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Form of a spin-dependent quantum potentia]
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The form of the quantum potential for spin- 2 particles obeying a second-order wave equation is derived

and the perspectives of its future applications are briefly discussed.

In a recent paper' the authors presented a Lagrangian for-
malism for spin-~ particles based on the Lagrangian density

W= m'yy —(iP' eg)—y (i)8'' )—y (t = c = 1)

the 4 & 4 matrix

Wa Wp
oP

O'= I@+I

and a unit spinor

(3)

which leads to the second-order Feynman-Gell-Mann wave
equation for the four-component spinor Q:

[(ij(—eg) (ij( eg) ——m']P

= [(iB„eW„)(—iB~ ex~—) ~eF—„„~~" m']y =—0, (2)

where rr„„=Ti[@„,y„] and F„„=B„A„—B„A„. Then, as

usual in the causal fluidodynamical interpretation of the,

wave equations, we split (2) into its real and imaginary parts
by defining a real positive scalar field density

We remark here that, for a given spinor P, the product PP
(with P on the right side) represents a 4&& 4 matrix with ele-
ments Q Qs, whereas the product QQ (with Q on the left
side) is the number Q Q =Tr($$). It can be easily shown
that

Tr(P) = 1, Pw = w

so that P can be considered as a pseudoprojector in the w

direction (not an ordinary projector because it is not Hermi-
tian in the ordinary sense, P =P). We can deduce now,
from the properties of the unit spinor w [B„(ww)
= Cl ( ww ) =0] that

For the real part we obtained the following equation:

0w(iB„—eA„) ww(iB" —eA") w — + wwB„WB&w

Tr(P P) = w[ (ww)]w

= —2(wwB~WB~w+ wB~wwB~w)

so that the quantum potential (6) becomes

+ wB„ww@ w —mz —~eF„„=O . (5)
WW

U= + z Tr(P P) (10)

The aim of the present report is to put (5) in a suitable
compact form in order to interpret it as a generalized
Hamilton-Jacobi equation. In fact, if we consider (as in the
scalar case) 0/Q as the quantum potential, we find in (5)
some extra uninterpreted terms which must be wiped out by
a double gauge transformation' on Q and A„ if one wants a
causal interpretation of (5).

If, on the contrary, we want to deal with the complete
equation (5) we are obliged to regard as quantum potential
the expression

Furthermore, we remark that if we define the transverse
pseudo projector

T = I P(PT = TP =0)—
with

T = T, T'= T ( T"= T)
(12)

Tr(T) =3, Tw =0,
and if we consider a function

U= - —WWQ„WQ~W —WQ„WWQ~W0

which is explicitly spin dependent, in qualitative agreement
with other preceding analyses.

In order to put (6) in a more suggestive form we define

F(z) = g a„(z —zc)"
n 0

we can immediately prove that

F(P) = F(1)P+F(0)T,

(13)

(14)
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so that 1n general

f(g;p)= (g)p+p(g)T .

It is possible to show now that, if we pose

Moreover, in the free case (A"=0) Eq. (26) can be put in
a form which gcncIR11zcs thc Iclatlon p~p+ = m

(27)

n = a(g) P+p(g) T,
n=yon 70=n'p+p'T

where, of course,

G~ = Klg~lV

(28)
the quantum potential (10) takes the final form

U= g+'T(F F)= T'n "'
g Tr(n n)

if n(g) and p(g) satisfy the conditions

n u" +3p p"
l~l'+3lpl'

0,"n'+ 3p'p' 1

l~l'+3lpl' Q
'

, l~ —pl'
l~ I'+ 3l pl'

(17)

f(z) =42z —1 (21)

(22)

(23)

Finally, by recalling that' the conserved current for the
Lagrangian (1) is split into a drift and a spin part

J] =~~+~]
2

J~ = — W(16~ —eA~) W (24)

Rnd by dcf1nlng a gcnclallzcd drift, moITlcntum dcnslty

m . w(i8" eA")w-gP= jP= (25)

Eq. (5) can be put in the form of a generalized Hamilton-
Jacobi equation, namely,

Tr(n n ) i F wo-&" w
g~g+ —pal — —~eF~„=0

Tr(n n) ""
ww

Thcsc cond1t1ons can bc fUlflllcd by supposing, fo1 example,

-(g)= g, P(g)=~g,

lal' —l~l'-4Re(a'Z) =0 .

A possible choice for a and b is a = 1 and b = i so that

n= g(J +iT) = gF(p),
where F(z) is a function such that F(0) =i and F(l) =1;
for example,

Tr[n( +m')n]
Tr(n n)

%C conclude with some remarks.
(a) The form (17) of the quantum potential constitutes

an effective generalization of the corresponding expression
for the scalar case; in fact (17) reduces to the usual form

if P is a scalar function because, from (23), we would have
9 = Q', X=0, and hence n =- g= (lgl')'i2. Moreover, in
the same way we can see that the term M in (28) is the
correct generalization of thc "variable proper mass, " first
introduced by de Broglie, 4 to the case of spin-~ particles.

(b) The new generalized form (17) of the quantum po-
tential poses the problem of its connection with a relativistic
stochastic formalism if one wants to interpret the quantum
behavior of a spinning particle as the overall manifestation
of the chaotic character of a random subquantum ether. 6

Indeed, Until now, this connection was made'5 only for
quantum potentials of the form (29), even for spinning par-
ticles. 7

(c) The expression (17) should be used now to carry out
careful calculations of the "trajectories" of a spinning parti-
cle subject to the corresponding "quantum forces. " It is
well known that these calculations have been performed8 for
the scalar case (29): the generalization to the spinning case
could be very useful in interpreting in a causal nonlocal way
the results of Aspect's expcriments9 on the Einstein-
Podolsky-Rosen-Bohm paradox. ' Of course, a fundamental
step in doing it is the generalization of the proof, given for
the scalar case, " that the action at a distance, carried by a
spin-dependent quantum potential (17) for two correlated
particles, satisfies the compatibility conditions required by
the predictive mechanics. "

(d) Finally we must remark that our analysis is not an ar-
tifact of thc cho1cc of gRUgc quoted at the bcglnn1ng of th1s

paper with regard to Eq. (5). In fact we must consider the
approach that considers (29) as the total quantum potential'
as not entirely satisfactory for two main reasons.

(1) In order to get a generalized Hamilton-Jacobi equation
with (29) as quantum potential it is necessary to impose'
some extra conditions on the gauge phase in the form of a
partial differential first-order equation on this gauge phase.
The choice of the gauge was determined, in some unnatural
way, by the particular spinor to which the transformation
was applied.

(2) Moreover, the connection of the generalized
Hamilton-Jacobi equation [with (29) as quantum potential]
obtained by means of the gauge transformation with a sto-
chastic process (that we consider as a fundamental step in
our theory), needs a supplementary hypothesis the vector
K9„~ must be gradient of a scalar function. That is obvi-
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ously true in some particular cases (e.g. , plane waves) but
that docs not hold for every Unit splnol' w Therefore, wc
cannot consider the formulation based on (29) as a com-
plete demonstration of the cquivalencc between a stochastic
process and the Fcynrnan-Gcll-Mann equation.

In conclus«on, fol' spin- 2 fields, wc cons«der thc cxprcs-

sion (29), obtained for the quantum potential by means of a

gauge transformation, only as a reduction of the complete
quantum potential (6) or (17): this reduction was useful for
a first approach to the problem of the connection with sto-
chastic proccsscs but, of course, thc definitive solut«on of
this problem needs the most general form (6) or (17).
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