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A cosmological wave function describing the tunneling of the Universe from ‘‘nothing” into a de Sitter
space is found in a simple minisuperspace model. The tunneling probability is proportional = to
exp(—3/8G?%p,), where p, is the vacuum energy density at an extremum of the effective potential V' (¢).

The tunneling is most probable to the highest maximum of V(¢).

Modern cosmology gives an evolutionary picture of the
Universe. It aims to describe how the Universe has evolved
to its present state from a certain initial state. The differen-
tial equations describing the evolution are derived from
known laws of physics; however, there are no laws deter-
mining the initial conditions. This seems to indicate that
our understanding of the Universe is bound to be incom-
plete: we will have to say, in effect, that the Universe is
what it is because it was what is was.

I have recently suggested a cosmological model' in which
the Universe is created by quantum tunneling from ‘‘noth-
ing”’ to de Sitter space, where by ‘‘nothing’’ I mean a state
with no classical space-time.? In this model the initial state
of the Universe is determined by the laws of physics, and
no initial or boundary conditions are required. In the
present paper I would like to give a further discussion of the
model. In particular, I will discuss the semiclassical wave
function of the Universe and the relation to the work of
Hartle and Hawking® and correct an error in the original
version of the model.

Let me first summarize the model of Ref. 1. Consider a
system of interacting gravitational and matter fields, where
for simplicity the matter fields are represented by a single
Higgs field ¢ with an effective potential V(¢). If ¢=n is
the true minimum of the effective potential, then we re-
quire that V(n)~0, so that the cosmological constant is
small today. Besides ¢=1n, V(¢) can have other extrema.
If ¢=¢o is such an extremum, V'(¢po)=0, then
& = ¢o=const is a solution of the classical field equation for
¢, Op+V'(¢)=0. The vacuum energy density at ¢ =¢o
will, in general, be nonzero (and positive): p,= V (¢o) > 0.
The model of Ref. 1 is based on a solution of the combined
Einstein and scalar field equations in which ¢ = ¢ and the
gravitational field is described by a closed Robertson-Walker
metric,

ds?=dt*— a*() [dx*+sin®>x (d 9% +sin?0d ¢?) | (6))]
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The solution for the scale factor a (¢) is the de Sitter space

a(t)=H 'cosh(Ht) , ()
where
H=(8mGp,/3)"* . 3)

It describes a closed universe which contracts at ¢ < 0, then
““bounces’ at a minimum size amin=H ~!, and expands at
t>0.

This behavior is similar to that of a bubble of true vacu-
um surrounded by a false vacuum. The radius of the bub-
ble is given by*®

R=(R3I+)V2 | 4

However, in the actual history of the bubble the ¢+ < 0 part
is absent: the bubble tunnels quantum mechanically from
R =0 to R =Ry, and then evolves according to Eq. (4) with
t > 0. By analogy, it was suggested in Ref. 1 that the
Universe could have emerged at the bounce point having a
finite size (a =H ') and zero “‘velocity’” (a =0); its fol-
lowing evolution is described by Eq. (2) with ¢ > 0.

To describe the tunneling process I used the bounce solu-
tion® of the Euclidean field equations, which can be ob-
tained by changing t — — i in Eq. (2):

a(r)=H 'cos(H7) . (5

This is the well-known de Sitter instanton,” which describes
a four-sphere of radius H~!. This compact instanton does
not have an asymptotic region and can be interpreted as
describing a tunneling to the de Sitter space (2) from noth-
ing.

For ‘“‘normal’ quantum tunneling, the tunneling probabil-
ity P is proportional to exp( —Sg), where S is the Euclide-
an action for the corresponding instanton.’ For the de Sitter
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instanton,’
Sg= —3/8(;'2;)., , 6)

and I concluded in Ref. 1 that P« exp(3/8G%p,). Here, it
will be argued that the correct answer is given by
Pxexp(—|Sg|). The basic reason is that the under-barrier
wave function contains growing and decreasing exponentials
with roughly equal coefficients, but the growing exponen-
tial, of course, dominates. Note that in the usual case of
bubble nucleation the Euclidean action is positive definite,
and so |Sg|=Sz.

The problem of determining the tunneling amplitude can
be approached by solving the ‘‘Schrddinger equation’ for
the wave function of the Universe. In the general case, the
wave function ¥ (gy, ¢) is defined on a space of all possible
three-geometries and scalar field configurations (super-
space). The role of the Schrédinger equation for ¥ is
played by the Wheeler-DeWitt equation,® which is a func-
tional differential equation on superspace. Here, we shall
employ a simple minisuperspace model, in which we restrict
the three-geometry to be homogeneous, isotropic, and
closed, so that it is described by a single scale factor a. The
scalar field ¢ is restricted to a constant value at one of the
extrema of the effective potential: ¢=¢¢. Then the
Wheeler-DeWitt equation for ¥ (a) takes the form*3

2
D 50
P _ P
I“ 9a" da
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3G a*(1 Ha)]‘lf(a) 0. @)

Here, the parameter p depends on one’s choice of factor or-
dering. Variation of p affects ¥ (a) only for a < G? such
values of @ are unimportant for our discussion, and we shall
set p=0. Then Eq. (7) takes the form of a one-
dimensional Schroédinger equation for a ‘‘particle’” described
by a coordinate a (#), having zero energy and moving in a
potential

2

U(a)=%[-§7—r- a’(1—-H%?) . (8)

2G

The WKB solutions of Eq. (7) in the classically allowed
region (a > H™!) are (disregarding the preexponential fac-
tor)

tif;_lp(a')da'i—iﬂ-] Q)

v P (a) =exp e

and the under-barrier (0 < a < H~!) solutions are

-1
‘I"é’(a)=exp[i_£” Ip(a’)lda'] , (10)
where
pla)=1-2U(a)]1V? . an

Tunneling through the barrier corresponds to the choice of
the “‘outgoing’ wave for @ > H I

VY(a>H H~vP(a) . (12a)

Then the WKB connection formula® gives the under-barrier
wave function of the form

V(a <H™ ) ~vP(a) +é\lf(.2)(a) ) (12b)

1

Except in the immediate vicinity of a =H ™', the second

term in Eq. (12b) is negligible, and ¥ ~ ¥ @ (a). The wave
function grows exponentially towards a =0 (as it should).
The tunneling amplitude is proportional to

expl— j;”—l Ip(a')lda’)=exp( -3/16G%.) ,

and thus the tunneling probability is P« exp(— |Sg|) with
Sk given by Eq. (6).

The use of the semiclassical approximation is justified if
|Sgl >> 1 or p, << G~% This condition is satisfied in most
grand unified theories.

Here, I should mention an alternative approach to the de-
finition of the wave function of the Universe. Hartle and
Hawking® have suggested that ¥ (g, ¢) is given by a path in-
tegral over all compact Euclidean four-geometries and scalar
field histories bounded by the configuration (g, ¢):

¥(g¢)= [ ldg,nlldglexp(~Selgum 61 . (13)

This definition seems to be very similar to ours. Indeed, a
compact four-geometry bounded by g can be thought of as
interpolating between a point (‘‘nothing”’) and the three-
geometry g. However, the wave function for a de Sitter
universe obtained by Hartle and Hawking and by Moss and
Wright!® using Eq. (13) is different from the one obtained
here. They find ¥(a < H™ ') ~¥P(q) and ¥(a > H™!)
~¥P(a) +¥WV(q). This wave function corresponds to a
“‘particle’” bouncing off the potential barrier at a =H™ Y
under the barrier ¥ (@) is exponentially suppressed. It
describes a contracting and reexpanding universe. In fact,
this could be anticipated, since, by construction, the wave
function (13) is real. Thus, the Hartle-Hawking approach
automatically gives a time-symmetric picture of the
universe: a contracting and reexpanding universe in the
case of a de Sitter space and an oscillating universe in more
complicated minisuperspace models.>

The ‘‘creation-from-nothing’’ picture can also be formu-
lated in terms of path integrals. One can define ¥ (g, ¢) as

V(g ¢) = [ldg,lldglexp(iS(g,m 1) (14)
where the integration is over compact Lorentzian four-
geometries and scalar field histories bounded by the three-
geometry g with the field configuration ¢ and lying to the
past of (g, @). (This corresponds to using Teitelboim’s
causal propagator!! for the gravitational field.) In the sum
over histories (14) one has to allow four-geometries with in-
tegrable singularities (and finite action), since nonsingular
compact Lorentzian manifolds do not exist. A similar ap-
proach to the problem of topology change in quantum gravi-
ty has been discussed in Ref. 12. Alternatively, one can as-
sume that space-time ceases to be a Lorentzian manifold on
scales smaller than GY2. As long as p, << G ~2, our results
are not sensitive to the modifications of general relativity on
Planck scales.

In the semiclassical approximation, the dominant contri-
bution to (14) is given by the classical trajectory and its
neighborhood. Since ‘‘creation from nothing’’ is a quantum
tunneling process, no classical trajectory exists in the classi-
cally forbidden region under the barrier. For example, in
our simple minisuperspace model, no classical trajectory
passes through a three-sphere of radius a < H~'. To find
the under-barrier semiclassical wave function, one has to
analytically continue to the integration over Euclidean
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space-times (this is similar to what one does in the path-
integral approach to nonrelativistic quantum mechanics'®).
Then the path integral is dominated by the classical solution
of the Euclidean field equations, which, in our case, is the
de Sitter instanton (5). With this prescription, the wave
function obtained from Eq. (14) is given by Eq. (12).
Needless to say, there is a host of problems, both techni-
cal and conceptual, with quantum gravity. The interpreta-
tion of the wave function of the Universe is one of them.
Since ¥ can have only a probabilistic interpretation, we are
faced with the problem of having only one copy of the
Universe. We have found that the tunneling probability is

Pxexp(—3/8G%,) , (15)

where p,= V(qbo) and ¢o is an extremum of the effective
potential. This equation suggests that of all such extrema,

_ cleate with ¢ = dnax.

the tunneling is ‘‘most probable’’ to the highest maximum
of V(¢), d=0cdma If one assumes the existence of an ob-
server who can do a statistical survey of all nucleating
universes, he will find that the most of the universes nu-
Our best guess seems to be that we
live in a ‘‘typical’”’ universe which has started with ¢ = ¢ yax.
It may happen, however, that typical universes are not suit-
able for life, and then we have to invoke the anthropic prin-
ciple and conclude that we live in one of the rare universes
which nucleated at ¢ 7 ¢max. If the effective potential is
sufficiently flat near ¢ = ¢, then the newly born universe
can evolve along the lines of the new inflationary scenario,
as discussed in Refs. 1 and 15.
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