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Electromagnetic mass models in general relativity
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The metric coefficients goo and gI,I of both the Schwarzschild and Reissner-Nordstrdm metrics satisfy the
relation goo g&&= —1. A coordinate-independent statement of this relation using the eigenvalues of the
Einstein tensor is given. By considering the relation between the metric coefficients to be valid inside a
charged perfect-Auid distribution, it is sho~n that the mass-energy density and the pressure of the distribu-
tion are of electromagnetic origin. In the absence of charge, however, there exists no interior solution. A
particular solution which conftrms the same and matches smoothly with the exterior Reissner-Nordstrdm
metric is obtained, This solution represents a charged particle whose mass is entirely of electromagnetic
ol 1gin.

INTRODUCTION

Thc cxtcr1or flcld Gf 8 spherically symmetric charged fluid
(dust or perfect-fluid) distribution described by the metric

ds'= g„dx'dx'=-e"dt' e"dr' ——r'(d8'+ sin't) d@')

(ij =0, 1, 2, 3)

ls thc Unique Rcissncr-NordstrGIn solution given by
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(1.3)

For the metric (1.1), the relation (1.3) is equivalent to

(1.4)

It is well known that (1.2) ln thc absence of charge reduces
to the Schwarzschild exterior solution

unique solutions (1.2) and (1.5) is quite natural and may
lead to some solutions which may have interesting physical
conscqucnccs.

To this cAd wc have examined thc case ln which thc inte-
rior is first filled with a perfect fluid. This, however, leads
to thc van1shlng- Gf thc prcssure Rnd dcns1ty of thc fluid,
i.e., the incompatibility of the perfect fluid with assumption
(1.3). In the next case, i.e., when the interior is filled with

charged perfect fluid, all the physical quantities, namely,
pressure, density, total gravitational mass of the fluid, etc. ,
arc dcpcndcnt OA thc chBrgc and vanish when thc charge
van1shcs. Thc interior flcld thus obtained represents thc
model of a charged source whose mass is completely of
electromagnetic origin. This type of model is of consider-
able importance 1A thc h1stoI'y of physics. IA th1s paper 8
particular solution representing such a model is obtained.

In Secs. II and III, the Einstein-Maxwell field equations
fol' 8 charged pcrfcct fluid BAd ccrtRIA gcncI'Rl dcduct1ons
from these field equations are given. Section IV deals with
8 particular model whose mass is entirely of electromagnetic
origin. In Sec. V a coordinate-independent statement of
(1.3) is given using the eigenvalues of the Einstein tensor.

11. FIELD EQUATIONS

—r'( dt) 2+ sin' 0 d@') (1.5)

The spherically symmetric metric 1n the coordinates
t, r, 9, @ is given by

which is also unique and satisfies (1.3). Such uniqueness or
simplicity is not possible in the case of spherically symmetric
interior fields. Attempts have, therefore, been made by
various authors' 6 to find exact interior solutions in the
presence as well as in the absence of charge under different
assumptions.

The present work is based on the fact that Bny interior
solution with or without charge must match with either
(1.2) or (1.5), as the case may be, on the boundary of the
interior field. As such the relation (1.3), which is valid for
the exterior fields (1.2) and (1.5) if assumed to be also
valid in the interior, will have 8 natural matching on the
boundary. This assumption which is motivated from the

Gi 87r [ Ti(gy) + Tj( ~)e] (2.2)

(2.3)

where GI& is the well-known Einstein tensor and J' is the

where X and v Rrc functions Gf thc fad181 cGordinatc r GAly.
%C consider the charged fluid to bc confirmed within a
sphere of 1'ad1Us 0 Bnd is dcscI'1bcd by thc plopcr mass dcA-

.sity p ( r ), thc pressure p ( r ), and thc charge density o ( r ) .
The Einstein-Maxwell field equations for the charged

fluid distribution are given by
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current four-vector defined by

o.(r) being the proper charge density of the distribution. In
thc pl'cscnt case thc CUrlcAt foU1-vccto1 has OAly onc Aon-

VRAlshlng CompOACAt, V1Z. ,

J' = o-(r ) (goo)

HcI'c R subscript after 8 scITllcolon ol' 8 coIHma denotes co"
vanant or partial differentiation, respectively.

T~t~~ RAd T'~~,~~ Brc thc energy-IHomentum tcAsors of
thc pclfcct fluid Bnd thc elcctroIHBgnetic field, rcspectlvcly,
and alc glvcn by

%e take the intcgratlon constant to lac zcl'o ln Order to en-
sure thc lcgUlarlty of thc metric throughout thc fluid dlstll-
bUtlon. Slncc thc rRdlUs Gf thc chal'gcd flUld extends Up to
Qsfol" f Q0,

(3.3)

%'here foal Rnd q Bre thc total gravltatlonal ITlass Rnd thc total
charge, respectively.

For r ) a, from (3.1), (3.2), and (3.3) we get

P I"

+477 g f p+ 6I: (3.4}
2f 0 8%

Equation (2.14) gives

E(r) =—
I 4n r'~(r )e""dr = q
pl' («)

2
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where u is the four-velocity of the AUid satisfying

u'u; = 1, u'= (goo)

(2.6) Differentiating (2.11) with respect to r and adding this to
(2.11) and then subtracting (2.12), we get

QP = —(p+ p) —+v I 6 [q'(r) l,
dr 2 Smy. 4 4r

and I'& is the Maxwell tensor defined in terms of the four-
potentlal AI BS

Fg A Aj

IA OUI' case thc foUl-potcntlal Is given by

A( = [4(r ), 0, 0, 0], =1,01, ,2 3

(2.8)

Equation (3.6) is the generahzation of the well-known
Tolman-Oppenheimer-Volkoff (TOV) equation of hydro-
static equilibrium to the case when charge is present. This
CBA also bc dcI'lvcd from the conscrvatlon equation T~l ~

= 0,
%'herc

Herc BAd lA what f0110%'s 8 pl'lmc wi11 denote dlffcrcAtlatlon
with I'cspcct to r only.

The field equations (2.2)—(2.4) finally reduce to

Adding Eqs. (2.10) and (2.11) we get

e '(X'+ v') =87«r(p+p)

The relation (3.7) contains no charge term and is one of the
chaI'actcllstlcs of thc prcscnt Dlodel. It hoMs lrrcspcctlvc of
whcthcl thc body ls charged GI' Aot. The pfcscncc of charge
is detected by the generalized TOV equation (3.6).

We now assume the relation (1.3) or (1.4) to be valid
w1th1A thc charged fluid dlstI'lbUtlon. This when substltutcd
in (3.7) gives

[r'E(r) ]'=4v«r'o(r) e"~'.
where the "electric field strength" E(r) is defined as

(2.14)

p p

Using Eq. (3.8) in Eq. (3.6), we get

d 1 dp =
4
—[q2(r}l .

6f 8m I' 4f

(3.8)

(3.9)

From Eq. (2.10},one gets

M(r) = '.
i 4'rrr 7 Od«=4'««r p+ dr

8~

(3.1)

From (3.8) it is evident that the pressure p must be nega-
tlvc lnsldc thc charged sphere; that ls, thc body must bc
UAdcl tcnslon. Also slncc thc pI'cssUlc vanishes Bt f = 0, lt
must be an increasing function of r: i.e. , dp/dr in (3.9) is
posltlvc ln 0 + I Q g. Obviously thc ITlass dcnslty dccfcascs
RS f lnclCBSCS.

In the absence of charge Eq. (3.9), using the condition
that the pressure vanishes on the boundary r = a, leads to
the vanishing of p Bnd p identically. Hence Rn Uncharged
perfect fluid is incompatible with the condition (1.3).

HO%'cvcl, thc sltUatlon ls Rltogcthcl' dlffcrcAt ln thc pres-
ence of charge. In this case Eqs. (3.4), (3.5), (3.8), and
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(3.9) whtch determine tlm total gravltatlonal nlass, thc pres-
sure, and the mass density show that all these three physical
quantities are dependent on charge density ~ and vanish
when the charge vanishes. Thus, the total gravitational
mass of this model comes out to be of electromagnetic ori-
glA only. This ls also obvious from thc RrgulTlcnts given ln
the preceding paragraph. The case (1.3) thus gives a class
of models where mass is derived completely from the
charge of the electromagnetic fields. Such models whose
mass is built from electromagnetism alone are of consider-
able importance ln physics.

IV. A PARTICULAR SOLUTION

Wc assume hcI'c thc chaI'gc dlstrlbutlon to bc known and
the condition (1.4) to be valid throughout the interior; i.e.,
WC takC

(r(r)=rr e "~' (4.1)

where o-0 is the constant charge density at r =0, the center
of tlM chal gcd flutd. Equat1on (4.1) when substltUtcd In
(3.4), (3.5), (3.8), and (3.9) gives the solution

E(r) = aor4m

3

V. A COORDINATE-INDEPENDENT STATEMENT
FOR EQ. (1.3)

A coordinate-independent statement of the relation (1.3)
[equivalently of (1.4)] is obtained by using the eigenvalues
of thc Einstein tensor G J. Thc clgcnvalucs arc determined
by 'thc cguation

det[G'J —p8'J] =0 . (5.1)

In thc case of a static spherically symmetric space-time
(2.1) only the diagonal components of the Einstein tensor
survive and it can be seen from (5.1) that each of these
components is itself an eigenvalue. Thus we have

(5.2)

On subst1tutlng thc valUcs of G 0 Rnd G I III Eq. (5.2)
onc can caslly vcrlfy th8t

The to~al gravitational mass m is given by

Pl = 45-'7T' 0 O 02 2 5

The above solution illustrates the conclusions of the preced-
ing section.

PI P0=G I G 0= (X +v )o e (5.3)

p (r ) = cr02(r' —a')
3

Using Eq. (1.4) in Eq. (5.3), we get

Pi —fMO= 0 (5.4)

p(r) = a-02(a' —r')
3

M(r ) = a-II'r'(5a' —2r')8m2

45

On the other hand the condition (5.4) together with (5.3)
and the boundary condition (X = —v) on the surface of the
fluid distribution gives the relation (1.3). Hence Eq. (5.4)
is a necessary and sufficient condition for a static spherically
symmetric space-time to satisfy the relation (1.3). As p, o

and p, l are coordinate-independent scalars the condition
(5.4) is a coordinate-independent statement of (1.3).
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8It is interesting to note that when p = —p, by using boundary con-
ditions we automatically get A. = —v; so that X= —v ~p= —p.


