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A nonlocal Lagrangian formahsm ls developed to describe a classical many-particle system. The
nonstandard Lagrangian is a function of a single parameter s which is not, in general, associated
with the physical clock. The particles are constrained to be constituents of composite systems,
which in turn can decompose into asymptotic composite states representing free observable particles.
To demonstrate this, explicit models of composite-composite particle scattering are constructed.
Space-time conservation laws are not imposed separately on the system, but follow upon requiring

the constituents to "pair up" into free composites at s =+ oo, —ce. One model is characterized by

the appearance of an "external" zero-mass composite particle which participates in the scattering

process without affecting the space-time conservation laws of the two-composite system. Initial

conditions on the two incoming composite particles and the zero-mass participant determine the

scattering angle and the final states of the two outgoing composite particles. Although the formal-

ism is classical, the model displays some features usually associated with quantum field theory, such

as particle scattering by means of constituent exchange, creation and annihilation of particles, and

restriction of values of angular momentum.

INTRODUCTION

There is now a long history of investigation of the prob-
lem of describing a classical relativistic X-body system by
means of action at a distance. In recent years, consider-
able effort has been concentrated on the development of
Hamiltonian formulations based upon Dirac's theory of
constraints, ' since this formalism provides a direct
prescription for quantization. (For a review of the pro-
gress and the comparison of several models, see Lusan-
na. ') Here, we take an alternative approach to the appli-
cation of constraints, working within the Lagrangian for-
malism. In order to set forth the differences in the two
approaches, we first briefly review the Hamiltonian ap-
pI'oach.

In the Hamiltonian formulation, the initial description
is based on an 8%-dimensional phase space with covariant
canonical coordinates, (x(a),p(a)), a =I, . . . , X (four-
vector indices are suppressed throughout the paper). Not
all these coordinates are independent, however. For ex-
ample, if there is a Lagrangian present, it is nonstandard,
and the canonical Hamiltonian vanishes. Thus, one or
more constraints arise. Further constraints are intro-
duced, if necessary, to reduce the number of independent
degrees of freedom to 6X. The constraint approach corre-
sponds to eliminating the "extra" variables (x (a),p (a)).
Manifest invariance is lost, but the no-interaction theorem
of Currie, Jordan, and Sudarshan is avoided.

If there is a I.agrangian, evolution of the coordinates
(x(a),p(a)) is described by a scalar parameter, denoted
by~ say, s. Thc Lagrangian ls paramctrlcally lnvarlant,
and the "gauge-fixing" constraint has generally been used
to assoclatc s with some physical clock.

Qbstacles remain in the above Hamiltonian approach.
In particular, there exists the problem of separability or
cluster decomposition for the case %~ 2, such decornposi-

tion being necessary for scattering theory. In addition, be-
cause of the loss of manifest invariance, the particle coor-
dinates do not transform as Lorentz four-vectors. The
question then arises as to how to interpret the world lines
of these particles.

In this study, we work within the Lagrangian formula-
tion and adopt an approach which deals with the above
two problems at the outset. One point of departure with
the above Hamiltonian approach is to assume that the
euolution parameter s is not associated with the physical
clock. Although the parameter s is not measurable, we
adopt the point of view that s describes the evolution of
the system in space-time in a manner analogous to time t
describing the evolution of a system in space. A second
difference is to retain all four components of the constitu-
ent four-vectors and their momenta. To reduce the num
ber of arbitrary constants, we replace the constraint ap
proach of the Hamiltonian formulation with certain
asymptotic boundary conditions. This is equivalent to
reducing the dimension of the auailable phase space
Namely, we demand that as s tends to + ce, —ao the con-
stituent particles must cluster together into one oI' more
composite states which form representations of the Poin-
care group, and whose internal motion is independent of
the kinetic variables of other composite particles. These
composite states are identified as observable particles.

The formalism is introduced by consideration of a La-
grangian in the form of the square root of the product of
a scalar potential and the kinetic energy terms. ' In the
limit when thc scRlaI' potential goes to unity, thc Lagrang-
ian describes X "free" particles. However, the choice of a
single parameter s to describe the Lagrangian constrains
the trajectories of the particles even though they describe
straight-line world lines characteristic of free particles.
The particles are not in fact independent. They are also
not on the mass shell, in general.

This might be reason enough to reject such a formal-
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ism, ' but we choose to regard the particles as constituents
of observable composite systems. We do not address the
question of the observability of the constituents, but we
shall require that they can never exist as free particles.

Thc I olcntz-1Ilvar1R11t LRgI'RIlg1Rn 1s nonstandard Rnd
gives rise to one arbitrary constraint, which we choose to
apply to the fourth component of the center-of-mass vec-
tor. We put X =cs. This choice of constraint simplifies
the generally comp1icated equations of motion and leads
to Newtonian-looking equations. It is north stressing that
although the equations take on the appearance of a simple
generalization of ¹wton's equations to four vector-form,
they are not so.

In Sec. II, the equations are solved for the two-
constituent attractive harmonic-oscillator force. The
equations of motion, unlike the nonrelativistic case, are
nonlinear. The solution shows that the frequency of oscil-
lation for the system depends not only on the force con-
stant (as it does nonrelativistically), but also on the ampli-
tUdc of osc111at1on.

The two-constituent system is on the mass shell, i.e.,

p2 ~2 2

where P 1s thc tota1 momentum foUI'-vccto1. Thc coIlstant
M, related to one Casimir operator of the Poincare group,
is identified as the mass of the system and the correspond-
ing solution as the composite "M."

It is not enough to construct a formalism in which the
total system corresponds to observable free composite par-
ticles; we must have a theory to describe the interactions
between thcsc coIQpositc particles. It 1s to th1s cIld that
we have constructed a model of composite-composite
scattering in Sec. 111, where a four-constituent harmonic-
oscillator system is introduced. The constituents are as-
sumed to come in (at least) two varieties and may attract
or repel. Asymptotic boundary conditions in the parame-
ter s are applied which force the constituents to pair up
into free composite particles. The resulting constraints on
the arbitrary constants yield a solution in which the ob-
server sees two free composites at the observer's time
to& ———oo, and two free composites at toB ——+ oo, and
verifies that energy, momentum, and angular momentum
are conserved. The scattering takes place by means of
constituent exchange as shown schematically in Fig. 1. It
turns out, however, that the scattering in this model takes
place only at the forward and backward angles.

Examination of Fig. 1 indicates that we are using a
classical foI'nla11sIIl 1n which constltUcnt particles cR11 go
backward and forward in time. It mill be seen that this
does not give rise to causality problems. We suggest that
the diagram can be interpreted as representing particle-
antiparticle annihilation and creation. In fact, as will be
discussed 1ater, this is just one aspect of this "classical"
thcoly which caUscs 1t to Icscmb1c quantum flcld thcoI'y.

In Sec. IV, we construct a model to describe
composite-composite scattering at arbitrary angles. A
six-constituent harmonic-oscillator system is introduced,
but the same asymptotic boundary eondu~ons are asap/ied
as in the previous four constituent model, i-.e., constituents
1, 2, 3, RIld 4 Rrc I'cqU11cd to pair up 111to coIIlposltcs 111

the asymptotic regions of s. Surprisingly, this forces con-

FIG. 1. Schematic illustration of two composite particles
scattering via exchange of constituents. The horizontal axis
represents the observer's time; arrows on the constituents indi-
cate increasing s. The constituents which turn around in time
can also be interpreted as constituent-anticonstituent pair an-
nihilation.

stituents 5 and 6 to form a zero-mass composite for all s.
Even more surprisingly, the following description obtains:
Two composites, of mass M(1,2) and M(2, 3), scatter via
exchange of constituent particles, yielding a fina1 state
consisting of two composites M(3, 4) and M(4, 1). Ener-
gy, momentum, and RngUlar momentum arc conserved; a
th1rd coIIlposltc, of zcI'o mass, participates bUt remains
unchanged in the final state. It is this zero-mass compos-
ite which determines (along with other initial conditions)
the two-particle scattering angle and the masses of the
fiiiial-state composite particles.

In Sec. V, we apply a different set of asymptotic boun-
dary conditions to the solution of the six-constituent
harmonic-oscillator system to describe the decay of a par-
ticle.

An appendix is included which contains a discussion of
a particular set of solutions to the general equations of
motion which reduce to the usual Newtonian ones in thc
limit when c tends to infinity. We have ca11ed these the
"equal-time" so1utions because of additional constraints
imposed on the time components of the constituent coor-
dinates. Two example problems are discussed correspond-
ing to the harmonic-oscillator and the inverse-square 1aw.
We stress, however, that it is the existence of solutions
other than ones with a Newtonian limit which allow the
following model of relativistic particle scattering. '

I. CENTER-OF-MASS LAGRANGIAN
FORMULATION FOR X

INTERACTING PARTICLES

The discussion is limited to scalar potentials. The La-
grangian is postulated to be

L(s)= — Mc V(x(l, s), . . . , x(X,s))
1 /'2

g m(a)[x(a, s)]
a=1

with
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V(x(l, s), . . . , x(X,s))= 1+(1/Mc )

Xg V,b([x(a,s) —x(b,s)] ),
a&b

M= g m(a),
a=1

g m (a)x (a) =const in s .
a=1

Relativistic invariance holds. The P" and the J""obey
the Poisson brackets (PB) of the Poincare group, and the
constraint arising from Eq. (5), namely,

~ab = ~ha

The equations of motion (with suppressed indices) result-

ing from application of the variational principle are

p[p(1), . . . ,p(&), V]= g [p'(a)/m(a)] —Mc'V,

m (a)x(a, s)

g m(b)x (b)/Mc V g [BV,b/8x(a)]

—m (a)x(a) g m (b)x (b)/V

has vanishing PB with P" and J" .
In the Appendix, additional constraints x (a,s) =cs are

imposed. For these solutions, the conservation laws (7)
and (8) become the familiar conservation laws of energy,
momentum, and angular momentum in time. It is these
equal-time solutions which reduce to solutions of
Newton's equations in the limit c going to infinity.

V g m (b)x (b)
ds

Thc Lagl Rng1Rn 1s nonstandard and thc act1on
I= JLds is parametrically invariant. We choose the
constraint

X (s)=cs,
where X is the fourth component of the center-of-mass
vector

N

X(s)= g m (a)x (a, s)
a=1

This constraint considerably simplifies the equations of
motion. To see this, consider the constants in s resulting
from the Lorentz invariance of I.:

II. HARMONIC-OSCILLATOR POTENTIAL

We have derived the general equations of motion for X
particles based on the square-root Lagrangian (2) and the
choice of constraint (5). These equations (11) resemble
Newtonian equations with the difference that the mass
m (a) is replaced with the quantity m (a)h, where h is de-
fined in Eq. (12). As a result, the solutions are signifi-
cantly different from the corresponding Newtonian ones.

As a first step to constructing a model of interacting
composite particles, we consider the case when the X par-
ticles interact pairwise by means of harmonic-oscillator
potentials. The potential V in the Lagrangian (2) is taken
to be

V=1——,
' g [a)( a, b, 0)/ ]c [x(a)—x(b)]

a~b

P"= g p"(a,s)
a=1

J& = g [x"(a,s)p'(a, s) x "(a,s)p"(a—,s)],

where the conjugate momenta p (a) are

p (a)—:BL /Bx(a)

where co(a, b, O) =co(b,a, O) is the force constant for parti-
cles a and b. We shall assume equal masses for all the
particles m(a)=m. We further define a new constant
a)(a, b),

~ (a,b)=X g x (a')/c V co (a,b, O)
a'=1

(15)

=m(a)x(a) Mc V g m(b)x (b)

Then Eqs. (7) and (9), for the fourth components, yield the
constraint in the form

The equations of motion then become

x(a, s) = —( I/X) g ~ (a, b)[x (a) —x (b)],
d

V g m(b)x (b)
b=1

The equations of motion (4) become

x(a,s)= —[I/m(a)b ] g [BV,b/Bx(a)7,

(10)

Now consider the case of a two-body harmonic-
oscillator system. Solutions to that system will be classi-
fied by means of the values of one of the Casimir opera-
toI's of thc assoc1atcd Polncarc group. This w111 lead us to
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x ( 1)=As +8+(a cosmos +b sincos ), (17)

definitions of what we call composite particles.
For a pair of constituents interacting by means of

co(0) =co(a, b, 0), we obtain solutions

x(2) =As +8—(a cosmos +b sinus),

where A, 8, a, and b are arbitrary constants. The fre-
quency is given by

a) =[2am(0)/c] [dx (1,2)/ds] [1—[v(1,2)/c] j/I 1 —[2~(0)/c] [a +g ]j,
where x (1,2) and v(1,2) are c.m. variables,

x (1,2)= —,[x (1)+x (2)]

=A s+8

v(1,2)/c =d x(1,2)/dx (1,2) .

The momenta conjugate to x (a) are

p(a)=mc[dx(a)/dx (1,2)]I1—[2'(0)/c] [a +b ] j'~ /I 1 —[v(1,2)/c] j'~

(21)

(22)

so that the total momentum P =p(1)+p (2) becomes

P=M(1,2)v(1,2)/Il —[v(1,2)/c] j'
I' =M(1,2)c/I 1 —[v(1,2)/c] j'~

I' =M (1,2)c

M (1,2) =M I 1 —[2a)(0)/c] [a2+ b ~] j
'~2 .

(23)

(24)

(26)

There is another solution worth mentioning, which
comes from a different choice of constraint:

A =0, B =O.

For co ~ 0, the world lines of the constituents in this case
are confined to

x'«»
I
«

I

a'
I
+ I

&'
I

)

The invariant M(1,2) corresponds to one Casimir opera-
tor of the Poincare group.

Finally, let us express the angular momentum I as
J(c.m. )+ j. We have

J (c.m. ) =X )& P, j =2m(0)M a )& b (27)

For these two-body solutions we assume ~ ~0, i.e., an
attractive harmonic-oscillator force. We choose the gauge

x'=w's,
take s to be the observer's time, and define V= v(1,2).

Case (i): M(1,2) real and ~ 0. For this case,
V /e ~ 1. We denote this two-constituent system a
"composite" of mass M(1,2).

Case (ii): M(1,2) imaginary and
~
M(1,2)

~

&0. It fol-
lows that V /c &1, and the system corresponds to a "ta-
chyon.

Case (iii): M(1,2)=0. Then [2'(0)/c] [a +b ]=1.
Upon solving the two-composite equations we find
V /c = 1, and the frequency co in Eqs. (17) and (18) is in-
dctcrmlnatc.

[for a zero-mass composite, replace 2'�(0) by c /
( a 2+ I 2) 1/2]

A. Classification of solutions

III. FOUR-CONSTITUENT HARMONIC OSCILLATOR:
FOR%ARD/BACK%ARD SCATTERING

OF TWO COMPOSITES

In the previous sections we laid the groundwork for rel-
ativistic particle mechanics capable of modeling scattering
interactions of classical composite particles. Thc lnhcrcnt
structure of the formalism is based on constituent parti-
cles which are, in general, off the mass shell. It is this
feature which suggests the possibility of modeling classi-
cal hadron scattering through the exchange of constituent
quRrks.

To demonstrate this, we shall construct a model of
composite-composite scattering based on the assumption
that two kinds of constituents are participating: constitu-
ents wl th llkc and opposite chal gcs lntcl acting via
repulsive and attractive harmonic-oscillator forces, respec-
tively. This mechanism will allow us to apply boundary
conditions which force the constituents to pair up into ob-
servable composites in the asymptotic regions of the
observer's time toB ——+ oo. It is encouraging to find that
as a result of these boundary conditions, the space-time
conservation laws are enforced at toB ——+00 (we recall
that I.orentz invariance implies constants in s, which as
wc shall scc, ls not ln gcnc1 Rl 1clatcd to thc obscrvcI" s
time). We will find that at the observer's time ton ———oo,
there exists two free composites. The scattering proceeds
by means of constituent exchange as depicted schcmatical-
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ly ln Flg. 1. Note that in the diagram, the exchanged con-
stituents have world lines which turn around in time as s
goes from —oo to + oo. The observer can interpret one
world line as constituent-anticonstituent pair annihilation
and the other world line as pair creation.

Asslgnlng plUs charges to constltUcQts 1 and 3 and
"minus charges" to constituents 2 and 4, we write

co(1,2,0)=co(2, 3,0) =a)(1,4,0)

=a)(3,4,0) =a)(0)

(28)

aI( 1,3,0)=a)(2, 4,0):—aI(R, O),

where aI(0) is real and ro(R, O) is imaginary. We further
assuIDC

I
~{&0)

I

=
I
~(0)

I
+

I
&

I

where e is an infinitesimal quantity. %ith these assurDp-
tions and Eqs. (15) and (16), the solutions for the coordi-
nates of the four constituents become

a(3)= —b(3) (35)

thcsc lnltlal conditions pI'cvcQ'ts CRUsallty paladoxcs, cvcQ
though particles can go backward and forward in time.

However, initial conditions in the parameter s do not
correspond to physical lnltlal conditions IDcasUrcd by
the observer in the laboratory. The problem of determin-
ing values of the arbitrary constants from physical mea-
surements and/or physical assumptions must be ap-
proached differently from the standard "initial-value
problem. "

We approach the problem by imposing the following
boundary conditions which take the form of selection
rules.

(1) At s = —ao, constituents 1 and 2 form a free com-
posite particle characterized by the two-body frequency ~
given by Eq. (19). Constituents 3 and 4 form a free com-
posltc with thc saIDc frequency.

(2) At s =+ ao, constituents 1 and 4 and 2 and 3, form
free composites, respectively, characterized by the same
frequency.

These boundary conditions are met by putting

x {l,s) =y ( l,s)+y (2,s)+y (3,s)+y {4,s),
x (2,s) =y ( l,s) —y (2,s)+y (3,s) —y (4,s),

x (3,s) =y ( l,s)+y (2,s) —y (3,s) —y (4,s),
x (4,s) =y ( l,s) —y (2,s) —y (3,s)+y (4,s)

(30)

a(4)=b(4) .

%c Rlso choose thc constraint 3 =c, 8 =O. Checking
that the above relations do satisfy conditions (1) and (2)
above, we calculate the asymptotic forms of relative coor-
dlQRtcs and find

y ( l,s) =As +8,
y (2,s) =a cosmos+ b sInaIs,

y(r, s) =a (r)cosh(us)+b (r)sinh(us), r =3,4

~'= [4~(0)]'(&/c)'/I 1 —[4m(0)/c]'[a'+b']

+ [4u(0)/c]

X [a (3)+a {4)—b (3)
—b'(4)] I,

u = [co(0)/u (0)]aI,

u (0)= [ ——,
'

[co (R,O) +a) (0)] J
'~

A. Appllcst1011 Of thC bOQIldRI'p COIld1t10QS

(SClCCtlOQ I'QlcS)

(31)

(32)

I [x{1)—x(2)j~ & [x(3)—x(4)] ~a cosI0s+b sinaIs

—,
' [x {3)—x(2)]~—,[x (1)—x (4)] —+a ccoso+sb sinews,

RS S~+ ao. (3

Thc flcqucncy QP ls glvcn by

co=[4'(0)][1—(A/c) ]'i /I 1 [4'(0)/c]—
X [a'+b'] I

'" . (38)

The separability of the composites follows from the ehm-
IIlatloll of tllc arbttrary collstaIlts a (r) and b (r) fronl thc
frequency, which describes the internal motion of each
composite.

We now define the asymptotic composite four-vectors,
x (i,j,s):

—,
' [x (1)+x (2)]~a (3)exp( —us)—:x (1,2,s)

The equations (30) contain 8% —1=31 arbitrary con-
stRIlts which» mathcIDatlcally» can bc determined by spccl"
fying initial conditions in the parameter s. For' example,
the values of y(j, s) and dy(j, s)/ds at s =0 uniquely
determine the constants A, 8, a, b, a (r), b(r), and u
(even though the equations of motion are nonlinear). We
call attention once more to the interpretation of s as the
cvolUtloQ parameter 1I1 space-tlIDc RQRlogous to time t as
the evolution parameter in space. Thus, specification of

—,
' [x (3)+x (2)]~—a (4)exp(us) =x (2,3,s)

as s~+ {x)»

—,[x (3)+x (4)]~—a (3)exp( —us)—:x (3,4,s)

—,
' [x (1)+x(4)]~a (4)exp(us)—:x (1,4,s)

(39)
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From this it follows that

[dx (1,2,s)/ds +dx (2, 3 —s)/ds] ~,

M(i,j,eff) =2m (eff) [ 1 —[2co(O,eff)/c]

2+b2]] 1/2

M(i,j,eff) is interpreted as the mass of the ij composite.
%"e shall write

[2co(0,eff) /c] [2m (eff) ]=6, (43)

= [dx (3,4, —s)/ds +dx(1,4,s)/ds] ~, +„.(40)

Consider a two-body harmonic-oscillator system com-
posed of constituents i and j which have a relative vector
cqUR1 to Q coscos +6 sleds. Assume each constltUcnt has
mass m {eff) and that they interact via coupling co(O, eff).
Then, from Eqs. (19) and (26), the frequency co associated
with this system is given by

co = [2co(O, eff)/cj[2m (eff)][dx (i,j)/ds]

&& [1—[v(i j)/c]2] '~2/M(t, J,eff),

In the next section, we examine one possibility which
allows two-composite inelastic scattering at arbitrary an-
gle,

IV. MODEL OF COMPOSITE-COMPOSITE
SCATTERING AT ARMTRARY ANGLES

It is clear from the analysis of the four-body problem of
the last section that there are not enough degrees of free-
dom to give a description of composite-composite scatter-
ing Rt any angle. One way to introduce more arbitrary
constants into the problem is to introduce more constitu-
ents into the system. In this section we consider a six-
constituent harmonic-oscillator system, and find that ap-
plication of the asymptotic boundary conditions of the
last section to four composites alone is enough to yield a
description of composite-composite scattering. The extra
two constituents form a zero-mass composite which has
the same initial and final state. It is the direction of the
zero-mass composite's velocity which determines the
scattering angle of the composite-composite collision.

Assign "positive charges" to constituents 1, 3, and 5,
and "negative charges" to 2, 4, and 6, Put

and assume 6 to be a universal constant. We will further
assume that after allowing s to tend to infinity, we let,

co {R,O) tend to —co (0) in such a way that the velocity
v(i,j) is proportional to s. Solving for

dx0(i, j)/ds

Rnd

co(i,j,O) =co(0), i +j=odd

co(i j,O)=co(R, O), i+j =even .

(45)

in Eq. (41), we obtain

dx (ij )/ds =(co/6)M(i j,eff)/[ I —[v(i,j)/c] ]
'~ . (44)

As before, we assume
~
co(R,O)

~
~

~

co(0)
~

. After solving
the equations of motion (16), we can express the solutions

Substitution of Eq. (44) 1nto (40) yields the conservation
laws for energy and momentum. Conservation of angular
momentum is similarly confirmed.

Choosing a (3) &0 and a (4) ~0, and letting M(i,j)
denote the ijth asymptotic two-constituent system, we ar-
r1ve at tile follow111g plctllle: Tile 111lt181 state consists of
two free composites, M(1,2) and M(2, 3), which subse-
quently undergo either forward or backward scattering
and yield a final state consisting of the free composites
M(3, 4) and M(1,4). The scattering takes place by means
of the "exchange" of constituents 2 and 4, which "turn
around" in time. Although the constituents can go for-
ward and backward in time, causality is not violated, for
wc can apply 1nltlal condltlons, based Upon thc obscI'vcI' s
time, only on the composite (observable) states. As we
dlscUsscd ca111cI', wc cR11 1Iltcrprct tra)cctory 2, for cxaIIl-
ple, as constituent-anticonstituent annihilation.

x (1)=2y (1)+y (2)+y (5)+y (6),
x (2)=2y (3)+y (4)—y (5)+y (6),
x (3)= —y(1)+y (2)+y (5)+y (6),
x (4)= —y (3)+y (4)—y (5)+y (6),
x (5)= —y (1)—2y (2)+y (5)+y (6),
x (6)= —y (3)—2y (4)—y (5)+y (6),

y (r) =a (r) exp(us)+b (r) exp( —us), r = 1,2, 3,4,
y(5) =a coscos +b sincos,

y {6)=As +8,

(46)

{47)

co =[6co(0)/c] 2 /(1 —[6co(0)/c] [a +b ]+2[6u(0)/c]

X [ 2[a (2)b (1)+a (1)b (2)+a (4)b (3)+a (3)b (4)]

+[a(1) b(1)+a(2) b(2)+a(3).b(3)+a(4) b(4)]])

u = [u (0)/co(0)]co, (49)
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u (0)= —
3 [co (R,O)+co (0)]'

A. Applicatioll of asymptotic boundary conditions
(selection rules)

(50)

We shall apply exactly the same boundary conditions as
we did for the four-constituent system, namely, (1) and (2)
of Sec. III. Constituents 1, 2, 3, and 4 pair up to form
free composites M(1,2) and M(3, 4) as s tends to —m,
and free composites M(2, 3) and M(1,4) as s tends to
+ QO ~

These conditions are met by putting

a(3)= —a(1), a(4)=a(1}+a(2),

b (3)=b (1), b {4)=b (2),

b (1)+2b (2)= —[a (1)+2a (2)] (58)

i
dx '"(5,6)/dx'" (5,6)

i
=1 .

We consider first the case when composite M(1,2),
M {2,3), and a zero-mass composite exist as free particles
at roB ———oo, and M(3,4), M(1,4), and a zero-mass
composite exist as free particles at toa ——+ oo. Examining
Eq. (56), we see that this implies

[d x'"(5,6)/dx'" (5,6}] [dx'"'(5, 6)/dx'"' (5,6}]=1.
(57)

This is satisfied for a "physical" 5-6 system only if it is a
zero-mass composite particle (defined in Sec. II) having
the same velocity, equal in magnitude to c, in the initial
alld flllal states. Tlllls,

[a (1)+2a{2)].[b {1)+2b (2)]=0 .

We then obtain the frequency

co =[6a)(0)/c] A /Wl —[6'(0)/c] [a +b ]I . (53)

Zbo(l)+b'(2) «, —b'(1)+b'(2) &o,

b(1)——Zb (2)&0, 2a (1)+a (2)&0,
—a (1)+a {2)&0, —a (1)—2a (2)&0.

The asymptotic four-vectors satisfy

dx'"(5, 6,s)/ds i, „=dx'"'(5,6,s)/ds i, +„

(60)

—,[x(3)—x(2)]—+ —,[x (1)—x (4)]

—+Q coscos +b slncos

as s ~+ oo, while the relative vector for the 5-6 system is

—,
' [x (5 )—x (6)]=a cosmos +b singes, (55)

for all s. This last relation follows from condition (52)
alone.

We define the asymptotic four-vectors x(ij,s) for the
COITipositcs

The separability of the composites follows from the elim-
ination of the arbitrary constants a (r) and b (r) from the
frequency, which describes the internal motion of each
composite.

Asymptotic relative vectors are now proportional to the
oscillatory terms alone:

—,
' [x (1)—x (2)]—+ —,[x (3)—x (4)]

~Q COSQPS +b' SIIM)S

[dx (1,2,s)/ds +dx (2, 3 —s)/ds] ~,

=[dx(3,4, —s)/ds+dx(1, 4,s)/ds] ~, +„.(62)

Identifying the composite states as two-body
harmonic-oscillator systems, as in Sec. IH, we write

dx (i,j)/ds=(co/G)M{ij )/I 1 —[v(ij )/c] I'~~ .

From this and Eqs. (61) and (62}, it follows that energy
and momentum are separately conserved for the 1-2-3-4
system and the 5-6 system. One can verify similarly that
angular momentum is conserved separately for the two
systems. Note that the composites have equal spin, name-
ly~

j =cGa)&b . (64)
Summarizing the solutions for the asymptotic velocities,
wc have

v(1, 2)/c =[2b(1)+b(2)]/[Zb'(1)+b'(2)],

v(2, 3)/c = [—a(1)+a(2)]/[ —a'(1)+a'(2)],

x (1,2,s) —= [2b (1)+b (2)]exp( —us),

x (2, 3,s)—:[—a (1)+a (2)]exp(us),

x (3,4,s) =—[ b(1)+b (2)]e—xp( —us),

x (1,4,s)—:[2a (3)+a (4)]exp(us)

(56)

v(3, 4)/c = [—b(1)+b(2)]/[ —bo(1)+bo(2)], (65)

v{1,4}/c = [Za(1)+a(2)]/[2ao(1)+a'(2)],
v '"(5,6)/c = v '"'(5,6)/c

=[a(1)+2a(2)]/[a (1)+2a (2)]

x'"(5,6,s) = [b (1)+2b (2)]exp(——us),
x'"'(5,6„s)=——[a (1)+2a (2)]exp(us) .

Condition (52) can be reexpressed as

b (1)+2b (2)= —[a (1)+Za (2)] .
If we assume that the velocities v(1,2}, v(2, 3), v(5, 6),

and the energies E(1,2), E(2,3), E(5,6) are given by the
Init1al conditions, wc may express thc vclocIt1cs of thc
outgoing composites as
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v(3, 4)/c = [ [v(1,2)/c]+ [E(5,6)/E (1,2)][v(5, 6)/c)] ] /[1+ [E(5,6)/E (1,2)]), (66)

v(1,4)/c = [[v(2,3)/c] —[E(5,6)/E(2, 3)][v(5,6)/c] J/[1 —[E(5,6)/E(2, 3)j] . (67)

Their cnclglcs Rrc given by

E(3,4) =E(1,2)+E(5,6),

E{1,4)=E(2,3)—E(5,6) .

Thus, as the energy of the 5-6 composite tends to zero, the
model describes elastic forward scattering. Conversely, if
the incoming and outgoing masses, respectively, are equal,
i.e., M(1,2)=M(2, 3) and M(3, 4)=M(1,4), then Eqs.
(66) and (67) imply E(5,6)=0, M(1,2)=M(3,4), and
therefore, once again forward elastic scattering.

On the other hand, if the energy of the zero-mass sys-
tem tends to infinity, i.e., if

E (5,6)/E (1,2)~E{5,6)/E (2, 3)—+ oo,

M (3,4)~M (1,4)~0,
or the model can be interpreted as describing the annihila-
tion of the composites 1-2 and 2-3 and the production of
two zero-mass composites.

In sumInary, the model of the previous section has been
cxtcndcd to describe 1nclRstic scattcI1Ilg of two composites
at arbitrary angle. This was accomplished by introducing
two additional constituent particles which are forced by
the selection rules imposed on the original system to pair
up 1Qto a zero-mass coInposltc particle. Th1s composite
plays a veIy peculiar role: The physical initial conditions
on it and the two massive composites determine the final-
state masses and scattering angle of the two-composite
system, yet the space-time conservation laws continue to
hold separately for the two systems at toq ——+ oo. We
should stI'css, howcvcI, that thc zero-1TlRss composite 1s
not a "spectator" to the scattering process; it partakes of
1t but coIncs out unscathed, so to speak.

In Sec. IV solutions were obtained for a six-constituent
harmonic-oscillator system which described two-particle
scattering. The same solution can be used to describe the
decay of a single composite by replacing the positivity
conditions (60) by the following set:

—2b (1)—b (2) &0, —a (1)+2ao(2) ~0,
b{1)+b—(2)&0, 2a (1)+a (2)~0,

—b (1)—2b (2)~0, a (1)+2a (2)~0.
(70)

Now the energy-momentum conservation law (62) is re-
placed by

It is interesting to note that according to our usual ways
of interpreting scattering data, observation of the initial
and final states of this two-composite scattering process
alone would not suggest the existence of a third particle,
since energy, momentum, and angular momentum are
conserved (also let us recall that the impact parameter is
not measured in high-energy scattering experiments).

It may be argued that the six-constituent model is an
artificial one which does not accurately describe particle
scattering, at least in our universe. However„ the above
result is nontrivial. Our experience with solutions to non-
relativistic scattering problems leads us to expect that the
scattering angle is a function of the initial orbital angular
momentum, but we see that that need not be the case.

Thc six-constltucIlt model remains incomplete s1ncc 1t
cannot, for example, explain elastic scattering at arbitrary
angle. The question arises whether it is possible to con-
struct a model which will provide for arbitrary scattering
angles for fixed final-state masses. We "cured" one prob-
lem by going from the four- to the six-constituent system.
It may be possible to obtain more realistic models by the
introduction of larger numbers of constituents and cou-
pling s.

V. DECAY GF A COMPGSITE PARTICLE

dx(1, 2,s)/ds i, „=[dx(2, 3,s)/ds+dx (3,4, —s)/ds+dx (1,4,s)/ds] i, {71)

v (3,4)/c = [3b(1)]/[b (1)—b (2)],
v(5, 6)/c =[—3b(1)]/[b (1)+2b (2)] .

(73)

That is, the 3-4 composite is emitted in the direction op-
posite to the velocity of the 5-6 zero-mass composite.

Thc solutions still take thc form (65). However, if wc ex-
amine the solution in the rest frame of the 1-2 composite,
we obtain

b(2) = —2b(1), a(1)+2a(2) =3b(1),
and lt follows that

&n this case, the initial conditions, i.e., v(1,2), E(1,2),
v(5, 6), and E(5,6), are not enough to uniquely determine
thc decay pIoccss.

DISCUSSION

In the preceding sections, a formalism was developed to
describe relativistic many-particle systems. This formal-
1sm 1s based oIl R Lagrangian wh1ch 1s R function of a s1Q-

gle parameter s which is not in general identified with the
physical clock. ThcI'cfoI'c thc conscI'vat1on laws wh1ch
arise from Lorentz invariance yield constants in the pa-
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rameter s, but not necessarily in terms of the physical
clock. Thus, it is an interesting feature of the model con-
structed for composite scattering that the space-time con-
servation laws are not imposed separately, but follow au-
tomatically after requiring the constituents to pair up into
free composites as s tends to +oo. A second unusual
feature is the appearance of a zero-mass composite which
participates in the two-composite scattering without af-
fecting the space-time conservation laws of either system.
Along with the initial conditions on the incoming massive
composites, it determines the scattering angle and the
final-state masses. The internal motion of the various
composite particles are determined by parameters in-
dependent of external kinematic variables.

The six-constituent model exhibits several interesting
properties which suggest that further investigation of the
formalism is warranted. It was pointed out in Sec. IV
that although this is a classical model, it already has taken
on features we usually associate with a quantum field
theory, namely, (1) annihilation and creation of particles
(both constituents and composites can be interpreted as
undergoing such processes), (2) composite interactions
describable in terms of exchange of constituents which are
off the mass shell, (3) the fixed ratios of the internal angu-
lar momenta of the composite particles (the value being
unity in this particular model). The model is not a "quan-
tized" one, however, for although the ratios of the spins
are fixed, there is nothing in the model which determines,
for example, the angular momentum in units of fi

Before attempting to quantize this particular model, we
suggest further investigation of the formalism. For exam-
ple, X ~ 6 and more than two coupling constants might
present interesting solutions. (One simple extension of the
model consists of replacing the 5-6 system by another
four-constituent system. ) Examination of the frequency
conditions (elimination of external kinematic parameters
in the description of internal motion of composite parti-
cles) and application of asymptotic boundary conditions
(selection rules) lead to constraints which determine the
properties of the system.

vector. In this appendix, we examine the case when we
impose the additional X —1 constraints

H =cP =Mhc (A2)

P= g p(a), (A3)

(A4)

N
K=h g m(a)x(a) —t g p(a),

where

p(a) =m (a)h —x(a) (A6)

and h in terms of the conjugate momenta p(a) is given by

X 1/2

h = V+(1/Mc ) g p (a)/m(a) . (A7)

The three-vector PB relations for H, P, J, and K, corre-
spond to the Lie algebra of the Poincare group, and the
center-of-mass coordinate X satisfies the canonical PB,
i.e., it transforms as a Lorentz four-vector. However, the
position vector x(a) does not transform in the canonical
manner under an arbitrary Lorentz boost.

The equations for K and P express the fact that the
center-of-mass velocity is constant. Thus, the angular
momentum assoriated with X is constant:

J (c.m. ) =X )& P =const . (A8)

Let the angular momentum associated with the internal
motion be denoted by j, where

x (a,s)=cs, a =1, . . . , N —1.
%e call the resulting solutions the equal-time solutions,
and write s =t, where t is the observer's time.

The Lorentz generators (7) and (8) become constants in
time, and we may express them as
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j = J —J(c.m. ) .

The internal angular momentum j has vanishing PB with

H, P, J, and K, and obeys the PB for the rotation group.
Consider now the equations of motion (11) in Sec. I.

For the equal-time solutions, they become

x(a, t)= —[1/m(a)h ]

X g fr)V b[(x(a) —x(b)) ]/r)x(a)j,

APPENDIX: EQUAL-TIME SOLUTIONS
IN THE CENTER-OF-MASS FORMULATION

In Sec. I, the general c.m. formulation of classical parti-
cle dynamics was developed for an arbitrary scalar poten-
tial V. Parametric invariance allowed us to impose a sin-
gle constraint on the system which we chose to be X =cs,
where X is the fourth component of the center-of-mass

h = Mc+QV b~
a~b

N

g m(a)c [1—v (a)/c ]

(A 1 1)

When c tends to infinity, h tends to unity and (All)
reduces to the nonrelativistic equations of motion.
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We consider below two examples of equal-time solu-
tions for a two-body system.

with

h =(1+2pG/c r)/(1 —V /c —p, v /Mc~) (A21)
1. Two-body harmonic oscillator, unequal masses

(V =dXjdt, v =d xjdt). The solutions can be written
Put r =(h j /GMp )(1—ecos8) (A22)

V=1—(coo/c )(x,—x2)

ln Eq. (2). The solutions are

x& Vt +——B+(mz/M)( a coscot +b sincot),

x2 Vt +——B—(m ~ /M)( a cosset + b sincot),

with

co=~o[(M/p)(1 —V /c )]'i /[ 1+(2coo/c)

X(a '+ b ')]'",

(A12)

(A13)

ro=(h j /GMp )(1+e') (A25)

J =pl' 0=const,

where e is the eccentricity (a constant) and

h =I1—(Gp/c )(1 e) j—[r(1—ecos8)]I j(1—V /c ) .

(A24)

In the center-of-mass system, V=O and the maximum
velocity of the relative mass p occurs at minimum radius
r =ro, where

where V =dX/dt, and p is the reduced mass. From Eqs.
(7) and (9), the total mass of the system is found to be

M(1,2)=M[1+(2ri)0/c) (a +b )]'

%e can write

J =p~oUmax

2. Two-body inverse square law
h =[1—Gp(1 —e)/c ro] . (A27)

Defining the relative vector x and center-of-mass vec-

tor X,

X=(m& x&+m2x2)/M,

we choose the potential

12 (pMG) j
I

x
I

The center-of-mass vector X obeys

Combining these equations yields, for the maximum ve-
loc&ty Umax ~

U,„'=GM(1+a)/Irp[1 —Gp(1 —e)/c ro] I . (A28)

It is interesting to see at what radius ro the "particle" p
exceeds the velocity of light. Setting v~,„=c,and solv-
ing (A28) for ro, we obtain, in units of the Schwarzschild
radius Rg,

r, = 2[(1+p/M-)~e(1 p/M)]Z, —(U,„=c),
where

~ ~

X=O. R, =26M/c (A30)

i'=r8 = —(GM) j(hr)

d(v 8)jdt=0

(A19)

For motion in a plane, in cylindrical coordinates, the
equations of motion for the relative coordinates become

ro=(Gp je )(1—e), u (A31)

In other words, the particle p will have velocities less than
the speed of light for distances greater than, roughly, the
Schwarzschild radius of the body of mass M.

The positivity of U,„alsoplaces a limit on the dis-
tance of closest approach:
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