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Explicit solutions to the self-duality equations of SU(5} gauge theory are obtained for all embeddings of
physical interest. This is done by showing that for each case considered of a nonmaximal embedding the
equations can be mapped into the self-duality equations for maximal embedding for some SU(N), where
X & 5. The method generalizes to SU(A).

%e propose to construct explicit solutions to the Bo-
gomolny self-duality equations in SU(5) for all embeddings'
of physical interest enumerated by Dokos and Tomaras. '
For each case of a nonmaximal embedding in this enumera-
tion, that is, the cases 5 2+ 1+1+ 1, 5 3+ 1+ 1, and 5

4+1, we show that the equations can be mapped into
the maximal embedding SU(X) self-duality equations with
%=2, 3, and 4 for the three cases, respectively, But so!u-
tion to the problem of maximal embedding is known' in
SU(W) and known expiicitly when W = 2, 3, 4. Thus our
problem is solved. Our method generalizes to SU(%). Let
us treat the general case first.

Let the proposed monopole solution by spherically sym-
metric with respect to J = —i r && '7+T, where T generates
some SU(2) subgroup of the gauge group G. In the radial
gauge write the gauge field W as g8'+ (r )
= +i [M+(r) —T+]/r, where W+ = 8"+i%, g is the
gauge coupling constant, and 1 and 2 denote the polar and
azimuthal (and 3 the radial) directions. Now it is well
known3 4 that when T is a maximal embedding of SU(2) in

6, then for 6=SU(%+ I) the Ansatz for the vector and
scalar fields may be taken as

(la}

r'q' = (a )' —mm (2a)

~m ~ 2 tlm —t+ ttm 2 ttm+ 1)atm (2b)

where 1~m ~X, m =%+1—m, and 7to=q~+l=0, and a
prime denotes derivative with respect to the radial variable
r. After these preliminaries let us come to the problem at

4= —diag(q), q2 —qt, . . . , qn —Tin t, —q~), (1b)

with n, a real radial functions and M = (M+)r. The
resulting Bogomolny equations are3

hand. %c shall consldcI' a I cstrictcd class of cITlbcddings
characterized as follows. The lowest-dimensional irreducible
representation (irrep) of SU(X) decomposes under T as a
direct sum of a D-dimensional irrep plus (N —D) singlets.
This means that T has the shape T= diag( t „0,0, . . . , 0),
where t, is the standard spin-s representation (2s + I = D )
and the number of zero entries is (W —D). Note that we
may also permute the position of t, with respect to the
zero entries without changing any of the conclusions to fol-
low. The crucial observation to make now is this: for the
class of embedding considered the Ansatz for the vector
field may be taken as

'0 bl
0 b2

0 bD

0

where b; are real radial functions and M = (M+) r. This
conclusion is reached by following the same line of argu-
ments as the one that led to Eq. (Ia). Indeed, M+ can be
written in terms of anticommutators involving T+ and
powers of T3. Vfe can always express it in the form
M+ =M + T+, i.c., shift T+ to the right. Next we diago-
nalize T3 so that M + becomes a diagonal matrix. Then
writing T+ using the standard form of the matrix t, we ar-
rive at Eq. (3). Q.E.D. As for the scalar field, it has the
structure of a traceless diagonal matrix with entries that are
again real radial functions. Inspection of Eq. (3) reveals the
following. The self-duality equations resulting from it will
fall into two parts. The nontrivial part will have a structure
identical with that of Eq. (2); that is, with the equations for
maximal embedding of T in SU(D), while the remaining set
of equations will say that certain (X —D) scalar field com-
ponents have zero spatial derivative. Thus our problem gets
mapped into another problem whose solution is already
known.

We shall write the various monopole Ansatze for SU(5)
using the notation of Ref. 2. %e shall, moreover, impose
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the requirement of invariance under simultaneous inversion
of r and T to simplify the expressions for the vector field.
The asymptotic Higgs field ~ill be taken to be

3 3= diag(1, 1, 1, —~, —
2 ). Let us now consider various

cases.
(a) 5 2 + 1 + J + I. This embedding has

T=diag(0, 0, r/ 2, 0). The fields are'

5
where a =

3
and the constant c = —1 again to match the

r ~ behavior of 4 (r). The above is essentially a res-
caled verston of the solutton for SU(3) gauge theory '6

(c) 5 - 4 + J. Here we have T= diag( t q~2, 0) and t y2
are the standard spin--f representation of SU(2) generators.
The Ansitze for the fields are

@( ) K(r) —1 (T„)
@(r)=d»g(4t, @t, A+d3«r, —2(At+42))

(4)

(5)
+ K3(r ) (r T)', T&&i } (13)

gW(r) = — + t K—(r)+K (r)r" ~ V+K (r)(r".T)
r I

The self-duality equations that result from the above are

I

Equation (6b) is solved by a rescaled version of the cele-
brated Prasad-Sommerfield solution

@(r)= diag(40, d O, 40, 4 o,
—440 —542)

+@t« ~ T+@2(« ~ T) +@3(i T)

The self-duality equations are found to be

(40+ 4$p)'=0, JI = —J)p)

(14)

K = --. , 2@3=acothgr ——Qr 1

sinhar
'

r

~ith a = —, and pi=1, @2= ——, to satisfy the des~red

r ~ behavior of 4.
(b) 5 —3+g+1. This case has T=diag(0, 0, Tt), with

Ti the standard spin-1 representation. The fields are2

TxrgW(«) = — + —}Ko(r)+K)(r)r .T
r r

+K2(r)(i T)', Txi}
4&( r ) = diag( —

2@&
—$3, —24& —@3, $t, $t, @&)

+ y2(r )«T+ @3(r" T)'

where the curly brackets in (S) denote an anticommutator.
The resulting self-duality equations are

r'q i =1+2J2'-3Ji', r'y'3 ——1+2J,' —3J3',
r @2=1+—,(Jt'+ J3') —4Jg',

2+0+
2
+2+ ~+i+

~ K3 J2 2KO+5 7

7
J3= 2EO+

2
E2 —2E i

—
2 K3

13 1
41 = 41+242+ 4'3 42= d'1+ 4'3

1343= 4i —242+ —,43

As before, ~e obtain the solution of the above equations:

642292202glg326422Q2Ji = —ar —,J2= —r, J3=—ar3 '

g 2 4 Q
2 3 g 2

r $'+ =1+% —2E+
E' = —E @, r qb' =1+E+ —2K

( —,d i+d 3)'=0 .

(10)
a
2, gt Q3

'

1 P3 a ~2—+a ——,(19)
r Q3 2 Q2

tt'0=
8 |6 (41 'tel'3)

g+ =pp+g3, E+ =K +Ki, E=2KO+E2 .

%e notice that although three radial functions KO, Ei,K2 ap-
pear in Eq. (S), the vector field involves only two radial
functions since Ko and K2 enter always via a fixed linear
combination given in Eq. (11). The expression for M+ in-
volves only two b entries which are K+ and E . This is a
general situation found for other embeddings as well (see
below). Now it is clear that the nontrivial part of Eq. (10)
is of identical structure as Eq. (2) for the SU(3) gauge
theory. Thus we obtain the solution

9 2 2 (3ur —1)e"+eE~ = —ar e2ar (3nr +1)e- .)

Q& ——(Sa r —4ar +1)e"—e ", Q3(r) = —gt( —«)

g2 = ar (2ar —1)e'"+ ar (2ar + 1)e 20

P, = (Sa'r'+ 12ar —3)e'"+ 3e '", P3(r ) =
P t ( —r ),

P t = (4a 2« + 2ar —1)e '"—(4a 2«' 2ar —1)e—
The constant g = —to match the r —e behavior of 4).5

Thus our solution is a rescaled version of the SU(4) solu-
tion of Bais and %eldon. '

(d) 5 —5. This case corresponds to the maximal embed-
ding of T in SU(5), with T the standard spin-2 representa-
tion. The Ansi''tze for the fields are'

2e'"+(3ar-2)e "
@+(r = ——+a

r e'"—(3ar + 1)e

a (3ar + 2) e'"—2e
2 (3ar —1)e'"+ e

(12) fxrg%(r) = — + —}Kt+K~«.T+K2(r T)
r r

+K, (r- T)'+K.(r T)', T«},
4(r) = —2@2—

5 $g+@)i .T+@2(i T)

+y, («T)'+y, («T)'
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J;(i = 1, 4) = 2Ea+ 5@2+17K4+ q(3Kt+ 9E3)
J, (I =2, 3) =2', +~,+x,+~(rc, +Jr. ,),
q;(i=1, 4) =y, +7y +~(3y +15@ )

y, (i =2, 3}=y, +@,+~(@,+y,),
(26}

Bnd q= + I fol i =1, 2 and q = —1 fof i =3, 4. SolUtioA of
the self-duality equations for this case has been found else-
~here as part of a general approach to extract explicit solu-
tions from the formalism developed recently by Ganoulis,
Goddard, and Olives based on the modified Toda molecule
equations. From the results of Ref. 7, it is straightforward,
lf somewhat tcdlous, to obtalA the followiAg cxpfcssions:

250 f D J 2 25 2 2 1 3
2 2 D D

1
D 2 2P 2 24 D 2

1 2

J3'(r ) = J2'( —r ), J4'(r ) =J)'( —r )
where

D t
= (50a 'r' —8Oar +48)e'"—(40ar + 48) e

D2= (50a'r' —80ar +16)e'"
+ (125a'r'+ 50a'r'+ 80ar —32)e "i'+ 16e '" (30)

D3(r) =D2( —r)
As for the Higgs field, it is convenient to quote the result in
terms of the functions x; (i = 1, 2, 3, 4) defined as

x;=2 QAg f~+-
r J

(32)

where A;~ is the inverse of the Cartan matrix9 of SU(5). We
then have

x, = [(50a r +20ar —32)e"'
D 1

+ (60ar +32)e

+ ( —,a'r'+350a'r'

(34)

x3(r) = —x2( —r), xg(«) = —xt( —r), (35)

with the constant a = 2 to match the chosen r
behavior of 4.

Wc shall consldcI' thc RsylTlptotlc bchavloI' as I' ~ ~ of
thc 8 field, that is, of 4 . It is easy to show that for the
maximal T-embedding„case D, the asymptotic 8 field is
parallel to thc asymptotic Higgs field; and thus the color
magnetic field vanishes. For the three cases 3, 8, and C of
th.c nonmaximal T cmbcddings consldcicd thc coloI' mag-
netic field does not vanish. From the asymptotic 8 field wc
find that the magnetic charge of the solutions B, C, and D is

%'e get thc self-duality equations in the form

J[ = —Jtpt, Jg = —J2@2, J3 = —J3$3, J4 = —J4$4, (24)

r Qt= 1+3J2 —4jt, «2&g=1+3J3 —4J4

r 'y2 1—+—2J)'+ 3J3' —6J2',

F(r) =«'{4[(y&)'+ (y4)'1+6[(y2)'+ (y3)']

+ 2644+ 84'243+ 4(643+ 0'244+ 6(4'tlat+ p3p4) [

+20(jt @~ + Jg Q4 )+30(J2 Q2 + J3 Q3 ) . (37)

Next, we derive, using Eqs. (24) and (25), the relation

F (r ) = —[10@t(1—Jg ) + 15/2(1 —J22)
df

+15',(1 —J,')+10@,(1 —J.')[ . (38)

Recalling the asymptotic behavior [that result from Eqs.
(27)- (35)1

the integral / is now easily evaluated to be —, (the lower

ltmlt gives no contrlbutton). The remalnlng cases afe treat-
ed similarly; the corresponding integral is found to be-
(case A ), 2

(case 8), and —, (case C).5 15

%C end this note with a remark on the role of the funda-
mental Higgs field 0 for two cases characterized by the T
embeddings 5 2+1+1+1 (case A ) and 5 4+1 (case
C). For these two cases the Ansarz2 for H is H
= col(0, 0, 0, O, h (r ) ). We may now obtain the desired field
equations by the usual procedure of minimizing the energy
integral. It is now clear, from the form of the covariant
derivative of H, that equations governing 0 will be decou-
pled from the equations governing the Rdjoint Higgs field 4
and the gauge field %. Specifically, we find that in the
Prasad-Sommerfield limit of no Higgs potential, the result-
ing equations have the following structure. They consist of
a set of second-order differential equations, which are pre-
cisely the ones that would result from the corresponding
self-duality equations upon differentiation, plus the addi-
tional equation for h (r):

h-+ 2h 0
h

(39)

Thc only solution of thc above cqUBtion with thc colrcct
behavior at the origin (finite energy) is h =const= h (~).
Thus the fundamental Higgs field plays no role in the
Prasad-Sommcrficld limit for the two cases considered.

Note added. Since writing this paper, I have learned that
Carl Gardner (private communication) has also studied
self-dual monopole solutions in SU(5). He has indepen-
dently obtained our solutions A and D and two other, dif-
ferent, solutions.

twice, thrice, and six times, respectively, the magnetic
charge of the solution A, %'e have also checked this con-
clusion by making a direct calculation of the monopole
masses. The monopole mass for the cases 8, C, and D are
found to be, respectively, twice, thrice, and six times the
mass of the lightest monopole, case A. The monopole mass
ls a common coAstant, times B ccrtaln one-dimensional in-
tegral which can be evaluated by expressing thc integrand„
by Usc of thc self-dUBlity equations, Rs a pcI'fcct derivative.
Lct Us 111Ustratc this procedure for our case D, which is
"most difficult" of all the cases. First we obtain

'l T (D4) d =4 I, I= —Jr F( )d

where
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