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The connection between nontopological solitons, Green's functions, and bound states is demon-

strated using the functional-integral representation of quantum field theory. In the process we put
into clearer perspective recent work relating nontopological solitons and Green's functions. %e con-
sider the familiar system of a self-interacting scalar field coupled to a set of independent fermion
fields, although the arguments can be extended to other systems with conserved charge(s).

I. INTRODUCTION

It is important to search for and study extended objects
in quantum field theory (QFT), since hadrons appear to be
extended systems of bound quarks. The quarks seem con-
fined to the inside of hadrons. In the quantum chromo-
dynamics (QCD) theory of strong interactions the gluon
self-interaction is thought to give rise to this confinement
mechanism.

A simple system which can reasonably be regarded as a
primitive form of QCD is that of a (quartically) self-
interacting scalar field coupled to a set of independent fer-
mion fields. The scalar field replaces the gluon fields,
with a scalar self-interaction instead of a vector-gluon
self-interaction. The different fermion fields are analo-
gous to quark fields of different flavors and colors. For
this reason the system has received considerable attention
in the literature. In particular, nontopological-soliton
equations for this system have been obtained by indepen-
dent approximation schemes. ' These equations have
been studied analytically' and numerically, and it has
been shown that for appropriate choices of parameters
they have localized solutions, referred to as either nonto-
pological solitons or soliton bags. Both the MIT and
SLAC bag models of hadron structure can be obtained as
limiting cases of these nontopological solitons (soliton
bags).

We recently showed that these nontopological-soliton
equations can be obtained from the functional-integral
(FI) formulation of QFT when chemical potentials are
added to select the fermion numbers for the system. Sub-

sequently, we found that these equations also arise when
we ask about certain properties of the fermion Green's
functions. It is the purpose of this present paper to clari-
fy and further develop the connection between nontopo-
logical solitons and fermion Green's functions, and to
demonstrate the role played in this by the fermion bound
states of the system.

In Sec. II we introduce the necessary FI formalism and
obtain a general stationary-configuration equation for fer-
mion Green's functions. In Sec. III we expand the fer-
mion Green's functions in terms of a complete set of
momentum eigenstates and show how bound-state contri-
butions can be isolated. Finally, in Sec. IV we show that
the nontopological-soliton equations arise as time-
independent stationary-configuration equations in a FI
representation of these contributions to the fermion
Green's functions.

II. FUNCTIONAL-INTEGRAL FORMALISM

We work in Minkowski space and, as before for this
system, appeal to the Euclidean formulation when it is
convenient. It is well known that the Green's functions of
a system are just the vacuum expectation values (VEV's)
of time-ordered products of field operators and that they
can be obtained by successively differentiating the gen-
erating functional with respect to the sources and then
setting the sources to zero. Let n be the number of fer-
mion fields. The generating functional is denoted
8'[j,rl", 7) ] (where rl" is to imply g ', . . . , ri", etc.) and
is given by

k~ ykexp(iS [y q
k qk J ti k rik] )

f Q'P f Q &@"&P"exp(iS [P,Q ",f"] )

where the action S[ . ] for this system is

S[W&0 &p &J&'ti &'9 ]= f d x , d„ptl"p &(p)+j p—+ g [g—(i)'"8 —m gp)g +r7 p +p —g ]+counterterms
k=I

For convenience we define the absolute minimum of the scalar self-interaction U(P) to be at / =0. We will be restrict-
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8'fg",g"]= (2.3)
exp / S —/n Tr LQ —Gg

1ng our attention to Green s functions involving fe~ions only and so can set the scalar source j(x) to zero The fession
functional integrations can be carried out to yield

I' T'

f uyexp i S[y] in—TrLn[( —Gy')-'] —g f d'x f d'y rikGrik
k=1

where S[P] is just the scalar part of the action,

S[0]=f d'x[ —'dl 0d"0 «—4)j

and G [P], actually a functional of P, is defined by

(2.4)

G fP)(y, x)=[{iy"d„m——gg)5 (u —U)] '(y, x) . (2.5)

The spinor indices on G [P] have been suppressed and for convenience spinor indices will be suppressed in all that fol-
lows. We have given the above arguments in more detail elsewhere. The form of Eq. (2.3) implies that only VEV's with
equal numbers of P" and P operators'for all k= 1, . . . , n will be nonzero. This is a manifestation of ferrnion-number
conservation. To illustrate this consider the single-fermion-field case (n = 1),

J
(O~ T(g(y~) . g(y, )f(x~) f(xk)) ~O) =

/

'+k
w[g, g]

5g(y~ ) 5g(y )5'(x~) . . 5g(xk)

(2.6)

again suppressing spinor indices. Using Eq. (2.3) it is clear that the right-hand side (RHS) of Eq. {2.6) is zero unlessj=k. Thus only m-fermion-to-m-fermion Green's functions are nonzero and are given by

(O( T(y(y]) . . y(y )y(x )
. y(x$)) ~O)

f NP(iG) (y), . . . ,y, x), . . . , x )exp(iIS[P] iTrL—n[( —Gyo) ']I)
exp/ S —/TrLn —Gyo 1

where we have defined

(2.7}

(iG} (y~, . . . ,y, x~, . . . , x )= g g cj, (iG(y&,x, )) (iG(y, x )), (2.&)

S.rr[0]=S[kj in T«n[{——G)') '1

n

i ln +—(iG)
k=1

(2.10a)

and where ej, J is the antisymmetric tensor. There
are of course no summations over the suppressed spinor
indices in any of the above expressions.

We now generalize Eq. (2.7) to the n-fermion-field case
and exponentiate all the (iG) terms, which gives

exp iS,~~

(Of T( . . ) fO) —— (2.9)
exp iS,~~

5S.rr[4] =0.
5${z)

These are expected to be important configurations in the
FI in the sense that we expand about these configurations
when making a semiclassical approximation to the FI.
Up to the present we have ignored renormalization prob-
lems and the associated counierterms. We follow our ear-
lier treatments ' and assume that the divergent
Tr Ln[ . . ] terms, referred to as the fermion-loop contri-
butions, are a negligible effect after any necessary renor-
malizations. We thus arrive at the general stationary-
configuration equation for the (nonzero) fermion Green's
functions (neglecting loop effects),

S.rr[0]=S[0]—in T«n[{—G)") '1.
For brevity we have omitted writing in the fermion field
operators and their respective space-time indices. We can-
not evaluate the remaining scalar FI. However, we can
inquire about the stationary configurations of S,rr[P].
These are configurations P, which satisfy

B„B"P(z) U'(P(z)—) —i g [(i—G) "( . }]

X
mk(iG) '( )

5$(z)

(2.11)
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where the (iG) "( ) terms written more fully are

(iG) "(y, y x~ x )

topological $0 cannot give rise to any zero eigenvalues in
Eq. (2.13), i.e. e~&0 for any a. By nontopological we

Usjng de fjnjtjon (2.5) we note that

Iio[gj(y, x) j = —ig(iG[P](y, z))(iG[P)(z,x)),

(2.12)

where the RHS of Fq. (2.12) is a matrix multiplication
with respect to spinor indices.

We shall restrict our attention to a study of time-
independent nontopological stationary configurations,
since only then are we able to give 6[/] a usable form.
Write $0(x) for time-independent P(x) and consider the
eigenvalue equation

I
—icy p'+)33[m+ggo(x)]I+ (x)=e vj (x) . (2.13)

The operator in Eq. (2.13) is Hermitian and so the e~ are
real and the P~(x) are orthonormal. Note that if e~ is an
eigenvalue, then so is —e and so we define e = —e .
Friedberg and Lee' and Nishimura have shown that non-

iG[go](y, x)= gsgn(e )9(E (yo —xo))

XP (y)P (x)e (2.14)

where sgn(x)=+1, 0 or —1 when x is positive, zero, or
negative, respectively, and where the step function 0 is de-
fined

0(x) = —,
' [1+sgn(x )] .

Consider the simple case of one fermion field (n =1)
and say m=1. We then have for Eq. (2.11), for time-
independent {nontopological) P,

lim Po( x )=0
x

I
~ot)

[recall /=0 is the minimum of U(P)]. Using spectral
decomposition it can be shown that we can write for non-
topological $0

—& Po( z )+ U'($0( z ) )

—gg gsgn(e )sgn(ep)0(e (y —z ))0(ep(z —x ))
a P

X e e (g.(z)g&(z))p.(y)g~(x) gsgn(e )8(e (y —xo))

X e g (y)g (x) (2.15)

where spinor summation is implied in the (g (z)P~(z))
term in the numerator. Clearly the RHS of Eq. (2.15) is
time dependent (z dependent) and so there can be no
solutions to this equation. This, of course, is also true for
all choices of n and m. Thus there are no time
independent nontopological stationary configurations for
the fermion Green's functions. In fact we expect no
time-independent stationary configurations at all, since
explicit times (by definition) appear in all Green s func-
tions.

In our previous work relating Green's functions and
nontopological solitons we found that certain amplitudes
formed from the fermion Green's functions had time-
independent stationary configurations and that these were
in fact given by the nontopological-soliton equations.
These amplitudes were formed by projecting out parts of
the Green's functions (using only spatial and spinor labels)
and then taking the explicit times to + oo. %Kith regard to
the simple example of Eq. (2.15) the effect of the former
operation was to select out a single f (z)g (z) term and

the effect of the latter was to remove the step functions, 0.
The remainder of this work will be devoted to demon-

strating that nontopological solitons arise from looking at
bound-state contributions to multifermion Green's func-
tions.

III. BOUND-STATE CONTRIBUTIONS

We now need to expand the fermion Green's functions
in terms of a complete set of normalized momentum
eigenstates. ' We illustrate the expansion for a particular
example. Consider the Green's function given by

(0
/

T(P'(y;)P(y, )@"(yk)g"(xk)g'(x, )f'(x;))
/
0), (3.1)

and let us initially restrict our attention to the region
y;,yj,xk ~x;,x&,yk. This is the region with which we as-
sociate the fermion numbers X'=%~=1, X"=—1. We
consider this example since it is sufficiently general to il-
lustrate the essential features of our argument. The
Green's function (3.1) in this region can be written

(0
~

T(g'(y;)P(yj )g"(yk)gk{xk)t7j (xj )Q'(x;))
~
0)0(min[y;, yj,xk] —max[x;, xi~,yk])

= —(0~ T(g'(y;)P(yi)P (xk))T(g (yk)1i J(xi)g'(x;)) ~0)0(mjn[y;, yj,xk] —max[x;, x~,yk]) . (3.2)
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Inserting a complete set of momentum eigenstates gives
for (3.2)

f d PH(P )5(P M—)Jtz, (y;,VJ,xk)

&&&J'I (xi~x& ~yk )

X e(min[y, yo, xko] —max[x, ',x,',y,']),
(3.3)

where we have defined

X (y;,y, , k)=(0~ T(f'(y;)P(VJ)g ( )) ~P, ),
X,(;, J,y )=(P,

~

T(g"(y )gJ(, )g'(;)) ~0) . (3.4b)

In (3.3) we sum over all masses M (i.e, sum over all eigen-
values of the P operator), sum over the corresponding

n~ degeneracies, and integrate over all (positive-energy)
eigenstates on the appropriate mass shell. The I' integra-
tion can be carried out to yield for (3.2)

d I'
Q ~PP(yl ~VJ~ k ~PP( l'~~J~yk )

r

a)p ——+(P +M )'~

We now introduce Q;, Q~ and Qk which satisfy
0 Q Qi, Q~, Qk ( 1 and Qi+Q~ +Qk = 1, but Rr'c othcIwlsc ar-
bitrary. %C define

F=Qigi +Qjpj. +QkXk

X =QiXi +QJXJ +Qkpk

x; =x; —+, y,.
' —y.

etc., where X and F are analogous to "center-of-mass"
coordinates and where x,y, etc. , are the corresponding
relative coordinates. Translational invariance allows the
center-of-mass coordinates to be factored out. This means
that we can make the definitions

Xp (y;,VJ,xk ) =(2w) e ' gp„(y,y', xk ), (3.6a)

)(8( m1n[V~, VJ~, xk ]—max[x;, xj,yk ]), +pp (xitxJPyk ) (2w) e Xpp (xi t xj t yk ) (3.6b)

(3.5) where I' here is to imply coP. Hence, we have

(0
I

T(y'(y )p(VJ)qk(yk)g ( k)QJ(xJ)p'(x ))
~
0~0(min[y;', y, xk] —max[x;', x,',yk])

3d P 1 —iP (F—X)= —X (2~) 2~p

XO(Y' —X +min[V, VJ', xk ]—max[x, xj',yk ]) . (3.7)

0(z) = —1

2&i
—ik z1

and changlIlg vallables k~P ~p finally gives

(0
~

T(Q'(y;)p(VJ)g"(yk)g "(xk)g'(xJ)g'(x;))
~
0)8(min[y;, y~, ko] — [,o, ,o yo])

e
2'rr) „ i 2cop(P —cop + I 6)

(3.8)

Xp„(y;,VJ,xk ) =exp[ i (P cuI*)mm[y—/', yJ—,xk ]]gz,(y,y', xk ),
0

Xp, (x,xJ',yk ) =exp[i(P —cop)max[x, x',yk ] IXi„(x,x',yk ) .

(3.9a)

(3.9b)

It is obvious from Eq. (3.8) that each mass M in the
momentum spectrum has poles at P =+(P +M )' in
thc sRDlc way Rs thc free sHlglc"particle Careen s functions.

Had we instead begun with the region x,o,x,'. ,y,'~y,o,

yj,xk, which we associate with X'=Ã~= —1 and X =- j.,
we would have found the poles to be at
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P = —(P +M ),wlllcll clca1'ly Is tllc Rlltlpal"tlclc vcl-
sion of the previous case, as we would expect. Each
momentum eigenstate

~

I', r) will lie in one or another
fermion-number sector. These fermion-number sectors
are labeled by the eigenvalues X (k =1, . . . , n) of the
different fermion-number operators. Because of fermion-
number conservation we clearly exPect Xp„——Xpr ——0 [see
definitions in (3.4)], unless

~
P, r) lies in the N =XI= 1,

X = —1 fermion-number sector.
We will be interested in the minimum-energy eigen-

states of each fermion-number sector, which we will refer
to as the sector ground states. These will be the eigen-
states of each sector for which P=O and M =Mo, where
M0 is to denote the smallest mass in the relevant sector.
A sector ground state may not be a bound state of all the
fermions. However, if a bound state of all the fermions

can exist in a particular sector, then ihe sector ground
state will be such a bound state at rest.

For our purposes Eq. (3.7) is of a more useful form
than Eq. (3.8), [Note that we return to Eq. (3.7) from Eq.
(3.8) by integrating over I' .] In Eq. (3.7) we have a factor
exp[ —iruP(Y —X )]. Thus we see that if we analytically
continue from Minkowski to Euclidean times

0 . 0(xj ~—Ixj4,yj ~ iyj—4 etc.), and examine the behavior of
the Euchdean form of Eq. (3.7) as we approach the limits
I"4~oo, X4~—oo, then the coP ——Ml) (I.e.,
P=0,M =Mo) contribution will completely dominate. "
The relative Euclidean times (xj'4,yJ4, etc.) are to remain
constant when taking these limits. More precisely for in-
creasing (I'4 —X4) the Euclidean form of the RHS of Eq.
(3.7) approaches

1R (Mo, Y4,X4)
2m

. Q&Pr{yi «yj «k)&Pr(Xi «Xj «yk) .
0 y.

P =0
M =Mo

(3.10)

where [
.

J@ is used to denote analytic continuation to
Euclidean space and where we define

R(MO, F4,X4)= y d Pexp[ —(P +Ms )'~ (F4 —X4)] .
(3.11)

This argument makes the reasonable assumptions that Xp,

and XPr of Eq. (3.4) can be analytically continued in time
RIld tlIat tllcy Rl'c continuous funct1ons of P (Rt least Rt

P=O). We note that Mo can in principle be deduced
from the dependence of the Euclidean Green's function on
( Y4 —X4) for sufficiently large values of ( I'4 X4)—

From Eqs. (3.7) and (3.10) we see that

2M0
QXpr(yi «yj «Xk )Xpr(Xi «Xj «yk )

P =0
M =Mo

lim 8 (MO, F4,X4) 'I (0
~

T(Iti'(y;)p(yj)g (yk)f (xk)p~(xj)g'(x;))
~
0) I@P4~ Oo

(3.12)

where t
.

IM denotes the analytic continuation back from Euclidean to Minkowski times. Both sides of Eq. (3.12) are
independent of the center-of-mass coordinates I'and X. Let us consider the sector ground-state contribution to the mul-
tifermion Green's function in Eq. (3.7),

1 1

2' 2M0
g~pr(yi «yj «Xk )Xpr(Xi «Xj «yk )

—iMo( Fo—Xo)

P =0

For brevity we omit the step function and simply assume that

(F —X ) &( i m[yn, yj, x] —kmax[x, xz', yk ]) .

Now using Eq. (3.12) we see that this sector ground-state contribution (3.13) can be written

lim R(M0, F4,X4) 'I(0
~
T(P'(y;)P(yz)g {yk)Ii« "(xk)I7iJ(xJ)g'{x;))

~
0) IE

Y4~ oo

—iMO( Ã0 —Xo)
e (3.14)
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Thus we have seen that from the fermion Green's func-
tion we can obtain the mass (Mo) of the sector ground
state, and subsequently isolate the contribution to this
Green's function from this sector ground state using
(3.14). Again we point out that this sector ground state
may or may not be a bound state of the fermions.

It is now a simple matter to generalize these arguments.
Had the roles of the x;,xj,xk and y;,y~,yk been exchanged
in the definitions of X and Y, we would have isolated the
corresponding antiparticle sector ground-state contribu-
tion, i.e., the contribution from the X'=XJ= —1, N =1
sector. If i =j, then we would have been in the X'=2,
X = —1 sector. Alternatively, if j =k, then we ~ould
have been in the X'=1 sector. %C access other fermion-

number sectors by considering different definitions of F
and X and/or different fermion Green's functions.

1»soiating the secto~ ground-state contribution (3.14)
to the Green's function of Eq. (3.'7), we made use of the
Euclidean form of the Careen's function, which we denot-.d by I &O

~

T( )
~

O& I., i.e., the anaiyti«ontinuation
of the Minkowski Green's function into Euclidean space.
The Euclidean Green's functions can be obtained from the
Euclidean generating functional by successive differentia-
tions with respect to the sources, just as for the Min-
kowski case. The Euclidean generating functional is given
by

cxp —~E & ~J~'g

(4.1)

n

Sz[0 0 0 j rl rl"1= f d x '
d„pd„p+U(p) jp+ g—[p "(y„d„+m+gp)g rl p" p—rjk—]+counterterms

(4.2)
We use the definitions y4

——y and yj —— iyj fo—r j=1,2,3. Setting the scalar source to zero and carrying out the fermion
functional integrations gives

?lf &/exp —Sz[P] nTrLn[(Gzy4—) ']—Q f d x f d4yg "Gzgk
k=1

exp —SE —n Tr Ln Gzy4
(4.3)

Sz[O]= f d4x[2~„0~„4'+«4')] (4.4)

Gz[P](y,x)=[{y„B„+m+gg)5 (u —U)] '(y, x) .

For the single-fermion-field case we have, in analogy to Eqs. (2.6) and (2.7),

g+k
&Ol T(4(yi) . 4{yj)0(xi) P(xk)) lo&z =(—1)'

5rl(y)) . . 5r)(yj)5g(x)) . 5g(xk)
(4.6)

&oI T{&{yi) ''y{y )P(x ) ' y(»»~0&z

f WP(Gz) (y~, . . . ,y, x~, . . . , x ) exp( —ISz[P]—TrLn[(Gzyq) ']I)
exp —SE —Tr Ln GE@4

(4.7)

where T implies Euclidean t11Tlc ordering, %'herc thc sub-
script E on the VEV is a reminder that times are Euclide-
an times, and where (Gz)~( . ) is defined by the analo-
gous form of Eq. (2.8).

Thus for n fermion fields we have, in place of (2.10a)
and (2.11),

(neglecting fermion-loop
stationary-configuration equation

(4.8)

contributions) the

S,r[P]=S [P]—n TrLn[{G y„)-']—ln + (G )
"
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n—a„a„y( )+U(y( ))—y [(G, ) "{-
k=1

write, similarly to Eq. (2.14),

Gs[tIjo](y,x)= gsgn(e )

X (G~) "( )
5 z X &(E (y4 x4—))g (y)f (x)e

(4.9)

As in Sec. II we will need to restrict our attention to
time-independent nontopological stationary configurations
only, since then using eigenvalue equation (2.13), we can

(4.10)

For tllc purposes of lllustlatloll wc agalll collsldcl tllc sim-

ple case of one fermion field (n= 1) and m= l. Then, cor-
responding to Eq. (2.15), we have

—g'y, (z)+ U'{P,(z))

= ' —g g gsgn{e )sgn(cp)8(~ (y4 —z4))&(&p(&4 —x4))
a P

x e"" 'se +4 +'(g (z)g)I(z))P (y)gp(x) gsgn(c )0(c (y4 —x4))e ' 'g (y)P (x)

(4.11)

where this equation has no solutions $0. This is of course
also true for all choices of n and m. Thus as before, there

can be no time-independent nontopological solutions of
Eq. (4.9), and in fact we expect no time-independent sta-

tionary configurations at all.
As already stated, the Euclidean Green's functions are

the analytic continuations of the corresponding Min-

kowski Green's functions, i.e.,

(0[T( ~ ~ ~ )[0) —I«[T(" )]0)J,
in our notation. We now use this to inquire about the sec-

tor ground-state contributions to the fermion Green's

functions, which are given by

lim R {Ma,Y4,X4) 'I(0
~

T( ~ ~ ) ~0)]I@
F4 —+ oo

X4~—00

—&m, (z' —x')
Qe (4.12)

for the m-fermion-to- m-fermion Green's function

(()
~
T( ~ . ~ )

~
0). Thc fermion-number sector under con-

sjdelatjon is determined by the definitions of Y and X.
See, e.g. , Eq. (3.14). Sjnce we do not know the Green's

functions we can hardly use them to isolate these sector
ground-state contributions (4.12). However, we can make

use of the FI representation to yield some useful informa-

The statjonary-configuration equation for the FI
representation of R(Mo, Y4,X4) 'I(0~ T( ' ) ~0)lx ls

just given by Eq. (4.9), since R has no functional depen-

dence on p. Then clearly the stationary configurations of
Eq. (4.9) in the limits Y'4~ ao, X4—+ —co are expected to
be ilnportant (in the sense of the semiclassical approxima-
tion) to the sector ground-state contributions of Eq. (4.12).

For reasons already discussed our considerations are re-

stricted to time-independent noniopological stationary

configurations. However, these are just the configurations
that we expect on physical grounds to be important to
unexcited fermion bound states at rest, and so this restric-
tion is no real i~convenience. We return to the simple
n= 1, m= 1 case of Eq. (4.11). This equation arises when
considering the Green's function

(0~ T(g(y)g(x)) ~0) .

There are only two possible choices of 1' and X, i.e.,
Y'=y, X=x, or Y=x, X=y. The first of these corre-

sponds to a choice of the y &x region for the fermion

Green's function and the fermion-number sector %=1,
whereas the latter corresponds to the x &y region and

the X = —I sector. Taking the limits Y4~ oo, X4~ —~
for Eq. (4.11) yields for the first choice of Y and X,

—&'$0(z)+ U'{$0(z))= —gal(z)pal(z), (4.13)

where g~=g~y =II'jjiL The second choice yields on the0

right-hand side of Eq. (4.13)

—g( —1)g I(z)pit l(z) .

For the example considered in Sec. III, -i.e., theX'=¹=I and X = —1(i&j&k) case, we again obtain
Eq. (4.13) but where now we have on the RHS

n—g g gn."y.'(z)py. (z)
k=1 a

n'1 ——n1 ——I,n 1
———1

k

and all others zero. This follows from the time-
jndcpcndcnt form of Eq. (4.9) aIld tllcsc 111111'ts. Ollc fll'st

obtains the appropriate generalization of Eq. (4.11) and
then takes the limits F4—+ ~, X4—+ —ao. Recall that
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where

I
—ia V'+p. [m +gpo(x)]I1("(x)=e tg(x), (4.15)

and where the index k on the eigenvectors g and eigen-
values E is to allow for the possibility of different fer-
mion masses m". If N is positive then n~ =1 for
a= 1, . . . , N", and if N" is negative then n = —1 for
n= —1, . . . , —X . But these are just the
nontopological-soliton equations with the associated fer-
mion numbers N", k =1, . . . , n and with the fermions

these limits are taken such that the relative Euclidean
times (xj'4,y~'4, etc.) remain finite. This means that the ac-
tual Euclidean times satisfy y;4, yj-4, xk4 —+ oo and x;&, xj-4,
yk4~ —Oo but with (y;4 —y~4), (y;4 xk—4), (y~4 x—k4) and
(x;4—x~4), (x;4—yk4), (x~4 —ykq) all remaining finite.

If for this example i =j or j = k, then we have the
X'=2, X = —1 case and the X'=1 case, respectively.
For these situations the limit procedure is not entirely
trivial, since for mk&1 the antisymmetric nature of
(GE) becomes apparent with a corresponding increase
in the number of terms. With a little care we obtain the
same equation as before but now with nI n'2 ————1 and
n ~

———1 if i =j and with n
&

——1 if j = k, which is as we
might expect.

These arguments can be extended to the general case.
For a fermion Green s function in a region with the asso-
ciated fermion numbers N for k =1, . . . , n, we can iso-
late the corresponding sector ground-state contribution
(4.12). Using the FI representation and ignoring
fermion-loop effects we find that we have the following
time-independent stationary-configuration equation for
this contribution,

n—V Po(z)+U'($0(z))= —g g gn "P" (z)PQ"(z),
k=1 a

(4.14)

sequentially filling the lowest "energy" states. Hence,
Eqs. (4.14) and (4.15) will somewhat loosely be referred to
as the ground-state nontopological-soliton equations.

Because Eq. (4.14) contains none of the explicit times
appearing in the original Green's function and because it
is (z4)-independent the return to Minkowski space

IM in Eq. (4.12) has no effect. Thus, the ground-
state nontopological-soliton equations play an important
role in the corresponding sector ground-state contribu-
tions to the fermion Green's functions.

It is also apparent that Eq. (4.14) contains none of the
original space coordinates, which has allowed the equation
to become space translationally invariant. This seems
natural in the sense that isolating the sector ground state
means isolating a state of definite momentum (P=O).
With a state of definite momentum we associate complete
uncertainty in position. We also note that Eq. (4.14) con-
tains none of the spinor indices present in the original
Green's function. These canceled from the equation at
the same time as the space coordinates.

V. CONCLUSION

The sector ground-state contributions to the fermion
Green's functions were isolated. We subsequently in-
quired about the time-independent nontopological station-
ary configurations arising from a FI representation for
these contributions and found that (neglecting fermion-
loop effects) these were the (ground-state) nontopological-
soliton equations. If a bound state of the fermions exists
in some fermion-number sector, then the sector ground
state is such a bound state at rest. Thus, for the system
studied here it is natural to associate nontopological soli-
tons with the corresponding fermion bound states. This is
of course as we might have expected, since a nontopologi-
cal soliton (soliton bag) is a mean-field model of such a
fermion bound state.
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