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Decoupling renorrnalization and hierarchies
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We introduce the decoupling renormalization scheme for the one-particle irreducible Greens
functions of a theory that has a mass hierarchy. The decoupling-subtraction fenorma11xation-group
equations respect a tree-level hierarchy. Thus, fine tuning is to be done only at the tree level.

at the tree level.
In the MS scheme, the one-loop RGE's for m, M

read (t—= in@)

I. INTRODUCTION

123,3
M , (1.3)
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and it is the presence of the M term on the right-hand
side of Eq. (1.3) that spoils the tree-level hierarchy. For if
at any given renorII1alization scale p, we have fine-tuned

m (p) «M (p)

by a SIIlall change in p, we find

and the tree-level hierarchy becomes completely upset.
In the DS scheme, the one-loop RGE's for the I, M

read

9k3g
fPl g —X$g flagdf A2g

23~38—Mg ———k3gmg + Mg
2R

2 2
d

~18 3 ~l8dt A2g

and, as advertised, the RGB's for m~ now respects the
tree-level hierarchy ( mz «M2t ). If you form the linear
combination

Ever since the observation by Gildener and Weinberg'
of the so-called hierarchy problem, there has heretofore
been no complete field-theoretic solution to this problem.
Partly out of sheer frustration with this problem and part-
ly because of the quest for ever "higher" symmetry, peo-
ple have used this hierarchy problem as good justification
for abandoning a grand unified theory (GUT) and going
on to a supersymmetric GUT. As a GUT field theorist, I
have reason to claim that there is a field-theoretic solution
to the hierarchy problem. It lies with the DS (decoupling
subtraction) scheme as opposed to the usual MS (minimal
subtraction) scheme.

As the name implies, the DS scheme is an outgrowth of
thc voluImnous work on decoupling to which many peo-
ple have contributed. ' ' ' The difference is, previously,
everybody focused their attention exclusively on the
light-particle Green's functions and proved the existence
of the decoupled theory as M —+ oo. In this way, gz, the
gaUgc coupling constant of the UQbrokcn subgroup, was
iclatcd to g», the MS renoITllahzed coupling constant of
the full theory. As a result, in a minimal SU(5) GUT, the
value of Mz can be successfully calculated, to two-loop
Icnormalization-group accUI acy.

The DS scheme is a complete renorII1alization scheme
for aV the Green's functions. %hen applied to the light-
particle-irreduciMe light Green s function, it reproduces
the earlier decoupling result. The renormalization-group
equations (RGE's) in the DS scheme respect the tree leuel-
hierarchy and hence a perturbative expansion in the DS
scheme encounters no hierarchy problem. The fine tuning
thus is to be done only at the tree level, since higher-order
radiativc corI'cctions in thc DS schcII1c no longcl act to
spoil the hierarchy.

To understand and appreciate this point, it is best to re-
view the hierarchy problem in the MS scheme. For defin-
iteness, let us take the simple Lagrangian

M' M——,(&~/)' ——,
'

(&„o)'— P'+

A32 y4+ 4+ y2 2

24 24 4

9A,3~
A =As/g

~2A

you will find naturally the RGE's for the decoupled
theory
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(1.14) ITlan, vAth this definition

(2.1)
with A, as the effective coupling constant of the decou-
pled theory. In fact, A, is precisely the low-energy limit
of the hght-particle-irreducible light four-point function,
already investigated earlier in decoupling studies. Thus,
the DS scheme includes the decoupling result for the light
SCCtOI.

The DS scheme gives the RGB's for the A.;~ separutely
and thus can be used to follow the evolution of the Higgs
potential froID p =M&, say, down to low energy scales. It
is only through such a study that we would be able to in-
vestigate the stability of any hierarchy chain.

In this section, we shall deal with the hierarchy prob-
lem IQ Its slrnplcst IDanlfcstation, viz. , without spontane-
ous symmetry breaking. Throughout this paper, we shall
use the dimensional regularIzat1on of t Hooft and Velt-

Considex now the tree Lagrangian, interpolated to n di-
mensions, with 't Hooft scale p,

m M

In (2.1), y is Euler's constant =0.57721. . . . It and the
4m factor have been chosen (much as in MS) for later con-
venience. In princlplc all thc coupling and IDass parame-
ters in (2.2) depend implicitly on p, . Equation (2.2) yields,
upon pcrtulbative expansion, GIccn s functions which
have simple poles ln thc complex t/ plaIlc. To define thc
rcnoITIlalizcd Green s function, It Is ncccssary to add W~,
the counterterm Lagrangian, to the tree Lagrangian. We
choose to write the counterter s as

W, = ——,(Z~ —1)(8+) ——,(Z —1)(B~) ——,'(Z Z~ —l)m P ——,'(Z~Z —1)M o~

e/2

—(16m ) (Z) —1) P +.(Z2 —1) o +(Z3 —1) P o.P 8 AI 4 A2 4 A3

4m 24 24 4
(2.3)

V'Zyk=ds, &Z.o=os
" e/2

p pX
ZIZZ kJ —A ]g4m'

e/2
P 8

ZZZ~ A,2=123—2

4m

e/2

p 8
Zg A 3—X3jp

—1

4m'

(2.4)

(2.8)

So far, we have not yet specified the renormalization scheme. In the MS scheme, we simply choose the counterterms
to be purely pole terms in order to cancel the pole terms that arise from the radiative corrections due to (2.2) (along the
way we have also gotten rid of er/4m from our renormalized Green's functions).

In MS, to two-loop accuracy, the renormahzation constants (Z) are

Zp ——1— (2.9)12' 4e

Z~=1-
12e 4e (2.10)

2(k) +A3 ) AI +A3
Zm =1+ + +

m

2A3 +(A, (+A2)A3 A3+
E

2A3 +(A, )+A2)A3 A3+
+2

(2.11)
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3k,'+3K,,' 9A,2'+12k,,A,,'+12k,,'+3k, ,A,,' 3A,,'+3k,,A,,'+6k, ,'
Z2A2 =Ap+ +

E

4Aq +(A, , +A2)A3 19A3 +6(A, , +A2)A3 +2(A) +A2 )A3+A)A2A3
Z3A3=13+ +

62

5A3 +3(A, )+Aq}A3 + —,'(A, ( +Ay }A3
(2.15)

In Eqs. (2.9}—(2.15) all the A,;, m, M are MS parameters and depend on the renormalization scale p. In contrast, the
bare parameters in Eqs. (2.5)—(2.8) do not depend on p. From them it is possible to deduce the renormahzation-group
equations

p A) ———eA)+3(A) +23 )——,A, , —SA)A3 —12A3
Bp

p Az= —E'A2+3(Ap +A3 ) —3 Ap +5A2A3 —12k 3
Bp

p A3 ———ek3+4A3 +(A)+A2)A3 —9A3 —6(A)+A2)A) ——,(A) +A2 )A3,
Bp

p m'=(A,
&

——,A, ] ——,A3 )m'+(A, ,—2A,,')M',
Bp

p, M =(A,,—2A, , )m ~+ (A~ ——,
'

A&2 —
2 AP)M2 .

Bp

(2.16)

(2.17)

(2.19)

(2.20)

So far everything is standard, and because the light and heavy particles are not, decoupled we have the hierarchy prob-
lem. However as was already noted in our earlier paper on decoupling, there is another subtraction scheme which direct-
ly implements the decoupling.

In order to better understand and appreciate this DS scheme, we perform first the DS renormalization to one loop ac-
curacy. Consider the two-point Green s function for the P field. It is given by

I g =—E p +Ply(2P) ~ z 2

2
I APL g+ 2A, )pm' ——+ln — —1

p
2Mg+ 2 A.3gMg ——+ln

p

(Zp —1)p +(Z Zp —1)my (2.21}

The DS scheme simply subtracts away the contribution due to the heavy graph. We thus define (accurate to first order
in Az)

Zp ——1, (2.22)

(2.23}

to achieve our goal.
Next we consider I ~

' and find

p(20 ) ' 2+1 2

2Mg+ —,A,2gMg ——+ln
E p

2
Plt g+ —,X,~m~ ——+ln
p
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Again we may subtract away the contribution due to the heavy graph by defining (accurate to first order in A,R )

Zo 1 j

~2R IR ~3R
2 Mg 2

+~= I+ + —
2 A2g ln

Mg ~ p

(2.25)

(2.27)

To determine the renormalization constants for A,;, we consider in turn the four-point Green s functions. It is by now
fairly obvious what is needed to subtract away the contribution due to the heavy graphs for both I R+' and I'R '. Define

3(~IR'+4R')
IR —. ~IR + (2.26)

E p
3(~3R'+ ~3R ')

Z2 $2@ —pe + —
2 k2g ln

p
In 1 R

~ ' we encounter the following {p &&MR ):

t Afg 2

——+ln
p

r

2 mg+ 2A,3R' ——~in —1+0
p2 Mg

+ {Z3—1)A,3R (2.28)

Here, in the fourth term of (2.28) we have assumed the
hierarchy condition and dropped the mR /MR term. We
now can again define Z3 such that the graphs with heavy
IIlter11al 1111es decouple, viz. ,

44R'+(~IR+~2R )~3R
Z3~3R ~3R +

+3k3g

(2.30)

(2.31)

1 Mg 2P 7L3R = —EA,3R —(2A, 3R + TA,3R A', 3R )111 I +2A, 3RBp p

(2.29)

With these definitions of Z's, we have achieved the
desired decoupling, to one-loop accuracy, for alh Green s
functions, whatever the nature and number of external
legs. The contribution due to heavy internal lines are
suppressed by powers of mR /MR relative to those
graphs vvith light internal lines. The one-loop renor™
malization-group equations for the DS scheme can be ob-
tained again from the observation that the bare parame-
ters do not depend on p. They are, to one-loop order,

(2.32)

(2.34)

To higher loops, the procedure is a straightforward gen-
eralization of the BPHZ formalism" as adapted to dimen-
sional regularization. Consider a graph G of the full
theory. RecaH that the usual BPHZ procedure consists in
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first, llltl'oduclIlg a K opcl'ator sllcli tlla't lt picks ollt 01lly
the pole pieces of a Laurent series, (2.38)

E g b„e" =g b„e"
5 =—oo n(0

(2.35)

and then defimng R'6 through the recursive relation

Z 6=6++(—K~'y, ) ~ ~ ( K~—'y )
V1+ + Vm

(2.36)

The bo coefficient is to be calculated
(i) with zero momentum coming into the subgraph

y(II), and
(ii) in an expansion in the parameter m2/M, only

those terms in bo that would remain as M ~ 00 are to be
kept.

Just as in BPHZ, SF'6 is defined recursively

pvhere g )~. . . , g J are dls)omt one-particle-lrreduclble
divergent subgraphs and 6/(yi+ +y ) is the new
reduced graph obtained from 6 by shrinking the disjoint
subgraphs y&, . . . , y~ to a point. The amplitude R'6
contains still overall 1/e singularities which can be re-
moved by performing one more K operation, i.e.,

with finally

6
71+ +7m

9t 6=(1—Kr)A"6 .

9F'6=6++( —K„A'yl) . . ( —K„~'y )

(2.39)

RG =(1 K)R'6 .—

For the DS scheme, our modification consists in intro-
duciilg a Kr operator whlcll depends oil thc sllbgl'apll f
We distinguish between two types of y:

(I) y has only light internal lines.
(II) y heavy internal lines and reduces

(a) to a point (with two, three, or four legs) upon
shrinking topologically the heavy internal lines, or

(b) to a y' with light internal lines.
For type I, the Kr operation is as before, while for type
II,

The net result, for a theory without spontaneous sym-
metry breaking, is very simple. To leading order as
M ~ oo, and for p &&M, only /ight hnes propagate inside
all one-particle-irreducible Green's functions, regardless of
number and nature of external legs. This does not mean
that graphs with heavy internal lines totally disappear
from the full theory. For p )M, they again contribute. It
is only for p «M that they decouple.

For completeness, me record here the two-loop RGB's
for the Lagrangian (2.2) in the DS scheme
(L—:lnMR /p3)

~IR =—C'f~iR —14R'L+(34R'+ I ~iR4R'+ 4 ~IR4R')L '+
2 ~iR4R'L 1+3~1R'—3 4R'

~3R = —&l4R —24R L+(34R —1~3R4R + 44R')L +( 6 ~zR + 2~IRQR )LI+34R (2.42)

4R = —C'[4R —(24R'+ 2 ~IR4R)L +24R'+(44R' —
1 ~iRAR'+ I ~IRAR'+ 2 ~IR'4R )L'

+( 2 ~3R +4~1R~3R + 12 ~2R~IR +T4R ~3R )~)+~IR~3R 6 ~IR ~3R
7 3 2 23 2 & 2 5

P mR =(~IR —6~IR )IIIR
8 5

p

MR ——A,3R mR2 2

(2.43)

(2.44)

In this section we turn to the physically more interesting case of a spontaneous symmetry breaking with mass hierar-

chy. Because of the presence of anomalous vertices that arise from the shift in the scalar field, the analysis is technically

more involved. The key wi11 sti,11 be that the renormalization constants Z include an eo piece designed to make the
heavy-particle virtual effects disappear.

Consider the Lagrangian (1.1) but now fully dressed with renormalization scale factors and shifted with respect to cr,

(3.1)

where p =—p er/4Ir. For convenierice we shall refer to 16m X; as a;. Thus
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At the tree level, we shall choose V to be gi.ven by

6M
K2

so that the term linear in o. vanishes in the tree Lagrangian.
The counterterms will be chosen as

3~,= ——,(Zp —1)(&P)'——,
' (Z —1)(B~)'+(Z~Z —1)M'VaP 'r' — (Z, —1)a;oP

(3.3)

2

ToP 'r + —,
'

(ZMZ —1)M rr —(Z2 —I)rr2o —,'apVT—a, .
(Z—~—Zp 1)M—' P

p2

4
(Z3 —1)a3$ , a3V—T—Q —p' (Zi —1) p~+(Zz —1) o4+(Z3 —1)—$2g2

24 24 4

K2V 3 K2 3 K3 V K3—p ' (Z2 —1) o +—To +(Z3 —1) P'o+ TP—'o
6 6 2 2

(3.4)

V~=P '~ QZ (V+T),

g)g =p Z)Zy

A2g =P Z2Z

A,3g =p Z3Zy Z~

In (3.4), T is to be fixed by the requirement that

(o)=0

(3.6)

(3.7)

(3.8)

(3.10)

p ki= —tA, i+3(Ai +A3 ) &

Bp

p A2= —ek2+3(A, ~ +A,3 ),
Bp

p A3= —ek3~4A3 +(A.i+f2)A3,2

Bp

3'
m —4 A3 —— M

'2 .

(3.13)

(3.14)

(3.15)

(3.16)

M
m =—M'-+3K3

K2

then in MS, the one-loop RGE's read

(3.11)

including radiative corrections.
Together, (3.3) with (3.4) gives the finite renormalized

Green's functions for the broken theory. The counterterm
Lagrangian (3.4) includes in it the needed infinite tadpole
counterterms; or, put in another way, the infinite tadpole
counterterms have been successfully related to Z~, Z,
and Z2 renormalization constants. In our notation, T is
the rexnaining finite counterterm, determined by (3.IO).

If we define

For the discussion of decoupling renormalization in the
presence of the anomalous (three-legged) vertices, we rely
on the insight gained from all the earlier work on decou-
pling, especi. ally the notion of light-particle-irreducible
light Green's functions.

%'e consider in turn the one-particle-irreducible Green s
functions and use the decoupling criterion to determine
the renormalization constants. We begin with I z'. For
convenience of notation, we leave off the subscript R on
all the quantities below as understood. Then for
p &&M, and m &&M (L=ln2M jp, I=—lnm /p )

2A.3M
+A3M (L —1)—-

6A,,' 2 3g,'+— -p + M (L —1)+ m (L —1)—
2 A2 A2 A2 A 26
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3 A. 3A, Pl
m (l —1)+

2 A, 2E'

6A,3M—3A,3M~(L —1)+

+ (Zp —1)p +(Z~Zp —1)M' + M (ZMZ~ —1 —Zp+Z3)2 2 3~' 2 (3.17)

In DS renormalization, we demand that

I g = —/ p +P1 +(2$) ~ 2 2

2

9A,3
m (l —1)

A2
(3.18)

where A,
*—:A,

&

—9A,3 /A, z is the effective coupling constant of the decoupled theory. In terms of the diagrams shown
above, the A,

' is the light-particle-irreducible 4P coupling and its contribution can be traced by shrinking the heavy inter-
nal lines to a point.

Next we consider I' ', again for p «M, m «M:

p

2A, 2M+A,,M'(L —1)—

2

+ —,'A3m (l —1)—

6A,2M+ 4 A,2P +3k,2M L-
E'

3A,3m——', X3m (l —1)+

6A,2M—3A,,M'(L —1)+

+ (Z —1)p +2M (Z~Z —1) (3.19)

In the DS renormalization, we now demand that

2 2 2

I ~ —— i p +2M ——A, 3m (l —1)+— p + M l(2~) ~ 2 2 2 ~ 3 M 2 3 2

2 A2 m
(3.20)

This reflects the fact that upon topologically shrinking the heavy internal lines, the DS-renormalized I' ' becomes given
by the simple graphs

where the black box is the light-particle-irreducible 2$2o-coupling vertex. For p «M, this 1PI vertex is given, to
lowest order, by
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(3.21)

Having studiously, up to this point, included the tadpole contributions together with the tadpole counterterms, we note
that Eq. (3.10) implies that, actually, the tadpole graphs will always cancel against all tadpole counterterms. It was only
for pedagogical reasons that we included them in our discussion so far. For our discussion of higher-point functions we
will for simplicity not even list them although we shall include them in our results.

For the one-particle-irreducible I"' ~" ', we have (as m IM2~0)

A it 3+ 2 AiA31

A2A3+—'A,,A,,L—
2

+2)L,3 (L —1)—

3A3'
(L —I —1)

+3A3'

+ (Z, —1)A,,+—A,,T
V

(3.22)

Upon shrinking the heavy internal lines, we find a new reduced graph that cannot be generated by the original La-
grangian. It is

which we will subtract away in our DS renormalization. The other reduced graph is of the type

which can be generated by the original Lagrangian. It, together with the original graph (that gave rise to —,A, iA3l), looks
almost like the 1PI 4P coupling, but not quite. The thing that is missing is the graph

Such a graph is not allowed in our I' &' ' since it is to be one-particle-irreducible. Thus our DS-renormalization re-
quirement can only be

r

I „'+' '= i(16' )V A, +——A, , —2

6A, 3
A, il

2
(3.23)

Note that it is by adhering to the one-particle irreducibility that we will be able to interpolate easily between I' ~' for
p «M and I' ~' ' for p &~M .

Now we turn to I' ', for p, m
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r~"'= —&(16&)V X,

+TA,2 L—

+—', A.,21—
313'

M+
m

+ (Z, —1)A,&+—X&
T
V

(3.24)

For this, it is fairly obvious that our requirement for the Ds reno~alization is to subtract away the graphs with heavy
internal lines. Thus we must have

(&o) - 2
3A,g M3 2

1 ~ = i(16—n. )V A,,+ —,A, s l+
m

corresponding to the graphs, respectively,

= xx
Finally we come to P + . For p, ~ ~(M, it is given by

(3.25)

r&+'= i(16+—) X,

3A ]+—'Ai I— +permutations

+ 2A3L— +permutations

18K,(A,g
(L —l —1)

A2
+permutations

18K,g +permutation s

X,4—54
~

(L —1 —2)
A2'

+permutations

+ (Zi —l)A, i (3.26)

rP' = —l(16&) X, +—X,—(+) ~ 3
2

By now, it should be fairly clear that our DS-renormalization requirement i.s to be

6A, 3 (3.27)
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corresponding to the graphs

where the round black box is the partially light-particle-irreducible 4P vertex, consisting of

Equations (3.18), (3.20), (3.23), (3.25), and (3.27) together with (3.10) completely fix the counterterms, to one-loop or-
der. They are ( m =M' + 3A,3M /A, q)

3A '+3k ' 18K,(A,3—-'"'+ 54K,3 18K,)X3

A2 2

18K,3

A2

108K,3

k2'
(3.28)

3i 2'+3A3'
Z21$—A 2+ ——,

' I,,'(L +3), (3.29)

4A, 3 +(A,)+A,2)A,3 3A3'Z' ='+ —2A,,'(L+ —,
'

) ——,
'

A,,A,,(L +6)— (L —1), (3.30)

A pM 3A, 3 M~ A,31'Z~M =I +
E A,2 E E

2
A, illZ~M' =M' +

——,
'

A,,M'(L+ —,
' ),

9)(,3 9A,3, 3A, 3+ —,A3M (L —7)+ M + M (L ——', ) — m (L ——', ),

(3.32)

(3.33)

(3.34)

m'
T=3A,pV—

4
(/ —1) . (3.35)

The one-loop DS-scheme RGB's may thus be written
down, in the e~O limit, as

6A,3p. A(=3 (3.36)
Bp 2

(3.41)

p Ap=3Ã3
Bp

(3.37)
If we consider the I I+' to lowest order, we find for
p ~~M

(3.38) I I+ = i (16' ) A, ) ——( )
9k3

A2
(3.43)

9A,3
.p P7l = Ai— (3.39)

p M = —A3m+- M2 2 3 2

Bp 2
(3.40)

As was already mentioned in the Introduction, this set of
DS RGB's includes the earlier decoupling result. Namely,
if we restrict our attention to the light sector, and consider
the 1PI Green's functions (I ~). Then for p ~&M „ the
Green's function, I I, can all be generated by a decoupled
Lagrangian with A,

' and m' satisfying the RGE's as
e~O,

and our DS RGB's can be directly used to check that they
reproduce Eqs. (3.41) and (3.42) with the identification
A,'=A,

~
—9A,3 /A, 2, m*=m.

At this point we comment on the difference between
the DS renormalization of M &0 theory of Sec II an. d
the spontaneous symmetry-breaking theory of this section.
In Sec. II we could, for p «~M, arrange to remove all

graphs with heavy internal lines, so that in aII Green's
functions, to leading order in m, p /M only light lines

propagate internally. It makes for simple rules for calcu-
lating higher-order graphs in the DS scheme.

Here, however, there are new anomalous vertices, but
the number of renormalization constants remains as be-
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fore. Our choice of the DS scheme arranges to remove
gra hs with heavy internal lines from I' t', I' ', I'I" ' ', and I'+'. For I'~'it turns out tobealsoin the
end "clean." In I"' &* ', however some graphs with heavy
internal lines remain. They do not affect the one-loop
RGE's satisfied by I' &' &' and much as one-loop con-
stants properly belong in a treatment of two-loop renor-
malization.

Finally, we may rephrase our result in terms of its rela-
tion to the MS scheme. Let I, be the MS renormalized
1PI Green's functions, and I"ti be the DS-renormalized
1PI Green's functions, then

(nP, ka)I „' (p, A,„,M„m„V„,p)

g3~(p=M. )=go .

Previous work with grand unified models suggest the
boundary condition that go be identified as the unified
coupling constants.

Similarly, for our A, i&,A,2+,A, 311 we may integrate them
with the boundary condition that A,;a (p =M„)=A,;o,
where A,;0 are the tree-level parameters of the grand-
unified Higgs potential.

For our set of equations, we may recast it as

9A,3 A, 3p—: (4.5)
A2

'
l2

=Zt, "/ Z~ I g(p, k g,Mtt, my, Vtt,p), (3.44)
A,*=3{A, )

dt
(4.6)

{4.7)

~18 =Z
1 Z1i ~ir ~

—1 2

~2a=Z2 Zc ~2r ~

—1

Mg ——Z ~ 'M,

~R Z M' ~r
~g =~a + p ~~ &3Z~Z2 t2 & 2 2

(3.45)

dt
A 2= 3p A2

and directly integrate for the result

M„+ —,ln
l1,'(p ) A,o p

' 1/3

p(p)=
2O Xo

(4.8}

(4.9)

(4.10)

QZ ( Vg + Ttt )= V„+T, ,

with

Z =1——,'A, ,„+0{A.„'),
(3.46)

The major result of our previous section may be restat-
ed as follows. In the presence of Higgs breakdown, it is
nevertheless possible to define to one-loop RG accuracy
the decoupling renormalization of the one-particle irredu-
cible Green's functions. As a result, in contrast with ear-
lier treatments of hierarchy problem, it is now possible to
follow the evolution of separately the A, » A,2, A, 3.

Let us now recall the situation for the relation between,
say g311 of the SU(3) gauge group and the "parent" SU(5)
unbroken gauge coupling g„. g3z obeys the one-loop
RGE

d

while

—g„=—,
'

bg, /16m-
dt

For any p, the g3~ equation may be solved by

M16m 16m. )~ 1
r

(4.3)
go P

where we have fixed the boundary condition to be such
that

(4.2)

Z& ——1 —— +O(A,„),3 ~3r

2 A,2

and the other heavy renormalization constants, Z, being
functions of A,„,M, /p.

IV. RGB SOLUTION

' 1/3
01 1 3~3o 1

~2(P ) ~211 A 30 A 11 A,

(4.11)

Thus, for our very simple-minded Higgs-breaking La-
grangian, the behavior of the coupling parameters is sum-
marized very simply by the qualitative description

0 & A,'(p, ) & Ao for p &M„, (4.12}

and
0(z,(p)(l1.,0 for p(M, ,

0( &1 for p&M„.p(p)
po

V. CONCLUSION

(4.13)

(4.14)
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a sabbatical leave at KEK and to thank them and
members of the theory group, including Professor Y. Ka-
zama, for warm hospitality.

In this paper we have introduced the decoupling renor-
malization scheme that we claim should be used to study
the field theory of mass hierarchy. We have here only
studied two examples of Lagrangians with mass hierar-
chy. Further work on extending it to cover gauge hierar-

chy will be reported elsewhere.¹teadded in proof. I have been informed by J. C. Col-
lins that he has a similar scheme that has been discussed
in his book Renormalization (to be published by Cam-
bridge University Press, New York, 1984). O. Foda has
also brought my attention to his work, Phys. Lett. I248,
192 (1983).
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