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The metric coefficients ggo and gq; of both the Schwarzschild and Reissner-Nordstrém metrics satisfy the
relation ggp £17= —1. A coordinate-independent statement of this relation using the eigenvalues of the
Einstein tensor is given. By considering the relation between the metric coefficients to be valid inside a
charged perfect-fluid distribution, it is shown that the mass-energy density and the pressure of the distribu-
tion are of electromagnetic origin. In the absence of charge, however, there exists no interior solution. A
particular solution which confirms the same and matches smoothly with the exterior Reissner-Nordstrém
metric is obtained. This solution represents a charged particle whose mass is entirely of electromagnetic

origin.

I. INTRODUCTION

The exterior field of a spherically symmetric charged fluid
(dust or perfect-fluid) distribution described by the metric

ds?= gdx'dx/= e’ di*— e*dr* — r*(d6?+sin’0dp?) 1.1
(i,j=0,1,2,3)

is the unique Reissner-Nordstrém solution given by

ds*= 1—%’—"—+3;2i drt— 1—1:—"—+1;2i _ldrz
— r*(d@?+sin?0d¢p?) 1.2)
for which
googu=-—1 . 1.3)

For the metric (1.1), the relation (1.3) is equivalent to
A=—v . 1.4)

It is well known that (1.2) in the absence of charge reduces
to the Schwarzschild exterior solution

ds?= (1— 2m
r r

drr— ll - 2—m]er

— r2(d0?+sin20de?) , (1.5)

which is also unique and satisfies (1.3). Such uniqueness or
simplicity is not possible in the case of spherically symmetric
interior fields. Attempts have, therefore, been made by
various authors!~® to find exact interior solutions in the
presence as well as in the absence of charge under different
assumptions.

The present work is based on the fact that any interior
solution with or without charge must match with either
(1.2) or (1.5), as the case may be, on the boundary of the
interior field. As such the relation (1.3), which is valid for
the exterior fields (1.2) and (1.5) if assumed to be also
valid in the interior, will have a natural matching on the
boundary. This assumption which is motivated from the
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unique solutions (1.2) and (1.5) is quite natural and may
lead to some solutions which may have interesting physical
consequences.

To this end we have examined the case in which the inte-
rior is first filled with a perfect fluid. This, however, leads
to the vanishing of the pressure and density of the fluid,
i.e., the incompatibility of the perfect fluid with assumption
(1.3). In the next case, i.e., when the interior is filled with
a charged perfect fluid, all the physical quantities, namely,
pressure, density, total gravitational mass of the fluid, etc.,
are dependent on the charge and vanish when the charge
vanishes. The interior field thus obtained represents the
model of a charged source whose mass is completely of
electromagnetic origin. This type of model is of consider-
able importance in the history of physics.” In this paper a
particular solution representing such a model is obtained.

In Secs. II and III, the Einstein-Maxwell field equations
for a charged perfect fluid and certain general deductions
from these field equations are given. Section IV deals with
a particular model whose mass is entirely of electromagnetic
origin. In Sec. V a coordinate-independent statement of
(1.3) is given using the eigenvalues of the Einstein tensor.

II. FIELD EQUATIONS

The spherically symmetric metric in the coordinates
tr,0,¢ is given by

dst=e"d? — e*dr’— r2(d6%*+sin?0d¢?) @.1n

where A and v are functions of the radial coordinate r only.
We consider the charged fluid to be confined within a
sphere of radius a and is described by the proper mass den-
sity p(r), the pressure p(r), and the charge density o (r).

The Einstein-Maxwell field equations for the charged
fluid distribution are given by

GYy= =8 [ Tyim)+ Ttem] (2.2)
[(—g)V2FV] ;= (—g)V2)i 2.3)
Fry=0 , .4

where G/, is the well-known Einstein tensor and J' is the
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current four-vector defined by

Ji=a(r)u' , (2.4a)

o (r) being the proper charge density of the distribution. In
the present case the current four-vector has only one non-
vanishing component, viz.,

P=0o(r)(ge)~ " .

Here a subscript after a semicolon or a comma denotes co-
variant or partial differentiation, respectively.

TY(m) and T%m) are the energy-momentum tensors of
the perfect fluid and the electromagnetic field, respectively,
and are given by

(2.4b)

T'ymy=(p+p)u'uy— pd (2.5)

and

T om = 7 (= g+ 180 Fy ) 2.6)

where u'is the four-velocity of the fluid satisfying
wiu=1, u®=(ge)~V? , .70

and Fj is the Maxwell tensor defined in terms of the four-
potential A4; as

FU=Ai,j’-Aj,i . (28)
In our case the four-potential is given by
A;=1[®(r),0,0,0], i=0,1,2,3 .

Due to spherical symmetry the only nonvanishing com-
ponent of the Maxwell tensor is

Foo=—Fip=®" . (2.9

Here and in what follows a prime will denote differentiation
with respect to r only.
The field equations (2.2)—(2.4) finally reduce to

e MLy L g 70 =8mp+ B2, (2.10)
ror? r?
et 5| - =8mp- £ @.11)
r r
N AN UM U e S I 2
e 5 y + y + > ] 8ap+E? , (2.12)
[RPE(H))=4mr2c(r)eM? | (2.13)

where the “‘electric field strength” E(r) is defined as

E(r)=—e~0tM12¢’" | (2.14)
III. CERTAIN GENERAL RESULTS
From Eq. (2.10), one gets
e~A= 1—% , 3.1
where
r r E2
M(r)=f0 4'n'r27*’0dr=47rf0 r2p+§; dr . (3.2)

We take the integration constant to be zero in order to en-
sure the regularity of the metric throughout the fluid distri-
bution. Since the radius of the charged fluid extends up to
a, for r > a,

2

er=1-EM
r

) (3.3)

\rn
NN

where m and ¢ are the total gravitational mass and the total
charge, respectively.
For r > a, from (3.1), (3.2), and (3.3) we get
2 r
=9 2
m 2 + 47 fo r

2
o+ ar . (.4)
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Equation (2.14) gives

E(r)=%_£r41rrza(r)e"/2dr=—q—£§)— . (3.5)

Differentiating (2.11) with respect to r and adding this to
(2.11) and then subtracting (2.12), we get

1
8 rt

D — (o4 p) L+ (3.6)

dir s
o dr[q 1,

where

121-= M(r)+47'rr3p——q%(:—)]/r[r—2M(")]

Equation (3.6) is the generalization of the well-known
Tolman-Oppenheimer-Volkoff (TOV) equation of hydro-
static equilibrium to the case when charge is present. This
can also be derived from the conservation equation 7%,;=0,
where

le= le(em)+ le(m) .
Adding Egs. (2.10) and (2.11) we get

e M\ +v)=8mr(p+p) . 3.7

The relation (3.7) contains no charge term and is one of the
characteristics of the present model. It holds irrespective of
whether the body is charged or not. The presence of charge
is detected by the generalized TOV equation (3.6).

We now assume the relation (1.3) or (1.4) to be valid
within the charged fluid distribution. This when substituted
in (3.7) gives®

p=-0> (3.8)
Using Eq. (3.8) in Eq. (3.6), we get

dp__1 dy.

d  8mwrt dr[q (n] (3.9)

From (3.8) it is evident that the pressure p must be nega-
tive inside the charged sphere; that is, the body must be
under tension. Also since the pressure vanishes at r = aq, it
must be an increasing function of r: i.e., dp/dr in (3.9) is
positive in 0 < r < a. Obviously the mass density decreases
as r increases. .

In the absence of charge Eq. (3.9), using the condition
that the pressure vanishes on the boundary r=a, leads to
the vanishing of p and p identically. Hence an uncharged
perfect fluid is incompatible with the condition (1.3).

However, the situation is altogether different in the pres-
ence of charge. In this case Egs. (3.4), (3.5), (3.8), and
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(3.9) which determine the total gravitational mass, the pres-
sure, and the mass density show that all these three physical
quantities are dependent on charge density o and vanish
when the charge vanishes. Thus, the total gravitational
mass of this model comes out to be of electromagnetic ori-
gin only. This is also obvious from the arguments given in
the preceding paragraph. The case (1.3) thus gives a class
of models where mass is derived completely from the
charge of the electromagnetic fields. Such models whose
mass is built from electromagnetism alone are of consider-
able importance in physics.’

IV. A PARTICULAR SOLUTION

We assume here the charge distribution to be known and
the condition (1.4) to be valid throughout the interior; i.e.,
we take

o(r)=0ge~M2 4.1

where o is the constant charge density at r =0, the center
of the charged fluid. Equation (4.1) when substituted in
(3.4), (3.5), (3.8), and (3.9) gives the solution

E(r)= 4T7To'or ,

q(r)=———47.ro'0r3 ,
3
_2m 90 2
p(r)= 300 (rP—a?)
2w a2 2 2
p(r)= 30 (a?=1r?) ,

e=e r=1-2M(r)/r ,
where

2
M(r)= %aozﬂ(Saz— 2r2) .

The total gravitational mass mis given by

64 _2 25
m= g meoopta” .
The above solution illustrates the conclusions of the preced-

ing section.

V. A COORDINATE-INDEPENDENT STATEMENT
FOR EQ. (1.3)

A coordinate-independent statement of the relation (1.3)
[equivalently of (1.4)] is obtained by using the eigenvalues
of the Einstein tensor G';. The eigenvalues are determined
by the equation

det[ G2, — s/, 1=0 . .1

In the case of a static spherically symmetric space-time
(2.1) only the diagonal components of the Einstein tensor
survive and it can be seen from (5.1) that each of these
components is itself an eigenvalue. Thus we have

po=G% wpi=GY, wy=G?% u3;=G% . (5.2)

On substituting the values of G% and G!; in Eq. (5.2)
one can easily verify that
e\
r

(\'+v") (5.3)

M1 K= Gll"_ G00=
Using Eq. (1.4) in Eq. (5.3), we get

,LLl—,(L()=0 . (54)

On the other hand the condition (5.4) together with (5.3)
and the boundary condition (A= —v) on the surface of the
fluid distribution gives the relation (1.3). Hence Eq. (5.4)
is a necessary and sufficient condition for a static spherically
symmetric space-time to satisfy the relation (1.3). As uq
and u; are coordinate-independent scalars the condition
(5.4) is a coordinate-independent statement of (1.3).
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81t is interesting to note that when p= — p, by using boundary con-
ditions we automatically get A= —v; so that \= —v e« p= —p.



