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Properties of the Coulomb-gauge Gribov horizon are discussed. In a non-Abelian gauge model,
transverse field amplitudes must lie in the region bounded by the horizon. Natural enforcement of
this restriction is provided by the Coulomb energy associated ~ith color-charge fluctuations. To iso-

late the most important color-charge terms at the horizon and investigate their influence on quan-

tum eigenstates, a simple nonlinear transformation is introduced which removes the horizon to in-

finity. The results of some numerical calculations on the shape of the horizon are also reported.

I. INTRODUCTION

The Gribov horizon is the locus of the first zero of the
Faddeev-Popov determinant; gauge-field amplitudes must
lie within the open region 6 bounded by the horizon. '

Gribov pointed out that this constraint provides a mecha-
nism for color-charge confinement. ' In essence, the idea
is that modes with short wavelengths are not affected by
the constraint, while the amplitudes of modes with long
wavelengths are greatly reduced from their free-field
values. As a consequence, the exritation energies assoriat-
ed with long wavelengths are increased, giving rise to a
spectrum with a mass gap. Gribov's analysis made use of
several approximations, and numerical calculations have
recently been undertaken to study Gribov's confinement
scenario nonperturbatively, using both direct and lattice
Monte Carlo methods.

A new numerical method for studying eigenstates of a
quantum field model was introduced in a recent paper.
To obtain a manageable number of degrees of freedom,
the model is formulated on a restricted spatial domain,
taken to be the surface of a four-dimensional hypersphere,
and a cutoff is introduced at a wave number A. [The
wave number is the O(4) principal quantum number, and
corresponds to the magnitude of the momentum. ] In this
scheme, numerical calculations have manifest rotational
invariance in all degrees of approximation, and group-
theoretical methods involving O(4) can be used to classify
states and evaluate Inatrix elements. This method was
applied to a study of the SU(2) gauge-field model, in the
Coulomb gauge. The determination of the locus of the
horizon was not approximated, but the results were in
close quahtative agreement with those of Gribov' and
supported his suggestions about confinement. Approxi-
mations similar to Gribov's were used in solving for the
energies of the vacuum and exrited states. Results report-
ed from the Monte Carlo studies also show clearly the ex-
istence of the horizon.

The most serious approximation in the previous work'
was neglect of the Coulomb energy associated with color-
charge fluctuations. The Coulomb energy is especially
important for field configurations very near the horizon,
and its effect on the horizon structure of eigenstates is ex-
plored in this paper. It is shown to be possible to intro-

duce a nonlinear mapping which removes the horizon to
infinity; this mapping provides a simple way to isolate
and examine leading terms in the vicinity of the horizon.
It is found that the leading terms in the energy automati-
cally keep the field configuration away from the horizon.
Since all gauge orbits have intersections in 6, any field
configuration which lies beyond the horizon is a "Gribov
copy" of some configuration within G, and should not be
included independently. The fact that the Coulomb ener-

gy confines the field variables to the interior of G indi-
cates that the horizon constraint is not to be considered as
a separate requirement, but arises automatically from the
structure of the Hamiltonian.

The organization of this paper is as follows. After a
brief section on notation, some general properties of the
horizon surface will be reviewed and discussed. Then the
horizon-expansion transformation will be defined and the
behavior of eigenstates in the vicinity of the horizon will
be examined. This part of the paper is independent of the
hyperspherical formahsm. Fi.nally, some new numerical
results on the shape of the horizon in the SU(2) hypers-
pherical model will be presented.

A. Notation

The fields are expanded in normal modes defined over a
unit hypersphere. A mode will be labeled by a Greek in-
dex, for example, a=(a,a) =(A,a), where a denotes the
color index, and o. denotes the spatial mode. The corre-
sponding Roman letters, upper and lower case, denote,
respectively, the wave number and the O(4) representation
component (including helicity and color). Thus, for ex-

ample, the transverse potential ls A (x)=g-0 V-(x).
The electric field amplitude for mode a is e =iB/8a .
The magnetic field amplitude b includes the usual self-
coupling term. Implied summation over paired indices
will be used, along with matrix notation. The Hamiltoni-
aIl is '

H = ,' (F 'e~Fe~+b~b~—+F 'o'~FC po p),
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o (x)=gk 'A~(x) Er(x)f ~r,

D = k 'f rArVk

and where k =(—V ); in terms of normal modes,

0 =gQ p8y 7

a~~=gX &~a
(3)

where X and F are certain constants —products of the
structure constants, 3-g symbols, and reduced matr1x ele-
ments. The Coulomb energy is given by the matrix
C =(1 D)—, and can be expressed in terms of the scalar
potential 4=k '(1 D) 'o —as —,'N k @. The Faddeev-
Popov determinant is F=det(1 —D). Zeros of I" corre-
spond to IIIlif, cigcIivalucs of D: d(a) = 1, w1icic Df=df,
and P is the eigenvector. In these definitions, factors of
k ' have been inserted in a way which is convenient for
numerical calculations, but not conventional.

The factors k ' in Eq. (2) are infinite for the scalar
mode 3 =0, which is constant over the hypersphere.
This implies that finite-energy eigenstates can have no net
color charge; only color-singlet states are permitted. If
the Laplacian were altered by exphcit mclusion of an in-
frared parameter, the main effect would be to allow non-
singlet states to have finite energies. If only color-singlet
states are considered, the mode A =0 can be dropped.
There is no coupling between the mode A =0 and other
scalar modes, bccausc D contalQs R gI'Rdlcnt, opcratol.

B. General properties of the horizon

Zwlziger has shown that 1Q RIly direction 111 thc space
of field variables a, tlic llorlzon sliIfacc H lies Rt R fiIlitc
distance from the origin; he has also shown that H is con-
vex. For the Coulomb-gauge hyperspherical model, these
properties are easy to verify. First, note that for any a,
Tr D ~0; more specifically, Tr D =g Topaz, , where,
using suni rules for 3-j symbols, T~ is given by a sum
over squares of reduced matrix elements. The general ex-
pression is rather complicated, but for A ~~A ~~1 there is
a simple limiting formula: Tq ——aA/3Ir, where
a=g /4Ir. Furthermore, Tr D =0, since D is antisym-
metric in color and spatial variables separately. Thus, for
any a, D(a) has at least one nonzero eigenvalue of each
sign, showing that in every direction d(a)=1 occurs for
finite values of the a .

To examine convexity, let al and aqua be two points on
H. Then, for normalized 0, Max(4 Dik) =Max(0 D«0)
=1, the maxima occurring for pi and pii, respectively.
Since D(a) is linear in a, for a =tai+(I —t)ail we have
D(a) =IDI+(1—t)D«, and hence for 0(I (1,
P D( )Pa(1. Thus, a does not lie beyond H, i.e., H is
convex.

Numerical calculations reported earlier (and in more
detail later in this paper) show that H is rather smooth,
and that the following "ellipsoidal approximation" is
surprisingly accurate:

where X~ is the degeneracy for wave number 2; for
SU(2), Xz ——6A (A +2). The U~ are constants, which for
SU(2) are all close to 0.5. For a more accurate descrip-
tion, the Uz can be considered to depend weakly on the
Q~.

Local gauge transformations, applied to some initial
field configuration, may lead to another configuration in
the Coulomb gauge, a Gribov copy of the first. While it
is known that configurations beyond H always have
copies in 6, it is an open question whether any configu-
rations in 6 have copies that are also in 6. Local
transformations would not respect the condition A (A, so
the Hamiltonian (1) does not allow such copies to be dis-
cussed directly. It is possible to pose some related but dif-
ferent questions, which illustrate some special features of
the Coulomb gauge. Two transverse potentials, al and
~n, can bc said to bc "ch~~g~ equ»alent" 1f they lead to
the same (classical) self-energy for any external charge
distribution oo. In an Abelian gauge model, all transverse
potentials are charge equivalent, but this is of no conse-
quence, because it is known on other grounds that each set
of potcnt1als 1s physlcRlly dlst1nct; thc qucstlon of cop1cs
docs Qot Rrlsc. IIl thc Qon" Abcllan case, 8 I RQd g II Rrc
charge cqulvalcnt 1f C1 =C(I. IIl the I'clatlon
&=1—C, the square root of the eigenvalues of C,
e =(1—d), could have either sign. In G, however, all
eigenvalues satisfy d ~ I, so only the positive root is al-
lowed. T1iis Implies tllRt DI =Dii, Riid hence ai =ail, if
both are inside G. If al lies beyond the horizon H, so
there are some di ~ 1, there is an equivalent matrix Dii
with all d«( l. It does not follow generally that there
would be a charge-equivalent a1& inside 6, because the a' s
are not complete in the space of matrices D. However, if
ai is infinitesimally beyond H, there is a charge-
equivalent ail infinitesimally close to ai and inside H; it
is also known that a Gribov copy of aI is similarly locat-
ed"

In axial gauges, the Faddeev-Popov determinant is a
constant, and the independent field variables are not con-
strained. Although the structure of a gauge model might
therefore seem to be exhibited somewhat more simply in
space-axial gauges, the lack of manifest rotational invari-
ance is a drawback in explicit calculations. The indepen-
dent variables also have a more direct physical interpreta-
tion in the Coulomb gauge. In transforming between the
RxiR1 Rnd CoUloIIlb g8Ugcs, thc UIlboUndcdncss of Rx1al-
gauge potentials is associated with the fact that the scalar
potential le =k '(1 —D) 'o is not bounded, and, depend-
ing on o., may diverge as H is approached. This suggests
that the horizon constraint on the transverse potentials is
closely related to the scalar potential and the Coulomb en-
ergy. Conversely, inside 6, N is finite if o is finite and
smooth, so there is no intrinsic term in the energy which
can separate one part of 6 from another,

C. Decoupled-oscillator approximations

Thc horizon sUrfacc 1s cloIlgatcd 1Il dilcct1ons corre-
sponding to large wave numbers. On the other hand, for
the vacuum state of a free field, (ap ) = I/(2~II) (on a
unit hypersphere, coII 8+1) so that mod——es with small



THE GRIBOV HORIZON

wave numbers have large vacuum ainplitudes. As pointed
out by Gribov, use of the free-field value for As —(ay )
gives an estimate for z which will surely exceed 1 if A and
a are large enough; the approximation (4) gives
z =a+~ Us/(8+1). The resulting situation is as depict-
ed in Fig. 1; the mean amphtudes for a free field would lie
at a point (F) outside the horizon. Existence of the hor-
izon constrains the mean gauge-field amplitudes to some
point (6) inside H Ro. ughly speaking, we expect the am-
plitudes to be pushed in the direction perpendicular to H.
Thus, if the wave number 8 is small (so the normal to H
has a large component in the 8 direction), the mode is
constrained to have a small amplitude. On the other
hand, if 8 is large, so the surface is nearly independent of
the value of As, the existence of the horizon has little ef-
fect. ' These qualitative observations can be made more
precise by simple approximate calculations which just
take into account the existence of the horizon and ignore
other nonlinear dynamical effects. These calculations also
verify that the excitation energies associated with con-
strained modes are increased.

To estimate the influence of the horizon, Gribov used
an approximation in which the mean-field configuration
was required to lie exactly on the horizon. The Coulomb
energy and the magnetic self-coupling were neglected.
This gives harmonic-oscillator equations with modified
frequencies

~~ =(~~'+~4 )'"
where, using the approximation (4),

Results which are qualitatively similar can be obtained
from a scheme in which F is approximated by an ex-
ponential. The logarithmic derivatives are equated to
those of the zero factor (1—z) at a self-consistently deter-
mined mean value (a ):

where Fo is a constant, and where the proportionality fac-
tor p is given by

=1—ag Ug/2fVq .
A

(10)

This also leads to harmonic-oscillator equations, but the
frequencies and the vacuum energy are given by

4 =aU~/&~,
and where A, is the Lagrange multiplier, obtained from the
constraint

1=a+ Ug/28'g .
A

The energy of the vacuum, in this approximation, is given
by the expectation value of the free-particle Hamiltonian,

E = —, g ( 8'g —A,gg /28'g )Ng .

A (large)

FIG. 1. Schematic illustration of the shape of the Gribov
horizon, and of the influence of the horizon on the amp1itudes
of modes with a large wave number (abscissa) and a small wave
number (ordinate). The point labeled I' indicates the mean
values of the amplitudes for a free field. The point labeled 6 in-
dicates the mean values for a gauge field constrained by the hor-
izon. The vectors a and z denote, respectively, the direction of
6 from the origin, and the corresponding normal to the horizon.

1=g 4( i &~+Ra+&~c)/~~ (12)

and the energy of the excited state is

Ear= Q(~~ —~4/2~~)( g~~+4a+4c) .

instead of Eqs. (5) and (8). Numerical calculations previ-
ously reported used a more complicated version of this ap-
proximation, in which F,z~«„was required to vanish for
g a ~Nq/(aU&), and in which additional factors in F
were included in matching the logarithmic derivatives.
These additional factors arise, in part, from the additional
zeros of F. The simpler exponential approximation
described here gives quite similar results.

Since these two approximations involve uncoupled har-
monic oscillators, the classification of excited states is rel-
atively simple. The allowed excited states require at least
a double excitation (2 "gluons") coupled together to give a
color singlet. I.et the excited modes have wave numbers
8 and C; 8 =C is allowed and gives the lowest energy.
The excitation energy, Q~c, is approxixnately equal to
Wii+ W'c. More precisely, although the frequencies in
excited states are still given by Eqs. (5) or (11), these fre-
quencies also obtain slightly altered values, because the
constants A. or p must be reevaluated. In Gribov's ap-
proximation, (7) is replaced by
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In the exponential approximation, Eq. (10) is replaced by

and the energy of the excited state is

In either case, the excitation energy is given by
Qgc ——Egc —E.

For large wave numbers 2, Eqs. {5)and (11) show that
W„ is dominated by the free-field energy; this is in accor-
dance with the principle of asymptotic freedom. If a is
not too small, 8'~ takes its minimum value 8';„at an
intermediate value 3;„,rather than at 3 =1, and 8';„
is substantially larger than the minimum free-field energy
col ——2. The reason is that gz has a factor X„ in the
denominator, so for small wave numbers, 8'„ is large.
Thus, either approximation gives a spectrum with a mass
gap. Furthermore, if either A or the "bare" coupling
strength o, is increased, 8';„ is increased, and also 3
is nondecreasing. Thus, for a given effective coupling
strength (or, more precisely, for a fixed value of 8';„),if
A is increased, a should be decreased. These effects are
all somewhat accentuated in the exponential approxirna-
tloll, 111 part because tllc Illcall-field eollflgulatloll llcs
closer to the origin, but also because Eq. (5) contains g~ in
the argument of the square root, while (11)contains g~ .

II. EXPANDjED-HGRIZGN TRANSFGRMATIGN

In the simplified calculations described in Sec. I, the
horizon constraint was approximated. For a more accu-
rate treatment of the constraint, it is convenient to use a
transformation which removes the horizon to infinity. A
simple transformation is introduced here which leads to a
well-behaved Hamiltonian involving new, unbounded
variables. This transformation is also useful for examin-
ing the properties of the Hamiltonian in the neighborhood
of the horizon. A quite general form for the transforma-
tion is first discussed, followed by consideration of a
specific functional form.

The transformation is defined as

a~=q R(z(q)),
where z(q)=d(q), and where d is the largest positive
eigenvalue of D, as in Eq. (4). Since D(q) is linear in q, z
is homogeneous of degree 2, and therefore z (a)
=z(&q)=&(z(q))'z(q). Thus, if R'-z ' for large z,
then q~oo will correspond to z(a)~l. In other words,
in terms of the new variables q, the horizon is at oo.

The partial derivative matrix is

transformation is specified once the distance to the hor-
izon has been determined. Second, the derivatives z~ can
be determined by a first-order perturbation calculation
utilizing the eigenvector P associated with the horizon
point. Finally, Euler's theorem, z~q =2z, can be used to
simplify many formal expressions. In particular, zp is an
eigenvector of S p, using this fact, the Jacobian is found
to be

J=det(S) =R j,
j=1+2''/R,

where X =gÃz is the total number of degrees of free-
dom. Similarly, the inverse matrix is

S '
p Bqp/——Ba~ =R '(o p+pz~qp),

p= —R'/(jR) .

In terms of the new variables q~, the electric field
opeIator 1s

e~ =IS ~pB/Bqp .

Note that the second term in S p enters only through
the radial derivatives 8/Bq.

Now transform to polar coordinates in q space, and let
x =q . The weighting function for integration with
dx dBg 1S theI1

(21)

(22)

e =is Bx+ "angular terms, " (23)

e'~ —2S ~pqp =28 (q~+Pq z~ ) (24)

It will be seen that e~ becomes large as the horizon is ap-
proached, so the radial part of e dolninates the angular
part.

The operator ordering used here is defined by first
rcwrlt1ng thc HaIIllltoIllall {1)111 a nlalllfcstly self-adjolnt
form, using a renormalized wave function &=I' ' 4'.
The transformation is then applied to matrix elements,
and at the end the new weight function 6'~ is eliminat-
ed. The radial part of the transverse electric energy be-
comes

The function z(q) can be written as z(q) =xg(0), where 8
denotes the direction. The electric field operator (21)
takes the form

and the radial part of the Coulomb energy is

Z~ =Bz/Oq~

This transformation has several features which simplify
its use in numerical as vvell as analytical calculations.
First, for any function R (z), given a vector a, the

Along with the radial terms (25) and (26), the transverse
and Coulomb energies contain purely angular terms and
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also mixed terms contaimng B„and one angular deriva-
tive.

A. Exponential transformation

A convenient specific transformation is given by

R(z) =(1—e ')/z, (28)

which expands exponentially the neighborhood of the hor-
1ZOIl:

1 —z(a) =e

The Jacobian is given by

{30)

The "radial" electric field involves the vector

e -z q2z-'/2e',

and is nonsingular for finite x. The leading terms for
x~oo are

—1/2 I —(N/2 —1) —z

Numerical calculations show that y varies rapidly as 8
is changed, and there are directions (of dimensionality
A —2) in which y vanishes. The sign of y can be defined
by requiring that the eigenfunction P be continuous, but
there are exceptional directions with degenerate eigen-
values, which are branch points for y. For pairs of ran-
dornly chosen directions, the values of y become weakly
correlated if the angular separations are more than about
30.

B. Asymptotic wave functions

In the neighborhood of the horizon, radial derivative
terms asymptotically have larger coefficients than angular
derivatives. In genera1, therefore, the eigenstates of the
Hamiltonian may be considered to adjust adiabatically to
angular changes in g, y, and h, as the field configuration
is varied in the vicinity of H. There are however, special
directions in which this approximation may not be accu-
rate. %'e begin by examining the asymptotic radial dif-
ferential equation in a fixed direction,

e'= g e '-Zq'z 'e", —

where Z =gz . The leading parts of 6 and e have the
form

6-f(B)e ', e -h{0)e ',
where f(0) and h (0) are functions only of direction.

The leading term in the transverse electric energy is

where 6 —exp( —2x g), M —exp( —4x (), and
U-exp(2xg). The mixed x-0 derivative terms have been
absorbed by considering the nonleading parts of 6 and M
to contain arigular derivatives. The leading part of U also
contains angular derivatives. For a preliminary discus-
sion, this 0 differentiation will be ignored. A formal solu-
tion of (39) is then

ql =exp —I «(x ')dx' (40)

UE„———,
'

h (0)e '8„ (34)
where

y(0) =2gg~~zr Y ~rq z

it is found that

(36)

2$ a -y(0)e'B„, (37)

giving

Uc„——
2 y (0)'e "a„e"3„.

In U~ and Uc, the derivative 8 always appears multi-
plied by an extra factor e'=e &, which is absent from the
angular derivative terms. The angular derivatives are
therefore less important near the horizon, except possibly
at certain exceptional points.

A.lthough y (0) [Eq. (36)] contains an explicit factor g,
the hidden factors in z make y -g ' for small g, and also
make h (0)-g . In terms of the original field variables
a, the horizon is at a -g ', which provides a source of
nonanalyticity in g. After the transformation, these non-
analytic effects appear through the leading radial deriva-
tive terms in the Hamiltonian.

Near the horizon, the Coulomb energy matrix C is dom-
inated by the leading eigenvalue (1 —d) and the corre-
sponding ghost eigenvector P, giving

gaP 4 2zyayIt

VAth the definition

~=P/2+(P /4+2MU)'~

P=B„ln(Glr/2M) .

The leading terms give «=P=2$, and V=GoM/GMo
-exp( —2xg). Since U is positive-definite, the correc-
tions increase the rate at which 4 decreases for large x.

For y-O, ignoring the angular derivative terrns-
which also contain a factor of y—we can write

'-exp(2xg)[a +by exp(2xg)], where a and b are
positive constants. For by &&ae "~, we then have P-0
and «-(2MU)'; this is essentially independent of x, and
corresponds to the usual &KB solution. However, we
cannot expect the adiabatic approximation to be accurate
near these directions.

In directions where y does not vaniS, the leading term
of integrands which give the matrix elements of the ener-
gy comes from the first term of (39), and is roughly of the
form M/6-exp( —2xg). If y =0, both terms are of the
same order: exp[ —2x (2MU)'~ ]. In either case, the
Coulomb energy leads to wave functions which vanish at
the horizon, and in fact, vanish strongly enough to give
convergent integrals.

To inc1ude the effects of the angular derivatives, we
could still use the formal expressions of Eqs. (39) and (41),
provided the order of the operators were chosen appropri-
ately. In (39), we should use an "x ordering" so that « for
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larger x' would be to the left of a for smaller x'. In gen-
eral, we may expect that inclusion of the angular deriva-
tive effects mould smooth out the 8 dependence of the
wave function. It may be anticipated, therefore, that the
estimate 4-exp( —2xg) would be valid even for y =0.

As discussed in Sec. III, thele are certain directions in
which thc surface H has corners, Rrislng from the closs-
ing of eigenvalues. In these directions, the derivatives z
have discontinuities, and hence the angular derivative
terms might become more important. Since these direc-
tions correspond to degenerate eigenvalues, the estimates
based on 8 single first zero also underestimate the numeri-
cal coefficient of thc I'adlai dcrlv8tlvc terms. In thc dlI'ec-
tion of a corner, therefore, 4' may be overestimated.

ExpI'csscd ln tcrTIls of the propel field variRblcs Q~, tIlc
distance to the horizon is given by 7)-exp( —xg). In any
given direction 8, wc have I'-q and 4-q . Integrands
which give the various contributions to matrix elements of
the HRIDiltonian have the followlIlg behavior near thc hor-
izon: magnetic energy, -q,' transverse electric energy,

7/; CouloIDb energy~

III. HORIZON SHAPE

A simple approximate I'elation between the wave num-
bers Rnd thc horizon dlstRIlccs was dcpictcd lIl Pig. 1 and
1Ilcorpolated 11lto Eq. (4}. A.s discussed 111 Sec. IC, sIIIlpll-
fied calculations based on this relation lead directly to a
spectrum with 8 mass gap. In this section, the results of
numerical calculations of horizon distances will be
pI'cscnted Rnd discussed. Thcsc cRlculatlons wcI'c UIlder-
taken to explore the degree of validity of the approxima-
tion (4), RIld to estimate thc coefficients Rppcanng ln thRt
formula. Furthermore, as an Rid in finding good approxi-
mations for solving the eigenvalue problem, it is useful to
understand the degree of smoothness of the horizon sur-
face and the nature of exceptional points on it. Addition-
al information about the structure of the Faddecv-Popov
determinant I' in the immediate vicinity of the horizon is
given by the distance between the first Rnd subsequent
zeros.

Thc horizon surfRcc dcpcnds on thc cutoff A Rs %'ell Rs

on the gauge group. An understanding of this dependence
might suggest how the spectra will depend on these vari-
ables. However, only the simplest gauge group„SU(2), is
consldclcd hcie, bccRUsc thc small numbcI' of coloI' vari-
ables allows larger A to be considered.

A sampling technique was used to cxplorc thc field coI1-
figuration space, which has a large number of dimensions.
For each A & 6, 50 random field configurations were used.
To define these field configurations, for each 8 & A, vec-
toTs Qgb %'cl c choscIl with random directions Rnd fixed
lengths given by g&ass =%sos . The AII, liated in
Table I, are the self-consistent rms values determined
through calculations reported earlier„and correspond to
the values of e also listed in Table I. These values of a
are very approximate, and are listed only as a rough guide.
Thc CRlculRtlons pI'escntcd helc do not involve cf, and only
the ratios of the 3@ are relevant, not theiI' absolute mag-
nitudes. The random sampling of directions was supple-
mented by other calculations, in particular, by 8 search

TABLE I. RMS values, Ag, of tIansversc aIQplltudcs.

6
3.0

0.4
0.4

0.391
0.397
0.352

0.374
0.385
0.349
0.316

0.353
0.372
0.345
9.314
0.288

0.333
0.36O

0.341
0.313
0.288
0.267

FIG. 2. Mean values of U (normalized squared reciprocal
distance) for the first three Faddeev-Popov zeros.

foI' directions 1Il which the horizon is either especially
close or especially distant. The same rms values Aa mere
used in searching for exceptional points.

The calculations were done as follows. For each ran-
dom vector a~, the distance to the horizon was deter-

i edbyfi ding thel get g 1 f D dth
responding clgcnvcctor. The slope of the horizon surface
at this point was then determined by a first-ordeI pertur-
bation calculation. The second- and third-largest cigen-
values mere also found. A normalized measure of the
(squared reciprocal) zero distance is given by the quantity
U=z(tI)/(aA ), where 3 =gsAs . Mean values of
this quantity U are shown in Fig. 2, for the first three
zeros. Note that for the first zero, U is essentially in-
dependent of A. The zeros also seem to get doser togeth-
er, as A is increased, relative to their distances from the
origin. The rms fluctuations in the zero distances, for
randomly chosen directions, are about half of the mean
separations between the zeros.

Table II compares, for various A, the averaged normal-
ized horizon distances (I) ) = U ' with the largest (I),„)
and smallest (rj; } values found. The smallest values are
all associated with nondegeneratc eigenvalues of B, and
are places where the horizon surface is nearly Aat. These
points are also exceptional in that the distance to the
second zero, rI', is about twice the distance (II;„) to the
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TABLE II. Distances to horizon.

/min

1.085
0.885
0.681
0.544
0.443
0.371

2.171
1.769
1.338
1.0S4
0.849
0.704

1.35
1.40
1.39
1.39
1.41
1.40

2.506
2.SO

2.3

first zero, as show~ in Table II. In contrast, the largest
values are associated with degenerate eigenvalues, as tabu-
lated, and correspond to comers arising from the intersec-
tion of several different zero surfaces. (In these numerical
calculations, the degeneracy is interpreted as the number
of zeros in a 1% interval of distance. ) Because of the
high degeneracy and the fact that the extrema are corners,
searching for the most distant horizon points is very time
consuming and has been carried out only for small A.
The values listed in Table II have been calculated with the
additional co~straint that the positive and negative helici-
ty modes have the same rms values: g&~+ ~ass

2

~a~&2, or Az+ ——A~ . If this constraint is re-

laxed, the most distant corners recede somewhat, but only
by about 1% for A=2 or 3. For A=1, there is a bigger
difference; the degeneracy is also increased, to 8. Because
of the difficulty of calculation, these results for distant
corners are somewhat provisional.

It is possible that the field configurations which corre-
spond to horizon extrema have a special significance in
the structure of eigenstates, but no simple may to charac-
terize these configurations has been found. One possible
characterization would be through the ratios
R~ =(A~+ —As ) /A~ . The approximation (4) assumes
that the horizon distance is essentially independent of
these ratios. Except for the special case A= 1, this is not
inconsistent with the results on horizon extrema. It has
also been found, for the randomly chosen directions, that
there is no significant correlation between the values of
the R~ and values of U. The values of certain cubic com-
binations of the a have also been examined, namely, the
combinations which enter into the cubic term in the mag-
netic energy. These values, also, are not significantly
correlated with the horizon distance.

%hile corners, or multiple zeros, certainly exist on the
horizon surface, the dimensionality of these loci has not
been determined. In the course of exploring properties of
the charge function y (0), calculations were made at close-
ly spaced angles on a number of randomly chosen planes
through the origin, in these calculations, the orbit of the
horizon never crossed the locus of a multiple zero. How-
ever, the orbit often passed quite close to a double zero.
This indicates that the dimensionality of a corner is less
than X—2.

Figure 3 shows the quantities Uz introduced in Eq. (4).
These have been calculated from the mean value of the
normal to the horizon; they represent the parameters of
the approximating ellipse mhich is tangent to the mean
horizon surface in the neighborhood of the self-consistent
mean-field configuration. If the elliptical approximation

FIG. 3. Mean values of the U~ (parameters in the elliptical
approximation) for the indicated values of A.

mere exact, the points in Fig. 3 which correspond to dif-
ferent A would all coincide. The differences are modest,
but are not negligible. An indication of the average de-
gree of smoothness of H is provided by Fig. 4, which
compares various contributions to the quantity Z =gzli .
The solid lines in Fig. 4 give, for each 8, the mean contri-
butions Zz& associated with changes in the values of the
3&, with fixed ratios for the a&b. The dashed lines give
the mean contributions Z&2 associated with angular varia-
tions, that is, with the Aa held fixed. (Factors of n have

10

10

10

10

FIG. 4. Comparison of the "radial" (solid lines) and "angu-
lar" (dashed lines) mean contributions to Z, the square of the
gradient z(a). The lines connect points corresponding to the
same wave number.
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been oinitted. ) These results show that the main contribu-
tions to the horizon distances are, at least near a self-
consistent value, adequately summarized by the elliptical
approximation, and that fluctuations around this approxi-
mate formula are, on the average, not large .However,
this observation leaves open the question, whether the
structure of eigenstates might not be influenced by the na-
ture of the extreme deviations.

IV. SUMMARY

We have considered here various properties of the Gri-
bov horizon in non-Abelian gauge models, giving particu-
lar attention to the chromoelectrostatic potential. It is
well understood, on very general grounds, that transverse
ainplitudes must be confined to the convex region G
bounded by the first zero of the Faddeev-Popov deter-
minant. It has been pointed out here that this constraint
on the amplitude does not need to be enforced as an addi-
tional separate requirement, but emerges naturally from
the behavior of the Coulomb energy at the horizon. Addi-
tional restrictions on the amplitudes do not arise natural-

ly, and we have presented an argument that all points in
G can be considered to be physically distinct, so no addi-
tional restriction to a subregion of 6 should be imposed.

It has been shown that a simple mapping can be intro-
duced which removes the horizon to infinity in all direc-
tions. This map is used as a convenient device for isolat-
ing and studying leading behavior at the horizon. The
fact that it is possible to introduce such a mapping, and
obtain suitable boundary conditions at infinity, by itself
shows that models are consistently formulated entirely
within the domain G.

Gribov pointed out that the horizon constraint provides
a confinement mechanism. The calculations of the hor-

izon shape reported here verify that the main qualitative
features of the shape, which have been incorporated into
Eq. (4), agree with the assumptions made by Gribov.
Simple approximate calculations which use these qualita-
tive features, as reviewed in the Introduction, lead directly
to the existence of a mass gap in the spectrum. These
simplified calculations are also consistent with various as-
pects of the principle of asymptotic freedom.

The numerical calculations show that the horizon sur-
face is basically smooth and regular; qualitative features
of the spectrum should be adequately described by use of
properties of the "averaged" horizon surface. There are
also small wriggles and corners which must be taken into
account in an accurate calculation. Even using the simple
approximation (4), it is technically complicated to impose
the horizon constraint exactly, for example, in evaluating
the integrals which would arise in a variational calcula-
tion. The existing calculations have therefore further ap-
proximated, as described above, the treatment of the hor-
izon. The horizon-expansion transformation introduced
in Sec. II could provide a useful way to overcoine these
complications in future numerical calculations, because
the range of the mapped variable q is not constrained in
any way, and because the general form of the mapping is
not affected by the existence of wriggles in the horizon.
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