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There exists a remarkably close relationship between the operator algebra of the Dirac equation
and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying

on a mass-spin Regge trajectory). The analog of the Foldy-%outhuysen transformation (more gen-

erally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and

explicit results are discussed for the spin and position operators. Zitterbemegung is shown to exist

for a system having only positive energies.

I. INTRODUCTION AND SUMMARY

In both classical and quantal mechanics the relativistic
rotator is one of the most important physical constructs
for detailed study, yielding precedence only to the study
of the motion of the relativistic mass point. The physical
interest in the study of such structures at the present time
lies in the fact that hadrons are now considered to be in-
dccornposablc composl tc ob)ccts lying on Rcggc tra)cc-
tories, and must accordingly behave, under some cir-
cumstances, as relativistic rotators. Of particular interest
is the influence of the internal (rotational) structure on the
(external) interactions of these composite objects, taking
account of relativistic effects.

Relativistic rotators are an abstraction (similar to the
abstraction underlying the concept of mass point) in
which a coITlposltc object ls dcscllbcd by Its posltlon ln
space-time with the remaining structure truncated to a
description of the internal state by spin angular mornenta.
For the spinorial relativistic rotator there are two internal
variables, g& and gz (which form a spinor), in addition to
the Minkowski (position) variables x~ (a four-vector).
Thc variables describing thc spin CMTy no llncar momen-
tum, and each internal state of angular momentum s has
in the rest frame exactly (2s+ 1) components [which con-
trasts with nonrelativistic rotators (symmetric tops) hav-
ing (2s+1) components]. The Hamiltonian for such a
system is a trajectory function uniting the Poincare mass
label M with the Poincare spin label s, that is, M =M(s).
This structure has been discussed by Mukunda, van Dam,
and Biedenharn. ' Although the present paper is in a sense
a sequel to this work, we shall not presuppose knowledge
of Ref. 1, so that the present paper is self-contained.

The problem of the relativistic rotator is in no sense
new: there are numerous treatments in the literature.
All the previous structures, however, have the difficulty
that they involved constraints which make the problem of

interactions more or less impossible. By contrast the spi-
norial relativistic rotator (which may be extended to the
limiting case of infinitely many spinors in such a way that
it becomes a spinorial string model) does not have such
constraints.

The feature which underlies the spinorial model and ac-
counts for its success is the remarkable connection be-
tween the algebraic structure of this model and the Lie
algebra Bz —C2 [which integrates to the Lie group
SO(3,2)]; the importance of this group structure was em-

phasized in the work of Bohrn. ' As discussed in Refs. 1

and 10 both the familiar Dirac equation (for the
electron/positron) and the spinorial relativistic rotator
share this same underlying algebraic structure. Indeed
there exists a (commutation-relation preserving) mapping
(which we call the "Dirac mapping") by which the ten
symmetric elements of the 4&4 Hermitian matrix algebra
of the Dirac matrices (for the Dirac equation) map into
the ten SO(3,2) generators for the spinorial relativistic ro-
tator. (This map is the analog of the famous Jordan-
Schwinger map for the rotation group which takes the
spin- —,

' defining example into all spins. ") Similarly, the
Dirac map carries the Dirac four-component structure
into the set of all Poincare [M =M(s),s] irreducible rep-
resentations (irreps); the trajectory constraint M =M(s)
functions as the Hamiltonian in Dirac's constrained
mechanics.

It is the existence of this mapping which (as we shall
show below) allows one to understand, intuitively, the
structure of the quasi-Newtonian~Minkowski transfor-
mation (abbreviated QN~M) of the spinorial relativistic
rotator from the structure of the analogous transforma-
tion on the Dirac equation itself, a transformation known
most widely as the Foldy-Wouthuysen (FW) transforma-
tion. ' (See also Ref. 30.)

The introduction of quasi-Newtonian coordinates was
implicit in the fundamental work of Wigner in which all
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irreps of the Polncare group (all possible
particle models) were first determined. ' Wigner con-
structed these irreps by induction from the stability group
of the momentum vector; no explicit determination of the
generators of the group was given in his paper, but it is
easy to do so and one obtains the ten Poincare generators
in a momentum-space realization. Although it is not
completely straightforward, ' one can Fourier transform
these momentum-space generators, thereby obtaining ten
generators in configuration space, realizing the Poincare
group in quasi Newt-onian form (as we shall discuss in Sec.
II; see also Refs. 14—16).

It 1s a historical accldcnt that thc Dllac cquat1on-
which embodies Minkowski coordinates ab i nitio-
preceded the construction by Wigner of the irreps of the
Poincarc group (which, as noted above, realizes the Poin-
cari group in quasi-Newtonian coordinates). The genera-
tors of the Poincare gmup in Minkowski form follow, of
course, immediately from the Dirac equation itself.

This sltuat1on posed Rn 1ntcI'cstlng conccptUal problem:
to go backwards and determine the Dirac equation start-
ing from Wigner's quasi-Newtonian form. To our
knowledge this was first carried out by Thomas, ' who
showed that for the Khrac equation the quasi-Newtonian
Poincarc generators (of the Wigner realization) went over
into the Minkowski generators {ofthe Dirac formulation)
under the Foldy-Wouthuysen transformation.

The approach of Foldy and Wouthuysen (which was
preceded by the work of Pryce, Becker, ' and
Schrodinger, ' among others) was very different conceptu-
ally from that of Thomas and was very closely tied in
outlook, as well as technically, to the particularities of the
Dirac equation. (The Poincarc structure was in fact not
considered at all. ) The underlying idea of Foldy and
Wouthuysen was to reduce the Dirac equation from four
to two components. This they accomplished, for the free
particle, by thc tlansformatlon

o'P
U =exp ip2tan

mo

(which, it should be noted, is a transformation whose pa-
rarneters are operator valued). The result of this transfor-
mation is to take the Dirac equation H =p& o'Pc
+p&mac into the form H=p&(P c +m c )'
that is (aside from the sign doubling given by p&~+1),
one arrives at just the equation Dirac rejected. Each of
these two forms for Dirac's Hamiltonian describes the
same phys1cs. Fox' the 1ncorporat1on of external 1nterac-
tions, however, these two forms are profoundly different;
in the Minkowski form (Dirac's equation) interaction with
the electromagnetic field is easily accomplished; by con-
trast, a local electromagnetic interaction in the quasi-
iiiewtonian form is impossible. This is the physical
background, for the fundamental problem of interactions,
which motivates the study of the analogous transforma-
tion for the spinorial relativistic rotator

There is another set of phenomena for the Dirac equa-
tion which must be discussed in connection with these
ideas: the so-called Zitterbewegung and Spinzitterbemegung
found by Schrodinger in his study of the Dirac equation. '

X..'."'(1)=[X '"'(O) ——,'I a(O)H-I

+ —,iH P]+H 'Pt,

and {b) a fluctuating position ( Zitterbewegung)

X '"'(t)= —' [ (0)—H —'P]H —' —" '

(1.2)

whose time avcIRgc is zc10. ThUs, thc M1nkowsk1 coo1d1-
nate X '"'—which we shall say denotes the position of the
charge —does not follow a straight line but moves in a
complicated way, which as is well known, lies at the ori-
gin of the spin, and the spin magnetic moment.

Now let us consider further the F% transformation.
For the quasi-Newtonian coordinates X~, the Hamil-
tonian is HQ =p3(P c +m c )'~ and it is easily seen
that

X QN ~ [HQN X QN] P(HQN) —I

dt

which implies that

XQ (r)=XQ (O)+(HQ )-'Pt . (1.4)

That 1s, the quas1-Newton1an pos1t1on operator moves
in a straight line and, hence, behaves exactly as one ex-
pects for a classical free particle. If we now take the F%'
transformation of these equations, one finds that

{a)P~P,
(b) HQN HDirac (1.6)

(C) X QN X mean(i) X mean(0)+(HDirac) —lpt

Thus we have obtained another position operator, in
Minkowski variables, which is free of ZBW: this is the
"mean" position operator X ""which we could more
properly call the center-of-mass coordinate. Although
both the mean position operator X ""and the average
position operator X,„',"' move uniformly in a straight
hne, they are very different operators physically. ' This is
most easily seen from the fact (cf. Sec. V) that the three
coIIlpoIlcllts of X commute wltll cacll otllcl' (slllcc tllls
is true of XQ ), whereas the three components of X,„',"'
do not commute.

Remark. It is worth noting that one can go backward
Rnd carry the Minkowski coordinates into the quasi-
Newtonian frame. Using these coordinates as the position
of the charge in, say, the Coulomb interaction and then
taking the time average over the ZB%' leads to the spin-
orbit, Darwin, etc., terms. The important point is that all
numerical factors come out precisely correctly. En several
textbooks (e.g., Ref. 22, p. 71 and Ref. 23, p. 116) in-

FoI' thc free D1I'ac clcctron, the Hc1scnberg cqURtloIl of
IIlotloI1 fol' tllc Mlnkowskl posltloll opclRtols X call
be integrated to yield X '"'(1), which is conveniently split
into two parts:

X ( r ) =X ( r ) +X zDBw ( t )

where
(a) an average position is defined
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correct numerical factors are obtained in the discussion of
ZBW effects, because the electron velocity magnitude is
taken as c instead of the correct Dirac result v 3c.

The work of Foldy and Wouthuysen was of basic im-
portance, very clearly and persuasively written, but be-
cause of the point of view used by these authors, their
work has reinforced several not wholly correct impres-
sions. Foremost among these is the impression that ZB%
is an artifact of the Dirac equation, and more particularly,
of the existence of positive and negative energies in the
(one-body) Dirac equation. It is our view that if one con-
siders these phenomena, not in the special context of the
Dirac equation, but in the context of the structure of
Poincare irreps (with nonvanishing mass), then it becomes
clear that there exist two unitarily-equivalent formula-
tions for space-time operators: the quasi Newto-nian
frame whose position observable is a three Ueetor -(the
mass center) with commuting components and the Min
kowski frame whose position observable is a four Uector-
(the charge center), again with commuting components.
From this more general viewpoint, these phenomena are
physical consequences of relativity.

These phenomena all exist for the spinorial relativistic
rotator, as we shall show, and owing to the remarkable
structural connection (the mapping mentioned earlier) be-
tween the Dirac equation and the Hamiltonian for the spi-
norial relativistic rotator, it is technically feasible to carry
out the (quasi-Newtonian)~(Minkowski) transformation
ln complete dcta11. Thc cxistencc of thc same physical
phenomena, discussed above, for the spinorial relativistic
rotator can then be shown. Since the spinorial relativistic
rotator has only positive-energy states, it is then clear, by
construction, that these phenomena are indeed more gen-
eral than the particularities of the I3irac equation and its
attendant negative-energy states.

The plan of the paper is as follows. In Sec. II we
develop, in some detail, the quasi-Newtonian form of
Poincarc irreps with fixed mass M and fixed spin s. In
this section we comment on the significant features of the
quasi-Newtonian form and develop an alternative form
which has advantages for the work to follow. In Sec. III
we construct (using the quasi-Newtonian form of Sec. II)
the reducible Poincarc trajectory representation that con-
stitutes the spinorial relativistic rotator. In Sec. IV we
derive the explicit transformation that carries the quasi-
Newtonian form of the spinorial relativistic rotator into
the Minkowski form. Section V is devoted to applications
of the transformation developed in Sec. IV. In addition to
developing the mean position and mean spin operators, we
also give a direct proof that the Hamiltonian of the
quRS1-Ncwton1Rn form goes over into thc covariant Ham-
iltonian for the Minkowski form.

II. THE QUASI-NEWTONIAN FORM
OF THE POINCARE IRREPS

gOO= —1, 81) ——822 ——g33
——+1,

g55 ——1 [for SO(3,2)] .

PolncRIc gIoup H:
elements (A"„,a"), ACSO(3, 1). (2.1)

The product law is

(A', a ')(A, a) =(A'A, a'+ A'a ), (2.2a)

or 1n 1ndcx notation,

(A'"~a )(A"„,a")=(A'"pAP, a'"+A'"paP) . (2.2b)

It is useful to note that every element may be written as
the product of a translation and a Lorentz transformation,
(A, a) = (l,a)(A, O).

Covering group H of P: elements (A, a), A HSL(2, C),
a =a"=translation. A ESL(2,C) determines A(A )

ESO{3,1) which acts on vectors. For simplicity we can
imagine that A itself acts directly on a vector x to give a
new vector Ax by using the realization

Ax~o A t= A (x I+ x o. )A t—:(Ax)"o (2.3)

U(A', a') U(A, a) = U(A'A, a'+A'a ) . (2.4)

Instead of giving the U(A, a), we could equally well give
the (Hermitian) generators identified as

—ia~P
U(l, a)=e (2.5)

A ~=oP~ 67 ~ ) cop~= —co~—p, ~

co
( &(1

4

U{A,O)=l ——m"'Mp„.
2

(2.6)

P„, M„must be Hermitian in A and obey the commuta-
tion relations

i [Mp~yMp~ ] gppM~o g~pMp~

i [M&„Pp]=gppP g,p—P„, [P&,P„]=—0 .
(2.7)

We will often specify a representation by giving P&,
U(A, O) =—U(A), and J =(M23,M3i, Mi2), K.=(Mio, M20,
M30) explicitly. Space parts of four-vectors x,P,P', . . .
are denoted as x, p, p ', . . . . Note that we shall generally
denote numerical quantities by lo~er case letters, and
operators by capitals. %'e deal with positive tirnelike rep-
resentations of H alone.

All representations discussed below will be considered uni-
tary without explicit mention of this fact. To give a rep-
resentation of H, we must (I) set up some Hilbert space
A, (2) define on A a set of unitary operators U(A, a)
such that

A. Notational conventions

Ii is useful to define all notational conventions fully
and explicitly.
Metric:

B. Quasi-Newtonian Polllcalc ll'1'cps

Let us take an irreducible representation of nine Hermi-
tian (three-vector) operators X,P, S whose nonvanishing
commutators are
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[XJ,Pk] =i&,v [SJ Sk] =ieJklSt (2.8)

The Hilbert space A carrying the representation will be
the space of an irrep of H. Let the spin operators S cor-
respond to the spin-s representation of the SU(2) algebra
Take a real positive number M. Then the mass M, spin-s
irrep [M,s] of H is realized on A by the construction

P'=(P P+M')'";
J =X&P+8,"

K=-,' jX,P'I ~PXS/(P'+M) .

{2.9a)

(2.9b)

(2.9c)

(2.9d)

PI p m&=p
I p m& XI p m&=l „ I p m& *

Bp

S,
~
p, m)=m

~ p, m); (2.10c)

(S, +iS2)
~
p, m ) =[(s+m)(s+m+ I)]'~

~ p, m+ 1) .

(2.10d)

Here and in the following we will use X
~ pm )

=t (8/Bp)
~ p, m ) as a symbolic way of writing

&&~X~ pm&=l (8/Bp)&lt
~
pm) for every well-behaved

vector f.
For each p, define a four-vector p by

A realization of H by operators of the form of Eqs.
(2.8) and (2.9a)—(2.9d) defines what we shall call the
quasi Newto-nian form for Poincare irreps[M, s].

Take an idealized basis for A labeled by sharp momen-

tum eigenvalues p, fpl for P,S3, respectively:

& y
ii s&

~

i z) g(3l(~ ii

m =s,s —1, . . . , —s; (2.10a)

N=P/M, Z=MX, [ZJ,Xk]=i5ik . (2.14)

ance of the structure is not manifest. The name "quasi-
Newtonian" is chosen to call attention to this (seemingly
noncovariant) three-dimensional aspect of this particular
realization.

A technically more troublesome feature of the QN form
ls the exp/Eclt appearance of the mass parR111eter M ln the
realization of the four generators I' and K; it is absent in
the six generators J and P. To see that this poses diffi-
culties let us recall that Lorentz transformations that in-
volve space-time coordinate rotation (called in the follow-
ing "boosts" and denoted by B) are more properly to be
considered as Uelocity (and not momentum) transforma-
tions. Although a given momentum does indeed
transform under a boost, the change in momentum de-
pends on the particular length (mass) of the given momen-
tum four-vector; the change in the velocity is, however,
uniform. [A passive (coordinate frame) Lorentz boost im-
parts to particles of different mass the same velocity in-
crement, but different momentum increments. ] Intuitive
considerations based on velocity are, however, mire or
less tied to classical concepts, since (unlike momentum)
velocity is not an a priori concept in quantum mechanics,
but a derived concept based on a particular Hamiltonian.
We can achieve the same goal, using momentum concepts,
by recognizing that action of a boost is mass independent

and the three parameters of a boost exp( —iB K) are
determined by the four-vector momentum scaled by its
length (mass). This motivates an alternative formulation
of the QN Poincare irreps, which we now discuss.

Up to unitary equivalence, we already have in hand the
QN irreps [M, s]. Let us express the generators
(2.9a)—(2.9d) in another form. In terms of the basic ir-

reducible set of operators X,P, S define now

p ( p )
—=(p, ( p p+M')'i') .

For each such p, define the SL(2, c) element B (p) by

{2.11) The Z, N, S obey the same algebra (2.8) as X,P, S, and s is
the same, so the two sets must unitarily be related. In
fact,

B{p)—= [2M(M+p )] '~ (M+p"o&) .

Then the quasi-Newtonian form of the irrep [M,s] be-

( Z N S) e(D lnM(X P S)e —iD lnM (2.15a)

P~ i p, m)=pp
i p, m)

U(A) p, m)

(2.12)

' 1/2
(Ap)' gD" ~{B(Ap) 'AB(p))

~
Ap, m') .

(2.13)
[The argument of the rotation matrix in (2.13) is called
the "signer rotation. "]

C. Remarks on the quasi-Newtonian form

The quasi-Newtonian farm of the Poincare irreps, in
Eqs. (2.13), has a number of significant features that
deserve mention. First of all, one notes that the momen-
tum operator P plays a distinguished role (as is clear, for
example, in the boost operator), and moreover, the posi-
tion operator X is inherently a three-vector; the covari-

J =ZXN+S, K= —,
'

jZ,XoI+
1+6

(2.16)

In this alternative QN form, M appears exp/icitly only in
Ip, and ls Q&s8nt Epl Mp~—this will pIove to bc useful.

Let us write eigenkets of N, S3 as (n, m). For any
three-vector n, we can associate the corresponding four-
vector: n[n, (n. n I+)'~ ]. The two bases for A are

D= —,(XP+PX)= —,(ZN+NZ),

[D,X]=—iX[D,P]=iP .

We also now introduce basis kets in 4 that are labeled by
the eigenvalues of P"/M and S3.

Expressed in terms of Z, N, and S, the generators P",
J, K, (2.9a)—(2.9d), take the forms
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related as (note the use of a round ket symbol)

~
n, m)=M ~ (Mn, m),

~ p, m) =M
~
p/M, m),

(n",m"
~

n', m')=513'(n" —n')5 - ~,

~
p;sm ) =[(s +m) t(s —m )!]

X(a i)'+ (az)'
~
P;oo)

U(A)
( n, m) (2.18)

1/2An' gD" (B(An) 'AB(n))
~

An, m') .
Pl Vl

The adUantage of this reformulation is that now
mass M appears only in the action of p„and not iii U(A)
at all.

N~ n, m)=n
~
n, m), Z~ n, m)=i

~
n, m),

Bn

Sz
~
n, m)=m(n, m),

(Sl+iSz)
~
n, m)=[(s+m)(s+m+I)]'~'

~
n, m+1) .

Then, in this alternative QN formulation, the irrep [M,s]
has the form

&p (n, m)=(Mn)q ) n, m);

The pair of boson operators (a l, az) and their conju-
gates define ten independent, bilinear quadratic expres-
sions which may be chosen to be the generators of an
SO(3,2) Lie algebra. This is a special case of the general
result that n sets of canonical boson operators span the
(symplectic group) Lie algebra C„of the symplectic group
Sp(2n). There is a general construction" which maps the
lowest-dimensional 2n &2n matrix realization of C„ into
the bilinear boson operators, preserving commutation rela-
tions. As a special case we have the Dirac mapping, D',
which maps the ten Dirac matrices y& and [y&,y„] into
the ten boson operators t V&,S&, J of the spinorial rela-
tivistic rotator. That is,

III. THE REDUCIBLE UNITARY
REPRESENTATION FOR A REGGE TRAJECTORY:

THE SPINORIAL RELATIVISTIC ROTATOR

We will now consider a set of Poincare irreps taken in a
quasi-Newtonian realization (Sec. II), in which the mass M
is a specified function of the spin s. That is, we take the
trajectory function M =M(s), s =0, —,', 1, . . . , and the
desired Poincare representation for this trajectory is then
a discrete direct sum of quasi-Newtonian irreps. This de-
fines the spinorial relativistic rotator by direct construc-
tion.

To realize this trajectory representation explicitly, we
take the primitive algebra of operators:

[X,pk ]=i 5 i„[a„a„]=5„„,
where (j,k)=(1,2, 3) and (r, r')=—(l,2) . (3.1)

This algebra consists therefore of five canonical pairs,
and, up to equivalence, there is just one unique irreducible
representation. A will be the space of this representation.
As a basis for 4, let us take P, a,a 1, and a zaz to be diag-
onal. The basis is then the set of (idealized) kets
I ~

p;s, m ) I with p
' any numerical three-vector, s =0, —, ,

1, . . . , m =s, s —1, . . . , —s. %e normalize

{p";" "~p', ' ')=5' '(p" —p')5, ,5-
the defining relations are

P
~ p; sm) =p

~ p sm),

atal
~
p;sm) ={s+m)

~
p;sm),

azaz
~
p;sm )=(s m)

~

p;sm)—,

Xi p;sm)=i
i p;sm),

p

al 2 i p;sm ) =(s+m)'i p;s ——,',m+ —,
' ),

al 2 i p;sm) =(s+m+1)'i
i p;s+ —,',m+ —,

' ),

S31 =
4 (ki'+~i' —kz' —~z'»

S„=—,
'

(g, z —n. ,
z —gzz+ m.zz),

S02 2 ( it 1irz glgz) So3 =
2 (glori+ lrzgz)

1 1

Vl T(02~2 kl trl ) ~ V2 2 (41~2+42~1) ~

V3= ,'(gl m. +$2-~2 —),
Vo= 4 (ki +~i +4 +~z ) .

(3.4)

All ten of the operators I V&,S&,I in (3.3) are Hermitian.
It is useful to note that operator Vo is positiue definite

The mass operator is now taken to be an explicit func-
tion of the spin, using the trajectory function M(s), in the
following way:

Mass operator: M,~
=M ( Vo ),

(3.5)
with the action: M

& ~
p;sm ) =M(s+ 2 )

~
p;sm ) .

(Note that the map preserves commutators, but not Her-
miticity. )

It is now easily checked, directly, that the operators
I V„,S& ] obey the commutation relations

—g fg .V 1=
L PV & PCF J gPP Qo' g'1'~ PQ' +gP~~ p~ g~~~pp

i[S~—, Ve]=g„pV„—g, V„, {3.3)

i [Vp, V ]=Sp„.
The existence of the Dirac map sets up a far-reaching

correspondence between the operators of the Dirae
(electron/positron) equation and those of the spinorial
relativistic rotator.

In order to be fully explicit let us note that —expressing
the boson operators a; and a; in terms of canonical (har-
monic oscillator) position and momenta (g;,m;)—the ten
generators Vz and S» take the form

1 1Slz= 2 (k~1 —41~2) * Sz3= 2 (@4+~1~2»
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It is useful to note that the mass operator commutes

with the operators X, P, and S, that is,

[M, ,X]= [M,p, P]= [M,p, S]=0,
but that M,~ does not, in general, commute with the bo-

son operators a; or a; or with the operator V.
We take the normalized vectors

I
s, m ), as given in Eq.

(3.2), to be a basis for the representation space 4 of
SO(3,2), where the generators V&, S&„are defined in Eq.
(3.4) and satisfy Eq. (3.3). The (infinite-dimensional) rep-
resentation of SO(3,2) generated in this way has been
termed the Majorana representation, ' or the "remarkable
representation" by Dirac, because of its many interesting
properties. This representation consists of two irreducible
pieces (the integer- and half-integer-spin parts of the re-
markable representation); these two parts remain irreduci-
ble when restricted to the Lorentz subgroup [the irreps
(ko ———,,c =0) and (ko ——O, c=—,

'
) of SO(3,1)] in

Naimark's notation. The remarkable representation was
first discussed by Majorana, accordingly we denote this
representation by D ", and define this representation ex-
plicitly by

g ESO(3,2)~ s'r(g)—:exp ——co" Sq~
2

formal four-momentum would lose this property if the
continuous (g~, g2) variables are used.

On the other hand, it appears essential to introduce the
variables (g), g2) in the ket vectors, because in this way
one can factorize the Wigner rotation into well-defined
Lorentz boost operators.

It is at this point that the alternative formulation of the
QN irreps is so valuable. By going over to scaled momen-
ta, in this alternative formulation, we may remove the ex-
plicit mass dependence of the boost operation, and thereby
facilitate extending the spin rotations to the full SO(3, 1)
action defined in the SO(3,2) structure. In this way we
shall "disentangle the VA'gner rotation" arriving at anoth-
er term of the trajectory representation, the manifestly co-
variant form of the spinorial relativistic rotator.

IV. DERIVING THE TRANSFORMATION;
QUASI-NEWTONIAN~MINKOWSKI FORM

Stage 1. Passage to alternatiue QXform
Let us introduce a new basis for M, along the lines of

(2.17), for each s. The new vectors will be written

I
n;sm) —note the round ket symbol —with n any three-

vector and s, m as before. The connection to
I
p;sm ) is

I
n;sm)=M(s)' IM(s)n;sm),

+(g)
I

p;sm ) =g D, '., {g)
I

p;s'm') .
(3.7) l

I
p;sm ) =M(s) p;sm

(n";s"m"
I

n;s'm')=5' '(n" —n')5s-, 5

(4.1)

[Note that we use the notation (AB)=0, 1,2, 3, 5, with
V~ ——S~s, @=0,1,2, 3.]

To complete the construction of the spinorial relativis-
tic rotator, it is only necessary to note that for each spin s,
and hence each mass M =M(s), there is a corresponding
Poincare irrep [M(s),s] defined in the quasi-Newtonian
form by the construction in Sec. II, above. The basis for
A on which this representation is defined is the basis

I
p;sm) given in Eq. (3.2).
Under the action of the Poincare generators, each of

these [M(s),s] irreps undergoes the transformations given
by Eq. (2.13) of Sec. II. Thus, we have a well-defined
(denumerably infinitely reducible) Poincare representation
that belongs to the entire Regge trajectory; it is this struc-
ture which constitutes the spinorial relativistic rotator.

In this construction, the action of the SO(3,2) genera-
tors, aside from the spin operator S, is not in a convenient
form. This is important, since the technical problem in
carrying this trajectory representation from the QN form
(in which it was defined) into the Minkowski form is
the problem of factorizing the Wigner rotation
B(AP) AB(p) into its components, three Lorentz rota-
tions. One would like to replace the explicit spin matrices
that appear ir the generators and korea~ all spins as a whole
by going over to the spin operators as, say, differential
operators on the (g&, $2) variables. Such a step immediate-
ly runs into trouble; the mass operator (and hence the
operator Po) cannot have a sharp value unless the spin
magnitude is itself sharp. It follows that the QN irreps,
which for the discrete parameters [M(s),s] have a sharp

Having set up this new basis in A, it is natural to define
new operators N, z, b, b whose actions on the new basis
states looks exactly like that of P,X,a, a on the old ones.
So, we define N, Z, b, b on A as

NI n;sm)=n
I
n;sm}, ZI n;sm)=i

I
n;sm);

Qn

, 2 I
n;sm) =(s+m)'"

I
n;s —2,m+ 2 ) (4.2)

b, 2 I
n;sm)=(s+m+1}'~

I
n;s+ —,,m+ —,

'
) .

It is then a consequence of these definitions that
Z, N, b;, b; form an irreducible representation, on A, of
the same algebra (3.1) as before. Also one has, easily,

I
n;sm) = [(s +m)!(s —m)!]

X (b
1'

)s +&at(b t )s —m
I

~.0()) (4.3)

(ZNb b )= "(XP . ) (4.4)

So we have, on A, two unitarily equivalent irreducible-
operator sets (X,P,a;,a;) and (Z, N, b;, b; ) with corre

seconding bases
I
p;sm) and

I
n;sm). In fact,

I
n;sm)=e "Ip;sm) . (4.5)

The set (Z, N, b;, b; ) is unitarily related to the set

(X,P,a;,a; ). It is not hard to show that, with
D= —,(X P+P.X), and since M,„commutes with X,P
on the one hand while D commutes with a;,a;, on the
other,
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Since the D " are numerical, they commute with every-
thing and we can use (4.10) to write the above RHS as

' lj2
[ J, +'(8(N))] =0, (4.25)

$)Ptf )
$27712

&& +'(8(An) )
~

An;s]my) .

(4.19)

N S'
po ~ 2 +0+

=+'(8(N) ){~ IZ, N I+(S')0 S2O S'30))+'(8(N))

[Recall that we use the notation k' to de»« the (Ma-
jorana) representation generated by the S„,alone, as dis-
tinguished from U' generated by M„,.] Next we take the
k' operator outside the summation (it commutes with the

numerical D ") and then use (4.14) to rewrite the kets:

RHS.=+ (8(An) ) y D (8(n)-)U (A)n s2m2)

—= 'k'(8(N)) '(K')+'(8(N)) .

Now, P& combines with U(A) to yield the representa-
tion U(A, a) of H we started with. From Eq. (4.24), it is
clear how to set up a P„' which, along with U'(A), gives a
representation of H unitarily equivalent to U(A, a). We
must define

(4.20) Pp ——k '(8 (N) )P„%"(8 (N) ) (4.26)

Using Eq. (4.10) once again we obtain finally

RHS=%''(8(An) ')U'(A) 2'(8(n))
/

n;sm) . (4.21)

Equation (4.21) is not quite the desired result since the
two boosts on the right-hand side do no appear to be the
inverse of each other. We can remedy this, however, by
using the concept of operator-Ualued boosts If we i.nter-
pret 4",~(8{n)) on the right in (4.21) as an operator-
valued boost +'(8(N)), then on the ket

~
n, sm) it takes

on the numerical value n. After the action by U'(A) the
vector n becomes An, so that the operator-valued boost
+'(8 (N) ) ' correctly becomes the numerical-valued
transformation k'(8{An) ').

Using then operator-valued boosts, we may write Eq.
(4.21) in the desired form:

U(A)
~

n;sm)= k'(8(N) ')U'(A)+'(8(N))
~
n, sm) .

From Eq. (4.13) we have P& M»N&—.—The transforma-
tion k ' commutes with & so that we obtain

P~ ——M,'Qp,
where we have defined

M,'~ = 4"(8 (N) )M„+'(8(N) )

(4.27)

(4.28)

(We will shortly put this in a more accessible form. )

The net result, as expressed by Eq. (4.24) is that we
have factored the Wigner rotation and in so doing ex-
pressed the QN Poincare irrep by a unitarily transformed
irrep U'(A, a), where the operator W'(8(N)) effects the
transformation. This is very close to the desired final re-
sult, but not quite, since the QN irrep has been defined on
the alternative (rescaled momentum) basis.

To complete the transformation we put Eq. (4.24) in the
1Ilvel se form

(4.22) U'(A, a) = k'(8 (N) ) U(A, a) W'(8 (N) ) (4.29)

Thus we haue achieued our goal of relating U(A) to U'(A)
by an (operator Ualued) unitary -transformation. To be ex-
plicit, one has the transformation

k'(8(N))=exp iSoJ in(N&+
~
N

~
)

This is a well-defined unitary operator on A since So.
formed from b; and b; commute with the operators X&,
which in turn commute among themselves, so that
+'(8(N)) is the exponential of an anti-Hermitian opera-
tor.

From Eq. (4.21) we find —the SL(2, C) part of H—that
the originally given unitary representation U {A ) is
equivalent to the unitary representation U'(A) in the form

U(A)= k*(8(N) ')U'(A)W'(8(N)) . (4.24)

Let us note that the transformation k '(8 (N) )
preserves J but decisively alters K. Thus, to be com-
pletely detailed, we have

inverse scaling: U'(A, a)~ U™(A,a), (4.31)

where U will be shown to be the Poincare representation
for the trajectory in Minkowski form.

As a result of the inverse-scaling transformation, Eq.
(4.29) takes the form

and then carry out the inuerse transformation to Eq. (4.8)
taking the scaled momentum back into the unscaled form.
This inverse transformation has the effect of replacing the
operators (Z, N, b;, b; ) by the operators (X,P,a;a; ) and
carries the SO(3,2) operators Sgs into Sgs [see Eqs. (4.8)].
As a result, the transformation k'(8(N)) generated by
S„' with operator-valued parameters (determined by N)
becomes a transformation generated by S» which is
operator valued as determined by P. Thus we find

inverse scaling (4.8): k'(8(N))~%'(8(P)), (4.30)

where 4' is generated by S&„[Eq.(3.4)].
Let us also define
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+(B(p))UQ (A,u)~(&(p)) '=—U (~,u), ~ pQN~ —1 PM (5.1)

where we have denoted by UQ the (trajectory) Poincare
representation in the original (unscaled) quasi-Newtonian
orm.

To establish that the right-hand side of (4.30) is indeed
thc trajectory representation ill Mlllkoloskl fQrm wc need
only look at the generators [Eq. (4.25)] after the inverse-
scaling transformation. Clearly, from Eq. (4.25) the
Lorentz generators take the form

and similarly. We note that the three-momenta P and the
angular momenta J commute with k so that P~ =P
and J~N= J~.

Let us consider now the question of defining a suitable
position operator in the QN frame. To serve as a position
operator it is first of all essential that the three com-
ponents of the operator be simultaneously observable (so
as to "locate" the particle). Accordingly, we must have

J =X&(P+S, (4.33) [XQ,XQ ]=0. (5.2)

P.P= (M,"p ) (4.34)

with M,"~ [the inverse-scaled operator M,'~ of Eq. (4.28)]
being given by

M,"p M(P V)——, (4.35)

where P&=P„(P P) ' and M( ) is the trajectory func-
tion. [Vz is defined in (3.4).] An independent direct
proof of Eq. (4.35) will be given in Sec. V.

V. APPLICATIONS OF THE TRANSFORMATION

We have shown in previous sections that the model can
be developed from two distinct but unitarily equivalent
viewpoints: the quasi-Newtonian form and the Minkowski
form. Each form possesses advantages and disadvantages.
Both forms realize the symmetry of the Poincarc group,
so that, accordingly, there exists a unitary transformation,
k, carrying one form into the other. This transformation

was developed in Secs. III and IV.
For each of the two forms there exists a position opera-

tor; it is the purpose of the present section to determine
these operators explicitly, and to develop their properties.

It is important to distinguish the various operators in
the two distinct forms, and a suitable notation for this is
required. Let us denote the quasi-Newtonian frame
(synonyms: "Newton-Wigner" or "Thomas form") by QN
and the Minkowski frame (synonym: "manifestly covari-
ant form") by M. Qperators appropriate to the two
frames will be distinguished by a superscript, for example,
XQ, denotes the quasi-Newtonian position operator (to
be defined below) and X the Minkowski position opera-
tor. Throughout this section % will denote the transfor-
mation from the QN frame to the M frame. [As
developed in the previous section, k=U(B-)' '", where

the boost parameters (determined by P) are operator
valued. ] Under the action of the operator k the Poincare
generators in the QN frame I poQ, P QN, J QN, KQ
transform into their M counterparts. Thus, for example,

,' [X,,p—oj+S;o .

It is also clear (from the form of K.) that the generators
are in the standard (manifestly covariant) form.

It remains to determine the form of the momentum
operators. After the inverse scaling, Eqs. (4.27) and (4.28)
show that P& is a four-vector operator whose length is
given by

Moreover, the operator X ~ must obey the Heisenberg
commutation rule with the momentum operator P~
(which is itself determined ab initio from the existence of
the Poincare generators of the QN realization). That is,

l [P QN XQN]

Using the fact that the operators I'o has the form

pQN [(p QN)2+ M2( VQN ) ]1/2 (5.4)

it follows, that, if we assume that the spin operator S
(and hence Vo ) is not only translationally invariant but
also commutes with X~, then

QN ~ [pQN X QN] p QN(pQN )
—1 (5.5)

Slee P =0, j.t follows that the quas1-Newtonian pos1"
tion (and hence the "particle" ) moves uniformly in a
straight line. This elementary property is characteristic of
the quasi-%estonian position operator.

This property is of critical importance, since, as we will
see, the Minkowski position operator does not define a
particle position that moves uniformly, even for a free
particle. This fact alone implies that the quasi-Newtonian
position operator X ~ and the Minkowski position opera-
tor X, cannot be transforms of each other. [This follows
since the transformation k preserves commutation rela-
tions, and hence a Minkowski version of Eq. (5.5) would
then exist, contrary to fact.] Accordingly, there must ex-
ist yet another position operator: the transform of X~
(expressed in terms of Minkowski frame operators),

~ X QN~ —] X mean

Determining the properties of this operator will be an
essential part of the work below.

How is the operator X~ to be determined explicitly
from the properties we have assumed above? There is an
elegant answer to this question: the existence of the
Poincare generators (with translationally invariant spin) in
the quasi Re+Ionian form un-iquely determines the QN-
position operator X~ and the Q¹pin operator S~, in
terms of the Poincare generators, for nonvanishing mass.
This construction carries over at once to the spinorial
relativistic rotator (since zero mass is excluded in this
model).

The result for the QN-position operator is
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Naturally, a, (a; ) have messy actions on
~
n;sm), as

8; (b; ) do on
~
p;sm ). Indeed, for example,

3/2
M(s ——,

'
)

(s+m)'bi q i
p;sm)=

M(s)

M(s ——,
'

)
X

i p;s ——,,m+ —, ) . (4.6)
M s

Szs =bilinear expressions formed from

b;, b; in exactly the same way that Sq~

are formed from a;,a; [cf. (3.3)] .

Before completing the task of this section [fitting the
Poincare U(A, a) into the alternative QN form] we use

the new algebra Z, N, b;,b; to set up new SO(3,2) opera-
tors, denoted Sz~.

U(A, a) of% in the alternative QN form.
Stage 2. Disentangling the 8'igner rotation. The crucial

step in disentangling the signer rotation has been accom-
plished by going over to the alternative QN form; this we
recognize as the content of Eq. (4.10) which shows that
the action of the entire group SO(3,2) [and not just the spin
(SU2) component] commutes with the rescaled momentum
operator X (Werle relation),

[&p S~a]=0.
Restricting g to A H SL(2, C), D™gives us a represen-

tation of SL(2, C) acting on A, again leaving N invariant.
~P

[The generators of D™(A)are of course S„,formed bi-
linearly from b;,b;.] We now define a representation
U'(A) of SL(2, C) [presently to be extended to a represen-
tation U'(A, a) of Ã] as

U'(A)
~

n;sm)

(4.8)

' 1/2
(An)

n' g D, ' ,~(A. )
~

An;s'm').
S 78

(4.14)

(ii) SJk =Sjk, that is, S'=S; (4 9) The generators of this new representation U'(A) clearly

nd Vo =Sos= Vo=Sos

(iii) S„'~ obey the relations(3. 4)

of SO(3,2), hence generate a

representation k'(g) of SO(3, 2) on~,
(iv) k'(g)

~

n;sm)= g D, '" , (g)
~

n;s'm') .. (4.10)

To compare the two sets further we note

g a; a; =g b; b;, hence M,~ =M( Vo) =M( Vo ); (4.11)

[a; or a;,Z or N]&0

just as

[b; or b;,X or P]&0 . (4.12)

1/2
(An)

no gD~ ~(8(An) 'AB(n))
~

An;sm'),

(4.13)

P"
~

n;sm)=M(s)n" Pn;sm) .

Repeating the obvious, the P„,J,K[U(A)] are the same
as set up previously, only now expressed as functions of a
new operator basis and acting on a new (Hilbert space)
vector basis. Equation (4.13) gives the representation

We can now put U(A, a) into the alternative QN form:
introduce the operator X =(I+N N)'~ and define the
unit timelike four-vector n =(n, (1+n n)'P ) for any
three-vector n; then from (2.16) and the equations of
transformation we obtain

P

I~=M.,X&, J =ZXN+S', K=-,' IZ,X'J+
X +I

U{A)
~

n;sm)

J '= J =ZXN+S',

K'= T'IZ X I+(S)O,S2O,S3O)

(4.15)

U{A)
~

n;sm)=
]/2

(An)
0

XgD, '.,~(8(An) 'AB(n))
i

An;s'm') .
S 7tl

(4.17)

Now we use the fact that SO(3,2) transformations are well
defined to rewrite the right-hand side of (4.17) as

], /2

RHS= n'
S 1'

glPPf l
$27112

XD, ~~ .,I{8(n) )
~

An;s'm ') .

(4.18)

U'(A) is therefore recognized as the kinematic product of
an "orbital" action of A on X and an "internal" SO(3,2)
action on the space of b; and b;" U'(A) a.nd U(A) share
the same SU(2) generators but the boo~t generators dtff«
greatly.

Stage 3. The unitary transformation connecting U(A)
to U'{A): We develop now a unitary transformation con-
necting U(A) to U'(A). Since for A C SU(2),

(4.16)

and also 8(An) 'AB(n) ESU(2) for any n and A, we can
transform the action of U(A) on

~

n;sm) given in Eq.
(4.13) in this way. First we introduce (4.16) into (4.13) to
obtain
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—K&N~P]+H. c. ,
whcrc wc have used thc abbrcvlatlon

M'=—M'(vP)=a(vP ) . (5.9)

Xo =—M '{K~ —[P~ (P~ +M)] 'PP K~

+(I'oo +M) '(J &&P)f+H.c. , (5.7)
and for the QN-spin

SoN= —,'M-I[a'p J —(pp+M)-'P P J

It should be noted that the explicit realizations given in
Eqs. (5.7) RIld (5.8) Rlc Ilot covarlallt cquRtlolls; Rccord1ng-

ly that the QN-position operator XO is not part of a
four-vector and the QN-spin is not part of a six-vector
(antisymmetric tensor).

We can now easily obtain the mean-position and mean-
spin operators, simply by taking the transform of Eq. (5.6)
and (5.7), and noting that the right-hand sides transform
into the corresponding Minkowski operators. Thus we
find

J
~X ~N~ '=—X ""=—,

' (M ) '{K™—[P (P +M )] 'P P K™+(P+M ) '( J &&P)I+H.c. (5.10)

~ SON@ —1 S mean & (MM) —1[@MJ (pM+MM) —lpp. J KM~p]+H c

where thc transformed-mass operator (ill t}lc Mlllkowskl frRnlc) ls denoted M
If we introduce the Minkowski realization of the Poincare generators, that is,

p =[(p) +a(p v)]'

PM p

(5.11)

(5.}2)

(5.13)

I M XM~P+SM J (5.14)

(5.16)

KM & {XMPMI +NM (5.15)

(where N; =S;o, and is not to be confused with N in Sec. IV), which introduces (implicitly) the Minkowski position

operator X with the properties

[XM XM] ()

i [P,X— ]=I,
we can simplify the expressions for the mean-position operator. One finds

1 XM+ 1 (MM) —
{NM [PM(PM+MM)] —lp P.NM+(P MM) —l(SM)(P)]

1 M X P(P.X)

(5.17)

(5.18)

can

It follows, by construction, that the mean-position
operator X ""has the following properties;

(a) commuting components: [X "",X ""]=0;
(b) X ""=P(PO ) ', that is, a uniform (straight-line)

trajectory.
Similarly, from the construction the mean-spin operator

S ""necessarily has the properties
(i) S ""is a transiationally inuariant spin operator, that

ls Smean/Smean IS mean Rnd [P /mean] ().

(ii) S ""is constant in time Since J itself is. time in-
dependent, it follows that the mean orbital-angular
momentum, L "":—X ""&P,is also conserved.

(iii) S "".S "" is Poincare inuariant This is a ver.y
useful, even important, result since it provides an explicit
operator realization of the Poincare spin label
S ""S ""~s(s+}) exactly analogous to the Poincare
mass label rcallzcd by P 'I ~M It 1s of 1ntcrcst to
note that. these two invariant operators provide labels for
each of the denumerably many states (M(s),s) of the
Regge band defined in our model.

+(M ) '[PXN™+(P,+M )
—'(P~S )XP]——,'(M )

—'[P, , S ]. (5.19)

(lv) Under a general Poincare transformation lt follows
(agR111 by collstluctloI1) t}lat t}lc operator S " undergoes
a spatial rotation. Thus tAe Operator 8 ""is the @Iver
operator to use for discussing the spin polarizat-ion proper-
ties of the states of the model. Note that the existence of
the operator S "" ohviates the need for the usual
(roundabout) tetrad definition of covariant spin-
polarization operators.

There is another way in which we can approach the
problem of determining the mean-position operator X
and the mean-spin operator 8 "", a way very different
from the previous method, which offers additional insight
into the QN~M transformation. This new approach is
based on the concept of "aligned boson operators, " and is
more closely analogous to the concepts used for the Dirac
electron equation.

%'c begin by noting that the ten bilinear boson opera-
tors defined over the four boson operators (a;,az, a»a2)
are proper}y to be taken as operators in the QN frame.
Now let us consider the action of += k(B-)' '" on theI'
bosons {a;,a; ]; this action aligns the bosons and has the



explicit form

(5.20)

Using the result developed in Eqs. (5.2()) and (5 2l) for thc
boson operators, one finds that

( Vo)'=P„V" .

This result is very useful since it implies that the Hamil-
tonian of the quasi-Newtonian form

PP={PP+I')'"
2 =[2(l+P )] Ir [(1+P )I+p, o"P ] . (521)

[In this result, A is a 4X4 matrix which we express in
terms of the Dirac matrices (p, o ), simply for ease of writ-
lllg. ] Note tllRt tllc 1110IllclltR lll Eq. (5.21) Rrc (lllllt

length) Minkowski frame four mom-entum operators (so
that A is operator valued). The bosons defined by AQ are
the aligned bosons. When expressed in terms of the origi-
Ilal bosolls, llslllg Eq. (5.21), tllc aligned bosons Rlc 1111cal

coIIlblnatlons of both CIcatlon and dcstrUctlon opcratoI's,
and the "aligned vacuum" for the aligned bosons thus
has—in terms of the original bosons —indefinitely many
excitations. [This curious state of affairs reminds one of
the BCS wave functions (and the Bogoliubov-Valatin
transformation), but unlike that theory the present results
are not appmximate but exact.]

We can use these results to obtain the transformation of
the spin operator S ~ under +=+(8 )'~'" -The .spin

opcratol S, defined by Eqs. (2.4) 111 tel Ills of blllncar
forms on the boson variables, transforms into the spin
operator defined bilinearly on the aligned bosons. It is
cRslly determined, wltll tllc llsc of (5.20) Bnd (5.21), tllatS:—+S 7j takes cxRctly thc fol II1 as ill (5.l 9),
thereby verifying this result in a different way.

There 1s an advantage, however, 1n th1s alternatlvc
Dlcthod, 1n that %'c can cxpllcltly determine thc transfor-
mation of the mass operator.

The mass operator M has been defined in Scc. III at Eq.
(3.5). We seek now to determine the transform of this
operator under %(B-)'~'". To do so, note first that M is a

function of the operator Vo, as defined by Eq. (3.4). Thus
wc seek the transform
+(&-)'~'": Vo~( Vo)'

transforms into the Minkowski Hamiltonian

pq (pp) =p, —=[p py~(P V)]'". (5.25)
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This determination of the Minkowski-frame Hamiltonian,
for the spinorial relativistic rotator, is the direct proof
mentioned in the Introduction.

To conclude, lct Us Iccall that 1n thc IntrodUctlon %'c

dlscUsscd briefly thc fact that foI thc DIrac cqUatlon 1n

tllc QN flRIIlc (Foldy-Wouthuyscn tl'RIlsfol'IIlatloll) ollc
cannot achieve local dectromagnetic interactions, in con-
trast to the Minkowski frame (the original form of the
Dirac equation) where local EM interactions are readily
obtained by the minimal prescription p —+p —eA/c. Ex-
actly the same situation occurs for the spinorial relativis-
tic rotator: in the MiIlkowski frame, thc same mimmal
prescription achieves local EM interactions. (This is veri-
fied in Ref. I by using a Lagrangian formahsm. ) By
means of the M~QN transformation one can, in princi-
ple„achieve a nonlocal form of the same EM interaction
in the QN frame, although in practice useful results are
obta1ncd only 1n thc forII1 of a scI1cs cxpansIon. Onc ob-
tains in this way analogs of the Darwin, spin-orbit, . . .
terms familiar from the Dirac equation. Since the pur-
pose of the present paper is to demonstrate, by actual con-
struction, the QN~M transformation we shall not
develop further these cffcct1vc elcctroIHagnctIC 1ntcrac-
tions (in the QN frame); a discussion can be found in Ref.
31.
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