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It is shown that a restricted class of static, axially symmetric self-dual SU(» + 1) Yang-Mills field equa-
tions are equivalent to the stationary, axially symmetric Einstein—(n — 1)-Maxwell field equations.

Equivalence between the axially symmetric (AS), static
self-dual Yang-Mills and the As stationary Einstein field
equations was first demonstrated by Witten.! When the
space-time is AS and stationary, the essential part of the
vacuum field equations can be reduced to a complex non-
linear elliptic partial differential equation, known as the
Ernst? equation. Witten has shown that members of a spe-
cial class of the AS static self-dual SU(2) Yang-Mills equa-
tions, in Yang’s R gauge, also reduce to the same equation.
It is also known that the Ernst equation can be formulated
as a o model on the symmetric space SU(1,1)/U(1). Re-
cently,’ it was shown that this analogy exists also between
the AS static self-dual SU(3) Yang-Mills and the AS sta-
tionary Einstein-Maxwell field equations. Here the key
equations are the electrovacuum Ernst* equations, which
may be formulated as a o model on SU(2,1)/SU(Q2)
® U(1).

In this work we shall show that the above analogy
between the field equations of two theories can be further
extended. The restricted class of the AS static self-dual
SU(n+1) Yang-Mills and the AS stationary Ein-
stein— Abelian-gauge field equations will be both formulated
as a o model on the Kihler manifold SU(n +1)/SU(n)
® U(1).

The Einstein—-Abelian-gauge field equations are given
|
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by v
Guv="as (Fua F,2* = 18y Foup F**F) )]
Few, =0, Q)
Fo,=0,4%-9,4°, , 3)
where vy, is a diagonal matrix (with positive-definite en-
tries), a,b=1,2,...,n—1 (n > 0). A semicolon denotes

covariant differentiation with respect to the Christoffel-
Riemann connection. The metric y,, of the Abelian-gauge
group can be taken as the Kronecker symbol 8, by rescal-
ing the gauge potentials 4°,. When the space-time is sta-
tionary and axially symmetric the line element can be ex-
pressed as

dst= —f(dt —wdd)?+ e (dp®+dz?) +p2de?l , (4)

where ¢, p, z, and ¢ are the local coordinates and the func-
tions f, w, and y depend only on p and z. We shall assume
that the gauge potential one-form A4 has two components,

A°=A% dxt=A% dt+ A% do , Q)

where A% and 4% are the components of 4%, in the direc-
tion of time (¢) and the azimuthal angle (¢) coordinates,
respectively. They also depend on p and z. Using (4) and
(5), the gauge (2) and the Einstein (1) field equations
reduce to

T lp~ UV A4%—0T4%)]1=0 , (62)
Vol WAL +p Ha(VA4%— 0V 49)]=0 , (6b)
Tl Wao—4p"24% (T 4% -0V 4%)]1=0 , (6¢)
IV =(V ) =p YT w)+2fV A% TA%+20 3 (T 4% — 0T 4%) - (V4% —0T 4%) , (6d)
Vo= 7T = (L) =507 M(0,0) = (0,)2 = pf T (A%, 4%, — 4%, 47,)

+o (A%, ,—wA% ) (4%, ,— 0A%,) — (A%, —wA%,) (4%, —wd%,)] (6¢)
V=3P o a0 0, 0= 20f T A, A%+ 207 (A%~ 049 ,) (A% —wAT,) (66)
Yoot vat+ 1/ AT+ 4p NV @)= 71T U4% T 4% —p NV A%~ 0V 49) - (T 4%— 0T 4%)=0 , (6g)

where V, \Y4 -, and V? are the grad, divergence, and the
Laplacian- operators in the flat three-dimensional cylindrical
coordinates, and those terms with repeated indices are
summed up. Out of these seven equations only the first six
are independent. Equations (6e) and (6f) imply the last
equation (6g). On the other hand, Egs. (6e) and (6f) deter-
mine the function vy if f, w, 4%, and 4% are known.
Hence the essential part of the Einstein- and Abelian-gauge
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field equations consist of the first four equations (6a)-(6d).
Introducing » complex scalars € and ®° these equations are
written as

fV%=(Ve+20°V 09 -Te , @)
VD= (Ve +200T @) - Vo2 | 8)
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where
e=f—D%D°+ iy , 9
®%=4%+iB° , (10)
with
VB= —p~ 1 faix (T A%— 0T 4%) , an
Vo=—lp Y% xVo+2Im(®2V ¢9)] , 12)

where 7 is the unit vector along the azimuthal direction and
Im denotes the imaginary part. Although there is no in-
teraction (by construction) between the potentials 49, it ap-
pears that the complex scalars @7 intract with one another.
Equations (7) and (8) may be obtained from a variational
principle where the Lagrangian density reads

L =4f (T e+20°V 0% - (Ve+20°7 B%)
—2f V0 T3 (13)
with

€+e
2

f= + P | (14)

This suggests that we should utilize the theory of harmonic
mappings. The mapping F:N — M between the Riemann
manifolds M and N with metrics

M: ds*=47"2[(de+2d'd®) (de+ 240 ) —2/dd'd®] |
(15)
N:ds’=dp?+dz*+ p2d $? (16)

is harmonic if the field equations (7) and (8) are satisfied.
Here ® denotes an (n — 1)-dimensional complex column
vector with components ®“ and a dagger denotes Hermitian
conjugation. Defining a new column vector w by

1 D,
w=|®|, &= : , an
i€ (D,,_l

and a Hermitian unimodular matrix y by

0 0 - —
0 0

=1 In—1 1 (18)
i 0 0

where I,-; is the (n —1)x (n —1) unit matrix, then the
metric of M becomes

M: ds’=4f"(|do"yol’ - 2fdo’ydw) | (19)
with

2f=wT'yw . (20)

This metric describes the complex hyperbolic space®
SU(n,1)/SU(n) ® U(1) and it can be further simplified.
We define a Hermitian matrix
T
P,=y— 2—“;9—— s @n
w yw

which has unit determinant. In addition, it also satisfies
P,yP,=vy . (22)

Then the metric in (19), when expressed in terms of P
takes the form

M: ds*=tr(P,”'dP, ® P,"1dP,) . (23)

The field equations (7) and (8) may also be expressed in
terms of P,. They become

d(aP,~1*dP,)=0 . 4)
Here we changed the manifold N to M, with the metric

My ds*=dp*+dz? . 25)

The exterior derivative d and the Hodge dual operation * in
(24) are defined on M, The function a is a harmonic func-
tion in M, i.e.,

d*da =0 . (26)

Replacing the manifold N with M, is in a sense replacing p?
appearing as a coefficient of d¢? in the space-time metric
(4) with a2 Harmonicity of the function a follows from the
field equations. Hence, in summary, the AS stationary
Einstein-Abelian-gauge field equations (6a)-(6d) may be
reduced to a single differential equation for the matrix P,
subject to some constraints. These equations read

d(aP,” " dP,)=0 , Q7
(yP)?’=1, P=P', (28)
where P, is an (n +1) x (n + 1) matrix.

In the R gauge the self-dual SU(N) Yang-Mills field
equations are given by®

d(P~'~dP)=0 , 29)
where
P=pP' detP=1, (30)
and
9 9 - 3 3
d=dy> +dz>-, ~d=dy>—dz— . (31)
ETRRET Yor oy

Here, y = (1/V2) (x'+ix?), z=(1/v/2)(x*—ix*), and the
bar operation denotes complex conjugation. Axially sym-
metric static fields do not depend on the azimuthal angle
(¢) and time (¢), where y =pe’® and z=z =1+ In this case
(29) becomes

d(aP~"™dP)=0 , (32)

where d and * are defined on M, with metric (25) as before.
We notice that the AS static self-dual SU(N) Yang-Mills
equations (32) are more general than the AS sta-
tionary— Abelian-gauge [(n — 1) x Maxwell] field equations.
They become identical when N=#n +1 and P =P,, which
implies (yP)?*=1 This constraint is, of course, compatible
with the field equations (32).

The group SU(n, 1) is the isometry group of the metric
(23) of M. Hence the transformation

pP,— P, =5SP,S" , (33)
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with
SyST=y ; (34)

i.e., §$ € SU(#n, 1), leaves the metric (23) and the field equa-
tion (24) invariant. This may be utilized to generate new
solutions of the field equations. Such global transforma-
tions (S =constant) produce gague-equivalent Yang-Mills
fields. On the other hand, the SU(n, 1) transformation
(33) leads to distinct solutions in the Einstein case. For in-
stance, starting from a vacuum solution (n=1), say the
Kerr metric, it is possible to obtain a solution of the
Einstein—(#n — 1)-Maxwell field equations, say an (n—1)
Abelian-gauge charged-Kerr metric.

It is known that the vacuum (7 =1) and the electrovacu-
um (n=2) field equations can be integrated via the
Zakharov-Shabat’ and the Belinski-Zakharov® techniques.
These methods can be extended to integrate the field equa-
tions [(27), (28)]. Such an extension has been given by
several authors.’

Quite recently,’® it has been shown that the Kerr-
Newman metric (7 =2) is the unique stationary black-hole
solution of the Einstein-Maxwell field equations. If a black
hole carries (n —1) Abelian-gauge charges, the above
theorem can be paraphrased. The (n —1) Abelian-gauge
charged-Kerr metric is the unique stationary black-hole
solution of the Einstein-Abelian-gauge field equations.
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