the sum
over histories (14}one has to allow four-geometries with in-
tegrable singularities (and finite action), since nonsingular
compact Lol'cntzlBQ manlfolds do Aot cxlst. A slmllar ap-
plGRch to th.c problem Gf topology change ln quantum gl'avl-

ty has been discussed in Rcf. 12. Alternatively, one can as-
sUIHc that space-tiIYlc ccascs to bc R LGI'cntzlan IHanifold Gn

scales smaller than G'l2 As long as p && 6 2, our results
are not sensitive to the modifications of general relativity on
Planck scales.

In thc scITllclasslcal Rpprox1IYlatlon, thc «IGITllnRAt contri-
bution to {14) is given by the classical trajectory and its
neighborhood. Since "creation from nothing" is a quantum
tunneling process, no classical trajectory exists in the classi-
cally forbidden region under the barrier. For example, in
GUI' sllTlplc IHinisupcl spBcc model, no clBsslcRl tl Rjectory
passes through 8 thlcc-sphcr'c of ladlus 0 K 0 . To find
thc Under-barrier seIAlclasslcal wave fUnctlGQ, one has to
analytically continue to the integration over Euclidean
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space-times (this is similar to what one does in the path-
integral approach to nonrelativistic quantum mechanics").
Then thc path lntcgral ls dominated by thc classical solution
of the Euclidean field equations, which, in our case, is the
de Sitter instanton (5). VAth this prescription, the wave
function obtained from Eq. (14) is given by Eq. (12).

Needless to say, there is a host of problems, both techni-
cal and conceptual, with quantum gravity. The interpreta-
tion of the wave function of the Universe is one of them.
Since W can have only 8 pl'obab111stlc lntcrplctat1on, wc alc
faced with, the problcID of having only onc copy of thc
Unlvcl'sc. %c have foUnd that thc tUnncllng probability ls

the tunneling is "most probable" to the highest maximum
of V($), @=$,„. If one assumes the existence of an ob-
scI'vcl' %ho can do 8 statlstlcal survey of 811 nuclcatlng
universes, he will find that the most of the universes nu-
cleate with P=@,„. Our best guess seems to be that we
live in a "typical" universe which has started with @= @,„.
It may happen, however, that typical universes are not suit-
able for life„and then we have to invoke the anthropic prin-
clplc and conclude that wc llvc ln onc of thc rare unlvcl'scs
which nucleated at @ W$,„. If the effective potential is
sufficiently flat near @= go, then the newly born universe
can evolve along the lines of the ncw inflationary scenario, '"
as discussed in Refs. I and 15.

where p„= V(@0) and @0 is an extremum of the effective
potential. This cquatlon SUggcsts that of 811 such cxtrema,
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