
PHYSICAL REVIEW 0

Axially symmetric, static self-dual Yang-Mills and stationary
Einstein-gauge field equations

Mctin Giirscs
Department ofApplied Mathematics, Titbitak Research Institute for Basic Sciences,

P. 0. Box 74, Gebze-Kocaeki, Turkey

(Received 21 February 1984)

It is shown that a restricted class of static, axially symmetric self-dual SU(n +1) Yang-Mills field equa-
tions are equivalent to the stationary, axially symmetric Einstein-(n —1)-Maxwell field equations.

Equivalence between thc axially symmetric (AS), static
self-dual Yang-Mills and the As stationary Einstein field
equations was first demonstrated by Wittcn. ' When the
space-time is AS and stationary, the essential part of the
vacuum field equations can be reduced to a complex non-
linear elliptic partial differential equation, known as the
Ernst equation. Witten has shown that members of a spe-
cial class of tllc AS stRtlc self-dUR1 SU(2) Yallg-Mills cqUR-

tlons, 1Q Yang s 8 gaUgc, also I'cdUcc to thc same cquatlon.
It ls also known that thc EI'Qst cqURtlon CRQ bc formUlatcd
as a cr model on the symmetric space SU(1,1)/U(1). Re-
cently, 3 it was shown that this analogy exists also between
the AS static self-dual SU(3) Yang-Mills and the AS sta-
tionary Einstein-Maxwell field equations. Here the key
equations are the electrovacuum Ernst4 equations, which
may be formulated as a o. model on SU(2, 1)/SU(2)
e U(l).

In this work we shall show that the above analogy
between the field equations of two theories can be further
extended. The restricted class of the AS static self-dual
SU(n + 1) Yang-Mills and the AS stationary Ein-
stcln-Abcllan-gRUgc flcM cqUatlons will bc both formulated
as a omodel on-the Kahler manifold SU(n+1)/SU(n)
e U(l).

Thc Elnstcln —Abcllan-gauge flcld equations 81'e glvcn
I
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I"~„=9„A ' —9„A '„ (3)
where y, t, is a diagonal matrix (with positive-definite en-
tries), a, b = 1, 2, . . . , n —1 (n & 0). A semicolon denotes
covarlant dlffcl'cntlat ion with I'cspcct to th c Chl'lstoffcl-
Ricmann conncctlon. Thc metric y~b of thc Abcllan-gaUgc
group can be takeo as thc Kronccker symbol s,b by rescal-
ing the gauge potentials A'„. When the space-time is sta-
tionary and axially symmetric the line element can be ex-
prcsscd Rs

ds'= f (dt cod cb)—'+—f '[e"(d p'+ dz') +p'd@'], (4)

where t, p, z, and cb are the local coordinates and the func-
tions f, co, and y depend only on p and z. %c shall assume
that the gauge potential one-form 3"has two components,

A'=A'„dx"=A', dt+A'e, dctl (5)

%herc A', and AN@ arc thc components of A „jn the direc-
tion of time (t) and the azimuthal angle ($) coordinates,
respectively. They also depend on p and z. Using (4) and
(5), thc gaUgc (2) Rrlcl tllc Elnstcln (1) flclcl equations
I'cdUcc to

'7. [p '('7A'q co'7A—",)]=0,
'7 ~ [f '7A', + p ~fco(7A "@—co'7A', ) ] = 0
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f'72f'= ('7f)2 —p f (7co) +2f r7A", . '7A', +2p zf ('7A'e —co'7A;) (7A'e, —c«'7A;)
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—A', , A', , )

+ p 'f [ (A 'p e
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y, =~pf f e fz —
1 p 'f c«, ec«,,—2pf 'A', eA', ,, +2p 'f (A'p, e

—c«A', , e)(A'c, ,—«lA', , )

+y +~f 2('7f)z+~p zf ('7c«)2 —f '7A', ~ '7A', —
p ('7A'@ —«)'7A', ) (7A'p —co'7A', ) =0

(6c)

(6d)

(6C)
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~here V, V', and V2 are thc grad, divergence, and the
Laplacian operators in the flat three-dimensional cylindrical
coordinates, and those terms with repeated indices are
suIYlmcd Up. OUt of thcsc scvcn cqUatlons only thc first six
are independent. Equations (6e) and (6f) imply the last
equation (6g). On the other hand, Eqs. (6C) and (6f) deter-
mine the function y if f; co, A'„and A'~ are known.
Hence the essential part of thc Einstein- Rnd Abelian-gauge

field equations consist of the first four equations (6a)—(6d).
Introducing n complex scalars ~ and 4' these equations are
written as

fV' ql'= ('7e+24& '74& ) - 74',
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which has unit determinant. In addition, it also satisfies

e=f —4"4&'+i p

O'= A', +i8',

'VB'= —p 'fn x (VA'p —ruVA''g)

V p = —[p 'f zn && V ru + 2 Im (4& '7 4') ] (12)

M: ds'=«(P, 'dP, S P, 'dP, ) (23)

The field equations (7) and (8) may also be expressed in
terms of I', . They become

Then the metric in (19), when expressed in terms of P
takes the form

where i is thc unit vector along the azimuthal direction. and
Im denotes thc 1Inaglnary paI't. Although there ls no in-
teraction (by construction) between the potenttals 2 ~ tt ap-
pears that the. coInplex scalars 4 lntract with one another.
Equations (7) and (8) may be obtained from a variational
principle where the Lagrangian density reads

d (aP, "dP, ) = 0 (24)

Mo'. ds = dP + dz

The exterior derivative d and the Hodge dual operation in
(24) are defined on Mo. The function a is a harmonic func-
tion in Mo, i.e.,

(14)

This suggests that we should utilize the theory of harmonic
mappings. The mapping F;% M between the Riemann
manifolds Af and N with metrics

Replacing the manifold X with Mo is in a sense replacing p
appearing as a coefficient of d@' in the space-time metric
(4) with az. Harmonicity of the function a follows from the
field equations. Hence, in summary, the AS stationary
Einstein-Abelian-gauge field equations (6a)—(6d) may be
reduced to a single differential equation for the matrix I',
subject to some constraints. These equations read

M: ds =4f z[(de+24 dC )(de+ 2d4 &0) —2fd@ d4] d(aP, "dP, ) =0

(yp, )z=l, p= p

(27)

(28)

iY: ds'= dp'+dz'+ p'dQ'

is harmonic if the field equations (7) and (8) are satisfied.
Here 4& denotes an (n —1)-dimensional complex column
vector with components 4' and a dagger denotes Hermitian
conjugation. Dcflnlng 8 ncw column vector QP by d(P-'-dP) =0, (29)

where P, is an (n + 1) x (n + 1) matrix.
In the 8 gauge the self-dual SU(X) Yang-Mills field

equations are given by6

(17)
j'=P, detP = I

and 8 Hermitian unimodular matrix y by d =Gled +dz8 8
BZ

6 8d = dg —dz
QZ

(31)

0 0 ~ 0 I

I I 0 0]

(20)

This metric describes the complex hyperbolic space5
SU(n, I)/SU(n) S U(1) and it can be further simplified.
%C define a Hermitian matrix

where I„~ is the (n —1) && (n —1) unit matrix, then the
metric of M becomes

M: ds'= 4f '(Id~'7 ~1' 2fa'0'ado )—
Here, y= ( /&12)( x+i x), z= (I/&2)(x' —ix~), and the
bar operation denotes complex conjugation. Axially sym-
IYlctrlc st8tlc flclds do not dcpcnd on thc azimuthal 8nglc
(@) and time (t), where y =pe'~ and z =z = t. In this case
(29) becomes

d(aP "dP) =0 (32)

where d arid ' are defined on Mo with metric (25) as before.
We notice that the AS static self-dual SU(%) Yang-Mills
equations (32) are more general than the AS sta-
tionary —Abelian-gauge [(n —1)x Maxwell] field equations.
They become identical when X = n + 1 and I' = P„which
implies (yP) =I. This constraint is, of course, compatible
with the field equations (32).

The group SU(n, 1) is the isometry group of the metric
(23) of M. Hence the transformation

(33)
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(34)

i.e., S 6 SU(n, 1), leaves the metric (23) and the field equa-
tion (24) invariant. This may be utilized to generate new
solutions of thc field equations. Such global transforlna-
tions (S = constant) produce gague-equivalent Yang-Mills
fields. 6 On the other hand, the SU(n, 1) transformation
(33) leads to distinct solutions in the Einstein case. For in-
stance, starting from a vacuum solution (n = 1), say the
Kcxr metric, it is possible to obtain a solution of the
Einstein —(n —1)-Maxwell field equations, say an (n —1)
Abelian-gauge charged-Kerr metric,

It is known that the vacuum (n = 1) and the electrovacu-
um (n = 2) field equations can be integrated via the
Zakharov-Shabat and the Belinski-Zakharov techniques.
These methods can be extended to integrate the field equa-
tions [(27), (28)]. Such an extension has been given by
several authors.

Quite recently, '0 it has been shown that the Kerr-
Newman metric (lt = 2) ls the umque stationary black-hole
solution of the Einstein-Maxwell field equations. If a black
hole carries (n —1) Abelian-gauge charges, the above
theorem can be paraphrased. The (n —1) Abelian-gauge
charged-Kerr metric is the unique stationary black-hole
solut&on of the ErnsteIn-Abel&an-gauge fICM equations.
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