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Frames of reference attached to quantum-mechanical objects of finite mass are considered. A
consistent description of such frames is obtained which resolves a variety of apparent paradoxes as-
sociated with such a description. The main result of the present work is a formalism wherein the
principle of equivalence is extended to reference frames described by quantum states.

INTRODUCTION

In classical physics, the measuring device by means of
which information about a physical system is obtained is
always ignored. This is so because the interaction with
the system may always, in principle at least, be made as
small as desired. This approach has been carried over to
quantum theory. Here, certainly, it has been recognized
that due to the uncertainty principle, a finite quantum of
action, which is uncontrollable and unpredictable, has to
be exchanged during any interaction between object and
measuring device. But it has been argued that the measur-
ing device is sufficiently heavy so that the disturbance it
suffers as a result of these quantum exchanges could be
neglected, and the device be described as a classical sys-
tem. Thus, the separation between the observed system
and the measuring device seems, in this sense, justified in
quantum theory too. Still it is clear that in the quantum-
mechanical case there is a difficulty that does not arise
classically. We call it the paradox of the measuring de-
vice. To illustrate the idea involved, let us consider the
measurement of position.

Supposing a separation of the order ~x, is measured,
and an accuracy

Ax <<xg

is desired. From the uncertainty principle it follows that a
finite amount of momentum

Ap > A >> =
Ax X0
must be exchanged between object and measuring device.
If the mass of the measuring device is finite, it will be ac-
celerated during measurement by a finite, but uncertain,
amount, and after a finite period of time, the device’s po-
sition will become uncertain by

AX(T):AX(OH%{BT,

relative to a given external reference frame. This, in turn,
introduces a corresponding uncertainty into the separa-
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tion, and hence into the result of the measurement. But
then, the use of such a measuring device for repeated mea-
surements becomes impracticable. In other words, the
measuring device no longer fulfills those very ends which
are the reason for its existence.

By contrast, if the mass of the measuring device is in-
finite, the disturbances caused to it will tend to zero in all
cases. Hence, the above difficulty will not arise and it will
be described by classical physics.

The paradox of the finite-mass measuring device was
noticed early in the history of quantum theory, but has
remained an open question since.! As said, the measuring
device has always been considered a macroscopic system,
i.e., one whose mass is infinite, in which case this difficul-
ty does not arise.

Against this, two counterarguments can be advanced.
First, out of necessity any measuring device’s mass cannot
be but finite. Approximating it by an infinite mass consti-
tutes in truth a relative statement involving both the mass
and the energy exchanged between the measuring device
and the object of measurement. Hence, it is not hard to
envisage a measurement where the energy that has to be
exchanged is so large that the above approximation can no
longer be justly used.

Second, it appears as though there is an unavoidable
difficulty here, which is an outcome of the very nature of
quantum theory.

The real question that is being raised here concerns the
consistency of the quantum description. It seems as if the
theory is, in principle, unable to encompass the whole
universe in its description; that it cannot even be made to
consistently support the notion of a finite-mass observer
and that consequently it needs a classical-type theory to
augment it.

A measuring device may also be taken to define a
space-time reference frame.? This presents a somewhat
different viewpoint of its function, and one which touches
the issue at hand just the same.

In this work, we shall solve the problem of the con-
sistency of the quantum description relative to a finite-
mass measuring device, within the framework of nonrela-
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tivistic quantum theory. The central principle involved,
and which provides the key to the solution of the con-
sistency problem, is the principle of equivalence.

In this solution, a canonical description of a general N-
particle quantum system relative to a finite-mass reference
frame is given in closed form, by means of a covariant
Hamiltonian, together with the transformation law be-
tween different reference frames.

Besides solving the consistency problem, the solution
also constitutes an extension of the equivalence principle
to quantum theory, since a covariant description relative
to a quantum reference frame whose motion may be of the
most general kind is given.

In the following sections, two thought experiments deal-
ing in turn with the spatial and temporal aspects of the
paradox of the measuring device will be discussed (Secs. I
and VI). Following these (Secs. II—V), the full mathemat-
ical solution will be given.

I. SPATIAL ASPECT OF THE PARADOX
OF THE MEASURING DEVICE

In the present section a paradox involving quantum
reference frames (“observers”) will be discussed. Besides
bringing into focus the difficulties inherent in the pro-
gram of formulating a finite-mass reference frame in
quantum theory, it will also shed light on the fundamental
ideas involved in the solution of this problem.

Our example involves two reference frames, an “inter-
nal” frame O, an “external” frame O,, and a single parti-
cle Q. The reference frames both have finite mass. They
may each be thought of as laboratories containing rulers,
clocks, etc., all of which are rigidly attached to the walls
of the laboratory. Thus, a reference frame will here be
represented by a single degree of freedom, whose mass is
finite, and whose center of mass defines the origin. Con-
sequently, these reference frames may be put into a well-
defined quantum state relative to one another, which
would not be possible if the mass were infinite.

For the sake of simplicity, we shall restrict the discus-
sion here to a one-dimensional problem. We shall denote
observables by unprimed variables when referring to O,
and by primed variables when referring to O,.

Let us now return to the setup described above, includ-
ing two observers and a single particle, and consider the
set of all possible measurements therein. With regard to
these, it is necessary to make the following statement: It
should not be possible, by means of an experiment per-
formed within one given reference frame, to discover its
state of motion. This requirement is familiar from the
special and the general theories of relativity, but it ac-
quires here richer meaning, for in the present case the
states in question are quantum states. Thus, O; may be in
an eigenstate of position or of momentum relative to the
external frame. The above requirement then means that it
should be impossible, for an experimenter active inside
O,, to distinguish between these states. Since O may ei-
ther locate Q, or measure its velocity, while O, may either
measure the velocity of the center of mass of O, plus Q,
we observe that,

Av;=0and Ax;p =0, (1a)

where subscript 1 stands for Q, and subscript c.m. stands
for the center of mass of O, plus Q; or,

Ax,=0and Av;p =0 (2a)

That is, the particle’s velocity and the position of the
center of mass of O; plus Q, or, alternatively, the
particle’s position and the velocity of the center of mass of
O, plus Q, may be simultaneously sharp. It is entirely
equivalent to the above to observe that

[Xem.,v1]=0, (1b)
[Vem.,X1]1=0. (2b)

Let us now calculate the left-hand side in (1b). With
vy =p,/m, and using the notation given above, and
mix]+Mxo .
’ —— R 3
Xcm., M m, (3)

where m; and M, are the masses of the particle and of
O, respectively,

Xp, =—Xo, » 4)

xj=x;+Xp =X —Xg, » (5)

the left-hand side in (1b) can be rewritten
—Mxo,+m(x;—x0,) p,

M+m1

i
) == .
my M1+m1

#0 (6)

unless M; = . A similar result can be shown to follow
in the case of (2b). This is the paradox of the quantum
reference frame. It seems to preclude the possibility of a
consistent formulation of a finite-mass reference frame.
We shall now show that this is not so and that the para-
dox can be resolved.

The clue to its solution comes from the canonical
description of a particle under the influence of a force,
which includes, in the most general case, both vector and
scalar potentials. While in classical physics only the force
is regarded as a basic physical quantity, and the potentials
as auxiliary quantities, in quantum theory they are neces-
sary even in the absence of a force. Let us then put

mv;=p+m4 (7)

with the objective of finding a vector potential 4 that will
restore the commutation relations (1b) and (2b). However,
and this constitutes the central idea in the solution, be-
cause there should not be any one preferred reference
frame, we shall put the two frames, the internal and the
external, on equal footing, i.e., we shall demand

mvi =pi +mA’, ®

and where, in particular, 4’ must be the same function of
variables in O, as is 4 of the corresponding variables in
0,.

We proceed to calculate A by substituting (7) into (1b),

D1

xc':.m.la'_n:‘f'A =0. (9)
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Using (3), (4), and (5) above it follows that the most gen-
eral solution for 4 must be of the form

A =ap;+Bpo,+f(x1,%0,)+C .

We further may choose f=0. We find that (see Appendix
A)

e Sfilm,My)
—_———Ml
and
B_ fZ(ml’Ml)
_-—————-—-M1 ,
or that
pr SilmuMO)pyi+fa(my,My)po,
v =—+ +C. (10a)
my M,

To find f, and f5, in the spirit of the foregoing discus-
sion, one has to turn the particle Q into an observer as
well, defining a third reference frame, the ‘“double
primed” frame. We shall thus write

pi Silm,My)pi+fr(my,M)po,

vy :—1+ i, , (10b)
po, JilM,M3)po +f2(Mi,M;)p}
vo, =E—|— M, , (10c)
and also
[xem.01]=0, (1b)
[xcm.,v1]=0, 1
[%Zm.,0,011=0 - (12

With these and using (2b) the coefficients f;(m;,m;),
f2(m;,m;) in (10) may be calculated (see Appendix A).
The result is

filmy,mj)=fr(m;,m;)=1,

or
Pl p1+p02
=t , (13a)
I, * M,
pi  Pi+po,
N & SRt NV (13b)
Ui my M2 +
More generally, if N particles are given,
Pk |
p=—+—1 > pn+C, (14a)
k my M1 El "
! N
=2 LS pic (14b)

This is the solution of the paradox. Its main signifi-
cance lies in that it demonstrates that a consistent formu-
lation of a finite-mass reference frame is possible. Fur-
ther, two points should be noted about this solution. The

first is that all coordinates involved in it have been defined
as relative variables. In order to see the second point, let
us tentatively assume that the momentum of only one par-
ticle, the /th say, has changed. Then (14) shows that this
entails an acceleration of all particles in the universe. The
explanation for this follows readily, for if only p; has
changed without a corresponding change in the momen-
tum of any other particle, then it must be that the
momentum of the reference frame itself has changed (by
—Ap;), affecting, in turn, a relative acceleration (of
Ap;/M) in all other particles. In short, the vector poten-
tial represents the “kickback” of the finite-mass reference
frame, but it cannot be ignored even if no forces are act-
ing, since via its quantum spread it represents the quan-
tum state of the reference frame.

II. ONE-DIMENSIONAL CASE

We now proceed with the full covariant solution for
quantum reference frames. In the present section, the
one-dimensional case will be taken up.

Let us then consider N + 1 particles in one dimension.

Their masses are
mos,...,my .

We regard the physical variables pertaining to these parti-
cles as defined over an absolute coordinate system which
here will serve the purpose of an auxiliary frame, to be
completely abandoned in the future. In this frame, the
particles’ coordinates are

XQseoos XN
and their momenta are

Pos---sPN -

Also, in this reference frame, the usual commutation rela-
tions hold, i.e.,

[xi,pj]=i8,-j, l,j =O, o ,N

and the Hamiltonian is given by

(15)

Because this commutes with the total momentum, we can,
without loss of generality, assume that the system is in an
eigenstate of Pr=0 (P7 denoting the total momentum).

Let us now choose particle O to define the origin of our
relative reference frame. In this capacity, this particle
resembles one of the quantum observers O; and O, of the
previous section. We further define a new set of canonical
coordinates and momenta thus:

(16a)
(16b)

qgo=xXxo, mo=Pr,

Gn=Xn—X0, Tn=pPp, n=LN .
Clearly,

[qi"n'j]ziaij, i,j ':0, “ e ,N .

The characteristic feature about this choice is that the
coordinates have been defined as relative variables, in par-
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ticular, as distances from particle 0.
The unitary transformation that connects the relative
frame with the absolute one is given by

N
—i 2 PnXo

n=1

U =exp (17)

Thus,
q,,=Ux,,UT, ﬂ*,,zUp,,UT forn=0,...,N.

Using U and the “absolute” Hamiltonian, the Hamiltoni-
an in the relative frame may be calculated (see Appendix
B):

H'(qn,wn):Uﬁ(xn’pn)U* ’ (18)
H(x,,pp)=UH (x,,p,)U . (19)

With U and H (p,) as given by (17) and (15), respectively,
we have

2

N
Po— 2. Pn ¥ p2
— 1 n
H:
2m0 + ; 2m,,
and hence, from (18),
N 2
mo— Z’Fn 2
e 1 4 % Ty
- 2mg ~ 2m,

With the system in an eigenstate of 7y=P;=0, we obtain

) N 77-"2 2
H=3 tom
1 n 0
where
N
n=3ym,.
1

This can be rewritten in the form

N (7Tn+mnn/m0)2 MHZ

H=7 >

(20)
1 2m,

2m0

where M is the total mass. It may be observed that parti-
cle O has been eliminated from the Hamiltonian. It is,
however, compensated for by the appearance of a vector
potential. This last result may have been anticipated on
the grounds of the example of the previous section, viz.,
Egs. (14a) and (14b) and the discussion that follows.

Combining (20) with (16b), we summarize by saying
that we have here a description of the physics of N parti-
cles where observables are measured relative to a physical
reference frame. Such a reference frame evolves under the
influence of a vector potential. Consequently, a free parti-
cle no longer moves with a velocity that equals the
momentum divided by the mass, but, rather,

dH' ™ IT

— = — 21
o1 8771 m1+m0 @1

Considering another reference frame, where positions

relative to particle 1, say, are measured, the coordinates
and momenta will be

q0=x,, mo=Pr, (22a)

qII:XO_xly 7T'IZPO’ (22b)

q;;:xn'“xl, W;t:pn: n:2>~"7N, (22¢)

or

q90=90+941, =g, (23a)
N

g\ =—q, T =mo— X7y, (23b)
1

Gn=4n—q1, Th=my n=2,...,N. (23¢c)

The unitary transformation that connects the quantum
frames is

U =P exp P , (24)

N
i 2 Tnq1
2

where P; is the parity operator for particle 1. Thus,
q, =Ug, u', T,=Um, U’ for n=0,...,N, as can easily
be verified.

III. TWO-DIMENSIONAL CASE

Let us now consider two-dimensional reference frames.
With N+ 1 particles, as before, let T1,=(x,,y,),
Bn=xnlyn)s Lm=TpXP, (n=0,...,N) denote,
respectively, the positions, momenta, and angular momen-
ta relative to an “absolute” coordinate system. The usual
commutation relations are assumed, the Hamiltonian is

N 2
Pn
H ==
% 2m,

) (25)

and again we assume the system to be in an eigenstate of
§T=O. We could choose L,r=0 as well (L, being the
total angular momentum in the z direction), but since L,y
may be found by a measurement performed inside the sys-
tem, it is important to keep it unspecified, and so consider
the general case.

We now replace the variables of particles 0 and 1 by the
corresponding “center-of-mass” and “relative” variables.?
To this end, let us define

M=my+m,, (26a)

momy
=, (26b)

# m0+m1

—~ MmoTo+m,T

R0 0TI (26¢)

m0+m1

f’zf’l—-—)o Py (26d)

P=Po+7P:, (26e)
mem — -

B= 0™ &__.p_(" , 26f)
mo+my; |my  mg

L™ =RxP, (26g)

L=TXP (26h)
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The Cartesian components of R and T are

R=(X,Y), (27a)

r=(x,y), (27b)
and their plane-polar coordinates

r=(r,0). (28b)

As is well known, the above define two independent
canonical degrees of freedom. With this modification in
our set of variables, the Hamiltonian becomes

2 2
O i i . (29)

We now introduce a two-dimensional quantum refer-
ence frame. It will be characterized by the following coor-
dinates and momenta:

Q,=Xcosf+Ysinf , (30a)
Qy=—Xsin0+ Y cosf , (30b)
Gx =X , (30c)
Q=Y , (30d)
Gux =(Xp —X)cosO+(y, — Y)sinf , (30e)
Gny = —(x, —X)sinf+(y, — Y)cosh , (30f)
where n = .,N and
I, =Pr, cos9+PTysin6 , (31a)
I, = — Pr, sin6+ Prycos6 , (31b)
Tx =Px_£;lng , (31¢)
my =py+£%QLz , (31d)

where L,= 3,  L;. (This summation includes the
center-of-mass degree of freedom.)

Continuing,
Tnx =PnxCOS0+Ppysind , (31e)
Tny = — PpxSiNO+ Py, cOSO (31f)

(n=2,...,N).

The point to notice about these definitions is that in the
relative frame, positions are measured in terms of dis-
tances from the ‘“center-of-mass particle,” which, in this
sense, defines the origin, while directions in the plane are
measured relative to the “relative particle,” which, accord-
ingly, defines the x axis.

The transformation from the absolute to the quantum
frame is generated by (see Appendix C1)

—zzp,, exp [—1 > L, 9] . (32)

ns£rel
With the help of U, the Hamiltonian in the quantum

U =exp

frame may be calculated from the Hamiltonian in the ab-
solute frame (29). Using the same definitions for H,H,H'
as in the one-dimensional case, we obtain (see Appendix
C2)

iz‘(ﬁ,,):u*H(ﬁ,,)U
N 2 2 _ 2
K p (pe—L;)
2 +_'_ e
S 2M 2ur
§ 0 1(2+ R yL. |’
2 m,, 2M 2,u * x2+y2
2
1 xL,
2 PP xy?
where
N
=2 Pn> (34a)
2
L,, (34b)
nsrel
and
1 3
Pe=736 "

also denoted sometimes /, [as in (26h)]. It is interesting to
find that the vector potential appearing in the kinetic en-
ergy of the reference particle corresponds to a singular
line of quantized flux. Because of the quantization of an-
gular momentum, this flux introduces no observable ef-
fect. In the next section, the origin of this singularity will
be clarified in a simple way.

To understand the meaning of the vector potential, let
us consider a case where in the original Hamiltonian*
there is included an interaction that depends on 6y, i.e.,

1’12 p
n
=+ + V,(6,—6) .
2m, n§1 2m,, 51
Then
- oV, 96,
p1= —aa
: ns1 ael ail
_s av, 096,
nl a6, ax,
. 296, . 36,
L,, |—=L,— .
El " lox, %,

The transformed Hamiltonian is

= (§1+K)2 57!2
H= + + V,(6;,)
2m, gl 2m, E, nn
where
- a0
A=—L,—1
8x1
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Thus
2 A - 36,
Fi=— o L
6x1
which agrees with the original force. Since in our
transformation
3{ | ————X)l ’
therefore
Xi=%
and
Fi=F, .

Finally, we want to show how to transform between dif-
ferent two-dimensional quantum reference frames. Let us
first give the space of “absolute” variables over which the
relative frames are to be defined. These are

- moTo—+m T
Rigr=—--——110 (35a)
m0+m1
f"?E)l=_'1—_’o , (35b)
— myTr+msTs
Ry =222 (35¢)
m2+m3
TR=1—T13, (35d)
—)ny I’l=4, ’N (356)
and
Py =Po+DP1, (35f)
_,rel mom; P Po
= — |, (35g)
P1 m0+m1 my my g
PS™ =P+, (35h)
m,om P P
p=—ts | P P2 (350)
my+mz |m3 m,
Pn, n=4,...,N. (35j)

With this choice of degrees of freedom, let us define the
following two relative frames: The unprimed frame, where
indices c.m. and 10 define the origin, and rel and 10 define
the x axis. We here have

qnx = (X,, —‘XIO )C05910+ (y,, —_ Ylo)sin()m ,
ny = — (x,, —Xm )Sin9|0+ (y,, — Yl() )COSG]O

for n=4,..., N, where
x m;x;+moXg my;+moyo
0w="_— """ > wo=-_ "
mi+my m;+myg
and
Y1—Yo
6 p=arctan——— .
X1—Xo

The double-primed frame, where indices c.m. and 23 de-

fine the origin, and rel and 23 the x axis. Or, for instance,
Gnx = (Xp —X33)c080,34(y, — Y23)sinb,3 ,
Gny = — (X, —X3)8in0,3+(y, — Y,3)c0s0,3 ,
forn=4,...,N,
MyXy+msxs

_ Y3—J)2
23 Mytmy .

, Oy3=arctan .
X3—X)

Let us introduce some further notations. In the relative
frames, we denote the coordinates and momenta of the
reference particles by the subscript a. Thus 6(,, ﬁa, and
qa, 74 for the degrees of freedom defining the origin and
the direction of the x axis, respectively. With the above
choice these refer to indices c.m. and 12 and rel and 12,
respectively. In the double-primed frame, we accordingly
have Q/, i o> 44, and 7,. Comparing with (30) these
are

Qux =X 1008610+ Y0sinbyg ,
Q4 = —X108inf9+ Y pc0sbyg ,
Gax =X10=X1—X0 »
9ay =Y10=YV1—JYo

and
Qux =X33c08023+ Yy35in6;3
Qg = —X235in0,34X;3c080,3 ,
Qax =X3—X3=X23 ,
day=Y3—YV21=Y23 .

Also, we shall use the subscript b for the second pair of
c.m. and rel degrees of freedom [see Eq. (35)]. Thus,

Qpx =(X33 —X1)cos010+ (Y3 — Yo )sinby
Opy = — (X33 —X10)sin€ o+ (Y3 — Y g)cosbyg ,
Gpx =X23¢080 0+ 38inbyg ,
Gpy = —X238in01g+y,3c080y

and
Qpx = (X 10—X23)c086023+ (Y 10— Y23)sinbs3 ,
Qpy = —(X10—X33)sin63+(Y 10— ¥33)c0863 ,
Gbx =X 10€0863+y 108inbs;3 ,
Ghy = —X108in6,3+ 10c086;3 .

The transformation from the unprimed to the double-
primed frame is

U=U,U,, (362)
where
N — — —
Ui=Pcm pexp |i 3, 7, Qp |exp [—iﬂa'Qb ] , (36b)
4

Uy =Py, pexp [i > 76,05 |exp

ns£rel

—im56, ] ., (360)
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P . bPre,p are the parity operators associated with the
degrees of freedom c.m.,b and rel,b, respectively. In Ap-
pendix C3, this transformation will be discussed further.
In particular, we show there how (36) has been reached,
thus also elucidating its precise meaning.

IV. THREE-DIMENSIONAL CASE—PARTIAL
SOLUTION

The extension to three-dimensional reference frames is
somewhat more difficult. In the present section, we shall
give only a partial solution to the problem. Even so, this
solution brings out some of the more characteristic
features of the three-dimensional case. The general case
will be treated in the next section.

In principle, a three-dimensional reference frame needs
three particles to define, say, the z axis and the x-z plane,
in relation to which all directions in space may be deter-
mined without ambiguity. Hence, in the spirit of the fore-
going work one has to choose three particles, perform a
displacement followed by three rotations, leaving O at the
origin, 1 on the z axis, and 2 on the x-z plane. But, rather
than repeating what has already been done before, we shall
treat only the rotational part of the problem. As men-
tioned earlier, we shall simplify our discussion in this sec-
tion by assuming that the z axis lies in the plane defined
by particles O, 1, and 2. In this case, the rotation of (37)
below connects the external and the internal frames.

We have to rotate particle 1 to the z axis. This involves
two rotations, the first by the angle ¢; about the z axis,
the second by the angle 8 about the new y’ axis. Thus,

. —iL; e’le —iL, @,

U=

—iL, —iL 6
—e z‘ple yU1

, (37

where
Ly= E’Lym L,= EILG s
n n
and the primed summation excludes n =1. With this, the
Hamiltonian will be (we calculate only H)
2
Pn

_ N
H=UHU=U'Y
0 2m,

U

2 2

DPn Tpl
U'——-1U

2m,, + 2m,

p>
— ’
0

wherein we focus on U Tﬁ’l U. One finds that

eiLyOleiquﬁl_p,le —iLd, -iLy91=i),1 4R,
where (see Appendix D 1)
zL
Ax=_l' _ ___2_"2_
r rix +y )1/2
—x ZLz
+ , (38a)
y (x24p)1 72 T 24 p2

4 —1 zL,
A TENROE
+ e (38b)
x ’
(x24p)i2 T 2
2, 2172
A,:Q‘—tr%)——z,y : (380)
and the Hamiltonian is
H= E pn2 (P1x+Ax)2 (ply+Ay )2 (P12+Az)2
- = 2m, 2m, 2m, 2m, )

We observe that the Coriolis-type fields (see Appendix
D?2) vanish, i.e.,
B=Fy=22_ 4 i 41=0 (39)
y=F;= ax, e +i[4;,4;]1=0,
for, starting with a free Hamiltonian, U’ could not possi-
bly produce any fields within the reference frame. How-
ever, if one calculates the Abelian parts of the fields, i.e.,
94; 94;

an - axi ’

one finds that the contribution which is proportional to L,
behaves like a Coulomb field, analogous to the field of a
magnetic monopole. We denote this Abelian part by
_  04; 04;
k= ox j axi )

Then, using (38) and (39), one immediately finds (see Ap-
pendix D 3)

Ex(Lz)z xg,Lz ’

r
L,, (40)
B,(L,)=

We next calculate the line integral of A around a small
circle, surrounding the z axis, and whose plane is parallel
to the x-y plane. Let 7., =(x*+y?)!>=const be the ra-
dius of the circle of the integration. We obtain (see Apen-
dix D4)

—27L,, z>0
2wL,, z <0.

lim QAdT= (41)

(rxy—»o)
From (40) and (41) we see that the vector potential has a
singularity along the z axis. It corresponds to two mono-
poles® of strength 2L, each, whose strings lie along the
positive, negative, z axis, respectively.

It is possible to see qualitatively how singular lines of
flux may appear in the transformed Hamiltonian from the
following considerations:® The transformed state is

—iL, —iL,6, . .
s (T, Ty ..., Ty). 42)

Let W be an eigenstate of L, so that
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LY=m¥ . 43)

Suppose that particle 1 describes a small circle around the
positive z axis, as in (41). Then this induces the_Lfcgllowing
transformation on W. We have 68;=0 and e =1 so

that
Ve Lty My (44)

Thus the phase changes by —2mm along this circle. This
corresponds to a flux line of —2mm, along the positive z

axis. Consider now a small circle around the negative z
. . —1 1 —1
axis. Inthiscasee 7 '=e . Therefore,
—iL,0 —iL,6
Le W= —m(e” 7). (45)

Thus the phase along this circle changes by + 27m, which
corresponds to a flux line of 27m along the negative z
axis. We thus find the singular line in this case to corre-
spond to a “magnetic” monopole of strength 272m at the
origin plus a singular flux line of —m 27 along the z axis.

V. MOST GENERAL THREE-DIMENSIONAL
QUANTUM FRAMES

In the present section, the most general type of a three-
dimensional quantum frame will be described. We set out
from the initial variables ., Ty and
PoP1s - - - » Py and the Hamiltonian

HZ

As in the previous section, we assume about this set of
variables that the origin O stands for the center-of-mass
coordinate that all other variables are measured relative to
it.

- -
L472 ST

2m,,

With this choice of variables, it follows that the passage
to the most general quantum frame involves three rota-
tions by the pertinent Eular angles,

U e~ Lat1, —iLy01, ~ilsbys
The three Euler angles are chosen so that the rotated z
axis lies in the direction of particle 1, and the rotated x-z
plane coincides with the plane defined by particles 1 and
2, and the origin. Thus, ¢,,0, are, respectively, the azimu-
thal and polar angles of particle 1, and’
ri(x1y2—x,91)

tanyy ;= ——"——-—,
Z\ 11" Iy—ry"2,

N

N
Ly=3 Ly, L,=3 L, .
n=3 n=3

According to the by -now-familiar procedure, we calcu-
late the Hamlltoman in the quantum frame by acting on
H with UT,

2
+U1-p1 viut P2

N
=U'HU= 3 -
2m,, 2m 2

n=3

U.

Denoting

U\ U=B1+4,

and

U'B,U=p,+A4,,
we find for the potentials

3¢,
Ay=— ~cos¢sm016 +si ¢

10 sind 3¢, 36, L
— |[sinsin Iaxl +cosy ax,

L)

- cosel
axl

4 9¢; . 0 36, . I
y=—|— ™ sinfcosyy+ o siny |L,

9 . . 36, 1
— |—=—sinf;sinyy+ ——cosy |L, — ——cosb6,L, ,
y 9y, 1

96, 96,
A,=— —s1n¢L + ———cosdzL —‘w—L

and
Azx=—'§;£2‘Lz,
Ayy=— -éfi—L
Ayy=— %Lz.

From considerations similar to those used in the previ-
ous section [viz. Eq. (42)—(45) and the discussion there],
we find that in the present case the vector potential of
particle 2 corresponds to a singular line of flux of strength
—L,27, along the line connecting particle 1 with the ori-
gin (since a small circle around this line changes 9, , by
27). The vector potential of particle 1 corresponds to the
same singular flux as described in the previous section,
plus another line of strength —L,27 along the line con-
necting particle 2 with the origin.

VI. TEMPORAL ASPECT OF THE PARADOX

To complete the picture of a quantum reference frame
within Galilean relativity, we now examine the temporal
aspect of the problem. We shall introduce an internal
time axis into the reference frame by including a clock
within the system. Consider the Hamiltonian (see Appen-
dix E).

" .
ng =Tr1+ﬂ_2+Hremamder ,

where H§" stands for the Hamiltonian in the absolute
frame, ° partlcles” 1 and 2 are clocks (see Appendix E),
and H™™ainder represents the Hamiltonian of all other par-
ticles, excluding 1 and 2.

For the sake of simplicity, let us at this point consider
only the two clocks by themselves. We then have

t
ng =7Tl+7Tz .
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We further assume that the system is isolated, so that its
energy does not change with time, and, in particular, that
it is in a stationary state, and that the total energy equals
zero. Thus,

H{=0.

As mentioned earlier, we regard the two clocks as defining
the internal times of two laboratories, or reference frames.
The Schrodinger equation in reference frame (1), where
clock (1) is used to measure the time, is

. 0
13:‘/’(42,&):77'21&(‘]2,”) .

A particular solution of this equation is
V(g t1)=f(q—t)+flgy—t,—T) (46)

where f differs from zero in a region smaller than 7. In
reference frame (2), the Schrodinger equation is

. 0
15;2‘1/’(41,12)=7711/’(41,12)

and the corresponding solution is given by
W(gi,t)=f(q1—t)+f(q1—t,+T) . (47)

With the choice of initial conditions as in (46), the two
reference frames (1) and (2) stand in time uncertainty rela-
tive to one another. For at a given time, ¢, =T, say, in
reference frame (1),

W(t1=T0,92)=f(q2—To)+f(q,—To—T),

which describes clock (2) to be in a superposition of the
times (Fig. 1) t,=¢,=T, and t, =g, =T+ T, while from
the point of view of reference frame (2), it is reference
frame (1) whose time is uncertain (Fig. 2),

W(t,=To,91)=f(q1—To)+f(q—To+T) .
Let us now consider the Hamiltonian
HEXt=1Tl+1T2+ V(ql ) 5

where

no.|
To
no.2
To
TO +T

FIG. 1. Clock states as viewed in frame 1.

Vo, >0
Vigy)= 0 f]z_.
0 otherwise .

The initial conditions will be given in accordance with (46)
[or (47)]. In reference frame (2), the Schrodinger equation
will be

. d 1
i— ==

9

atz i ayl
With the initial conditions

Y(t,=0,9,)=f(q)+f(qg:+T),

the solution at time ¢, will be

v+Vig . (48)

Y(ty,q1)=[f(g1—t2)+f (g1 —t,+T1)]

xexp [~i [ Vigi)dgt | 49)

as may easily be confirmed by substituting (49) back into
(48) and solving. For ¢, > T we obtain

W(t,>T,q)=f(gi—t)+e O flgi—t,+T). (50

We notice that the relative phase in the superposition has
changed by the amount — V,T. In reference frame (1),
the Schrodinger equation will be written

d 1 3
==Y+ V(¢
v SHAUDE
and the initial conditions are
V(11 =0,9;)=f(q2)+f(g,—T) .
The corresponding solution is
V(t1,92)=[f(g2—1))+f(g2—1,—=T)]
. tl ’ ’
X exp [_lf’o V(t])dt] ] s
where to >0. This may be rewritten as

W(t1,q,)=[f (g —t;)+f(g—t; —T)]
Xexp[ —iVo0(t)t],

no. |
Jo-T
To

no.2
To

FIG. 2. Clock states as viewed in frame 2.
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where 6(¢,) is the step function. We find that while in
reference frame (1) a change in a physical quantity has oc-
curred, in reference frame (2) no observable quantity has
apparently changed. Thus, the descriptions in the two
reference frames seem to yield conflicting results.

Let us next consider a new Hamiltonian,

l1+o,
H2=771+V(q1)——g(t2)—2——771 » (51)
where
1
=, T'<ty<3T
g(t2)= 2 S22

0 otherwise

with the system prepared in the state
i 1
U=/ (g —t)+e"f @~ =T [} ] .

We recognize the expression appearing in the left
parenthesis on the right-hand side of (52) to be the wave
function of (50) above, with —V,T'=a. Using von
Neumann’s measurement theory,® the above describes an
interaction that measures the phase, with the spin here
representing the measuring device. Our aim is to follow
up such a measurement, which, according to our previous
results, is in principle possible in reference frame (2), but
appears to be meaningless in reference frame (1).
In reference frame (2), then, we have

(52)

. _dq1_8H2_1 (t )1+0’z
Nn= dt, dm 8552
_;', az=+l
- (T<t,<3T).
1, o,=—1

It then follows that
V(T <t, <37 =[f(q;—+(T,—T)—T)

+e'f(gy—3(t,—T)] [(1,]
1/ @i —t)+ef (g~ + 1] [0

and

W (t,=3T)=[f (g, —2T)+e%f(g;—T)] {(1) ]
+1/(q1=3T)+ef (g —21) [?]
—flgi—2T)

eh‘ +other terms .

Thus, when the measurement is completed, the state of the
measuring device

1
eta

depends on a and distinguishes between the two orthogo-
nal cases a=0, 7. Let us now examine this measurement,
as seen from reference frame (1). We have

140,
Hy=m+VI(t;)+8(q;) H,
or
140, | 3 3 140,
Sy 9 y_:;9 |{_ v
ill—glq,) ) atl‘ll tatl 1—glq,)
=[m+V()]V¥. (53)
Defining
4 172
o
V= 1—g(g,) 2’ v (54)
and
, 1
Hi= 7z m+V(t)]
1—g( )1 2
8\q; )
1
X 177 »
140,
1-—-g(gy) 5

(53) above can then be rewritten as

.9 o, f

i o, V'=H ¥,
which is the Schrodinger equation in reference frame (1).
This equation may easily be solved for ¥’ as follows. In-
specting (53) above, one can solve for ¥, noticing that the
interaction involved in the measurement effectively intro-
duces a magnetic field in the z direction that is propor-
tional to V' (¢,). This interaction will rotate the spin state

HE

It follows that here, too, the phase may be found by read-
ing the state of the measuring device. Finally, ¥’ may be
calculated from ¥ according to (54). We thus see that the
phase introduced by V(z;) can also be measured in refer-
ence frame (1).

CONCLUSIONS

This paper addresses itself to the problem of finite-mass
quantum reference frames. We show that with the help of
suitable geometrical potentials it is possible to construct a
theory that takes account of the quantum disturbances of
the reference frame in a consistent manner. Our formal-
ism satisfies an equivalence principle that presents an ex-
tension of the classical equivalence principle to quantum
theory. It also augments the usual continuous Galilean
symmetry with additional discrete symmetries correspond-
ing to the transformation from one physical relative frame
to another. So far, nonrelativistic theory has been treated.
We intent to extend the treatment to relativistic reference
frames, in the hope that this approach will contribute to-
wards. the solution of problems associated with the quanti-
zation of general relativity.
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ACKNOWLEDGMENTS By inspection of (A2) above it follows that
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or
APPENDIX A pr SilmyMypy+fi(my,My)po,
v =—+ (A5a)
Substituting (7) into (1b) mi M,
P and also
x::.m.]77n-+A =0, (A1)
! . py Silm,Mo)py 4+ fr(my, My)po,
using (3), 4), and (5), vy = my + M, , (A5Db)
—M (x —X ) ’ ’ ’
1%0, +711%1 — %o, ,.1_71_+A =0, (A2) . po, S1M,M3)po, +f2(M,M;)p;
M +m, my Uo,=‘1w—l+ M, . (A5c)
whence it follows that . .
As explained in Sec. I, it is necessary that
A =ap;+Bpo,+f(x1,x0,)+C . (A3)
‘D1 P02 f Lo, [xlc.mAI’vl]zoy (A6a)
The term f(x;,xp,) is related to the choice of gauge and ,
may therefore be chosen as zero, [xc'm’Z’vl 1=0, (A6b)
4 =ap;+PBpo,+C . (A4) [xc’fm.ol,oz,vd:o . (A6c)

Substituting (ASa) into (A6a), we obtain

oix —Mxp,+mi(x1—x0,) p,  Silm,M)pi+f(M,M})po,
“"[xc‘m.l’vl]—‘ M1+m1 ’ml + 1‘41
1 1 film, M) Salm, M)
= —(M - ’
M rm, | (M +my)xo,, + M, pi+ M, Po
[
whence, finally, M\xg, +Mxg,
xg =
(my,M,) (my,M,) “mo,0 M +M ’
L M L2 A (miAM)=0. (A7) o 1+
1 1 x§, =x, —xi ,
Substituting (A5b) into (A6b) and using x4 =—x
2 b
mix;+M;yx , , ,
Xem :_L]___M_Z_iz_ M,(xol—x1)+M2(—x‘)
M.y s ” —
mi+M, xc.m.olo2 M1 —|—M2
x02=——xol ’ _(M1+M2)xll +M1xb!
X1 =xX| +X0,=X| —Xp, » ’ - M;+M, ’
mx|—(mi+M;)xo, one obtains
xc.m.2= s
my+M (My,M,) (M,,M,)
e o MM S MOM) =0 (A9)
we obtain, after a calculation similar to that leading to M, M,
(A7), Substituting (A5b) and (A5c) into (2b) of Sec. I and us-
f1lm,M,) falm,M;) ing the definition
1+ my— (m;+M,)=0. (A8)
M, ! M, ! 2 , mi +Mvo,
Substituting (A5c) into (A6c) and using Pom, = mi+M; ’
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we obtain
O:[xl’vn,:.m., ]
which implies

0= x’l"xbl’pbl
M, , ,
Y, Lf1(M,M2)po, +/2(M,M;)p} ]
2

, m; ' !
+p1+M—l[f1(ml,M2)P1+f2(m1:M2)P01] .

Since x} —xo, commutes with Po, +P1, we have

’ ’ Ml ’ ’
xi—x0,, 5 L 1(M1,My)po, +f2(M,M;)p1]

0= M,

mi , .
+‘A4—2[f1(m1,M2)P1 + f2(my,M;)po, ]

This leads to the condition

M [f1(M,M;)—f,(M,M>)]

=m[f1(m,M,)—f,(m;,M;)] . (A10)
Next, substracting (A8) from (A9) gives

M [f1(M,M))—fr(M,M3)]—M, f,(M,M,)
=m[f1(m,M3)—fr(m,M)]—M,f>(m,M,) .
(A1)
Substracting (A 10) from (A11) gives
folM,M3)=f>(m,M3) ,
which implies
Sam;,My)=f>2(M,) .
With this, (A8) becomes

1 Si1(m,M;) f2(M5)
+ M, my— M,

(m,+M)=0. (Al2)

Now the last term on the left-hand side above is linear in
m1, and hence

Sfilm,M,)

m,
M,

must also be linear in m,. But then f;(m,M,)=f,(M,),
i.e., independent of m ;. Noting this, we write (A12) as
M[1—fo(M)]+m [ f1(M3)—f>(M>)]=0

In this equation, the coefficients of M, and m must van-
ish independently. This yields

folMy)=1,
f1My)=f>(M;),
from which we finally obtain

fl(mi)mj)=f2(m,',mj)51 .

APPENDIX B
4. =Ux,U",
7, =Up, ut.

Similarly, for a general operator 4 (x,,p,), we have
A'=UA (x,p,) U =A(g,,m,) ,
id'=i(UAU'+ UAU + U4U )

=(UH —HU)AU'+ U(4H —HA)U"
+UA(U'H —HUY)
=U(HA —U'HUA +AH —HA
+AU'HU —am)U?
=U[4,U'HUIUT,
H(x,,p,)= UTH(x,.,p,,)U s

which implies
iA(Gy,m0)=[A(qy, ), H(gyn,m,)]

Hence, in the quantum frame, the Hamiltonian is

H'=H(q,,m,) .

APPENDIX C

1. Transformation from the absolute to the quantum frame
in two dimensions

The transformation from the absolute to the quantum
frame may be viewed as consisting of two steps, defined

by
u=Uu,U,, (Cla)
where
N . .
U =exp|— 2PB.R|, (C1b)
2
Uy=exp |—i 3 70|, (Clc)
n+rel "
and

6=0,,=arctan —i’— ,

77'0"::(?71—'ii)xi))n

are intermediate variables, obtained from the absolute by
acting on them with U;. Thus 0=U0,4U} and
7o, =UL,Ul. We have UyU,=U,U0,UlU,=U,U,,
hence (C1) may be rewritten

N -
—i ; P»'R

U =exp exp

—i 2 LGerelJ ’ (€2)
nrel

i.e., in terms of absolute variables.

Let us return now to (Cl). The first step in the
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transformation consists of attaching the origin to the
“c.m. particle.” It is given by (C1b) and resembles (17) of
the one-dimensional case. It should be noticed that U,
leaves the relative degree of freedom invariant.

The set of intermediate variables that result from the
action of U; on the absolute space will be denoted with
bars [as in (Clc)] and are as follows:

4,=U,T,Ul=7,-R, (C3a)
Fu=UiBaUl =P . (C3b)
For the angular variables we have
= 7, -Y
0,= arctan-yL =arctan In > , (C3c)
X, x,—X
7o, =(Ta—R)X B, . (C3d)

The second step in the transformation is given by U; of

(Clc). This involves a rotation of all particles except the
“relative” by the angle 6. Thus,

=0,—0=0,—0,q, (C4a)

7?9" =7q . (C4b)

Alternatively, U as given by (C2) may be directly ap-
plied to the absolute variables. The resulting variables are
as given in (30) and (31) of Sec. III, thus confirming the
correctness of (C2) [and of (32)].

2. Calculation of the Hamiltonian
According to (32) and (33),
H3,)=UlulH®E, U, U,

where

Uj=exp |—

N g
X exp ——th)’,,'Rl
2
— N 2
P_S3
;pn X
== T t2om,

In the final step, when H(P,)—H'(7,)=UH(P,)U", P
transforms into P;, which we have assumed to be equal to
|

sm@

eiLzep 2, ~iL:0 L24p S0,

sin%0 + cos?0
=px’ +py T “““+2—

sin@  sin@

*or

X Lz_ Py

sin@
——pr —Dy

cosé
r

zero. We therefore drop P. With
N
K= z Bn >
2
we obtain
1 & p*
UlH(p,,)U1=§2 +2,u+
K p*
exp(i 3 L 9} 2 =+
[ ns£rel - 2 2 2M 2.“
X exp [——i > Lz,,9]
nsrel
K*  iep* —iLe
— : =, (Cs
gzm,, wm e e (C3a)
where
L,=3 L, (C5b)

nrel

We now calculate the last term on the right-hand side.
In two dimensions, using plane polar coordinates,

sm@ 9 d

30 +cos68—

It then follows that

iL,0  —iL,0 sind

€ " Pxe =Dx

L,

iL,0  —iL,6 cosd

e “pye =py——r—Lz .

Again, we have in the plane

sinf= y_ 4

roo P

0056—1——x—_—
r (x2+y2)1/2 ’

and hence we obtain

yL ’
iL,6 , —iL,8
e pze g px+'(‘x' 2'+y'22)1'/2 ]
xL, g
+ Py———(x2+y2)1/2 (C6)

We calculate now the corresponding expression in plane
polar coordinates,

cosG cos6

Lz - PyLz

cosf

>y |Ls (C7)
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sin cos6 _1||_sin6 8 +cos 0 |sin6 |cos® 9 4 sing 3 | cosf
*or i or | r 30 or | r
sin | cosf = sinf d d 1 cosé sinf | cos@ 4 . d 1
— 0——— — — | —sinf cos@——
[ r a6 +cosfsin or r r [ r r 90 } smnvcos or r
2 2
=_;wi:_igi (C8)
i r? a0 r? i 00
A similar calculation gives
sin ~ cos6 1 |sind | sind 9 4 cosh KB cosf | cosf d 4 sind a
r BTTRTT T r 96 3 r r 06 or
11393
-9 C9
r2 i 30 (9
—
Substituting (C8) and (C9) into (C7), we obtain A listing of the corresponding canonically conjugate mo-
. . L. L2 menta can also be rewritten down, with the help of (31) of
iL,6 5 —iL,0 1 0 L, 2 . .
e “pe =P TR0 2 T2 Sec. IV. In the primed frame, we have the variables
or, denOting q,'u =(x,, —-X23 )COS@]Q+ (y,, - Y23 )sin610 y (C12)
_:_585 =Pe Gy = —(x, —X23)8in00+ (¥, — ¥Y23)c0860yq .
[we used (1/i)3/30=1, previously, as in (26h)], we have The tfansformation from the unprimed to the primed
s frame will be generated by
iL,6 , —iL,0 PL L, L, N .
e Pl T=pt+ oy T3 Uy=P o pexp |i 3 7p-Qp e 0 90 (C13)
) (pg—Lz) 4
=P+ r2 ’ (€10 where P_ . » is the parity operator associated with degree

Substituting (C6) or (C10) into (C5), we finally obtain
W K2 Pt (pe—Ls)

+
» § tom o 2ur?
2
N 2 L
pn K YL,
- ; 2m, 2 o [P ]
2
A xEe
T T ey

3. Transforming between quantum frames

Our objective is to find the transformation from the
unprimed to the double-primed frames (as defined in Sec.
III). To this end, we shall define an auxiliary frame
(called the primed frame) in the following manner: The
origin is defined by indices c.m. and 23, and the x axis by
rel and 10. Our transformation will then consist of a se-
quence of two steps. From the unprimed to the primed
frame, and from the primed to the double-primed frame.

In the first step, indices c.m. and 10 are replaced by in-
dices c.m. and 23. This furnishes a displacement of the
origin by R$™ —R$/™. In the unprimed frame we have

the variables
Gnx =(Xp —X10)c08010+(y, — Y1o)sinbyg ,

. (C11
Gny = —(x, —X9)sinB9+(y, — Yp)cosby, .

of freedom c.m., b, i.e., ab,ﬁ 5. The important point to
notice here is that the “relative” degrees of freedom (rel, a
and rel, b) are not affected by this transformation. We
have

U,Q,U1=Q,+Q,=Q.,
U,Q, Ul =—Q,=Q;,
UG, Ul =G, —Qp=7 1 ,
whereas
U4.Ul=d,=4s Uid,U]=d,=4d},

where the second equality sign in each case may be veri-
fied by calculation of the expression on the left-hand side
(of the said equality sign) and comparison with (C12)
above.

We next transform from the primed to the double-
primed frame. What we have to do here is to exchange rel
10 with rel 23 as the “particle” defining the direction of
the x axis. This induces a rotation by an angle 65— 65
on all particles (except “little @”” and “little ).

In the double-primed frame we have

Gnx = (X, —X3)c08023+ (y, — Yp3)sin6;3 ,
- _ (C14)
qny = — (xn —X23 )sm923 -+ (yn —_ Y23 )005623 .

As for the angular variables, inspecting (C12), we see that
in the primed frame we have
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- -7Y
0, =8, —0%, 9;=arctanﬁ (n=4,...,N)
(C15)
and in the double-primed frame [from (C14)],
6, =06, —06% . (C16)

Comparing (C16) with (C15), we find for the transforma-
tion from the primed to the double-primed frame,

'H’G relgp !
i 3 7y 0

Uy =P pexp e ‘ . (C17)
nrel

Thus we have for the overall transformation
U=U,U,; .
Since
U,U =
we finally obtain for U
uv=0,0,,

Ul U2 ’

where now

—ingle,
2 779 01, ] ’ (CIS)

U2 = rel bE€Xp [
n£rel

i.e., in terms of variables of the unprimed frame.

APPENDIX D

1. Derivation of the geometrical vector potential
for the case considered in Sec. III
We now calculate

iL,p —iL iL,p;1 3 —iL
e 'z lplxe z‘pl=e z¥1_ 2 e %1

(D1

Using
eiLz¢l__1:_ a
i 3¢
we obtain
1 singvl
7 sinf,

iL, @y —iL, @y

e Dix€ =Pix+

Next we calculate

iL, 8, 1 sing; L

1 —iL,6,
ri sinf 1

e 1x

1 Sln‘PI oL G‘L —iL,6,
ry sm01

b

_ Lo [i_a_

. o ~iLy1
i Ox;

(D2)

eiLyeli i)

- e_iLy(’l:_l__a_
1 axl

i B, (D3)

— %cos@lcoscplLy
1

To calculate the second term in (D2), let us define

—iL 91

e e L,6).
We note that
L,(6)=L,(0) .
Then
8
FY: L,(0)=i[iL,L,(0)—iL,(6)L,]

=L,(0)L,—L,L,(0)
=L,(6)L,(6)—L,(6)L,(6)

=il (),
or

d
89Lz(6): —L,(0) .

Also,

d
GGL x(0):

The solution is
L,(0)=L,cos6—L,sinf ,
L,(6)=L,sin0+ L,cos6 .
Substituting (D3) and (D4a) into (D2), the result is

=L,0) .

(D4a)
(D4b)

UTp xU=pix— -rl—cos<plcos01Ly
1

1 Sin¢71
ry sinf,;

(L,cos6;—L,sind)

1 .
=pix— ——singL,
r

cosf,

1 1
——cosp;L,
rq COSP1 + Sln¢1 S1 1'191

A similar calculation yields

1
U'p iy U)=piy+-cospiL

1 .
— —sing;cos@;L, — — -
ry Y o sin@, ¢

and
+ 1 .
UpiU=pi,+ TSlnelLy
1

whence the potential may be read

1 . cosf,
A _=— —_ —_ i —_—
== sing;L, —cosp;cos6,L, +sing; sind, L, l ,
1 cosf,;
A = —_ i —
=7 cos@L, —sing;cosd,L, —cosg; sind, L, J ,

A, = —1~sin61Ly
ry
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Substituting the sines and cosines in terms of Cartesian
variables, i.e.,

cosf=Z cosf z
r’  sin@ (x2+y2)1/2 ’

X

ARSI

Sinq?:__—(x2+y2)‘/2 , C

one obtains

4 1 zL,
S r(x24y?)1/?
L, + zL,
+y (2422 T 322
1 zL,
A== | —y | —2—
y=7, y r(x24p2)i72 ]
L, zL,
+x 2,002 2.2
(x*+y%) x“+y
(x24yHi2
4;= 2 L,

(we have dropped the subscript 1 everywhere).

2. Calculation of the force in the general case
of a non-Abelian vector potential

Given the Hamiltonian

L2
Hz[ﬁ——A—]——Hp(i') ’

2m
Fi=pi—Ai=~§;Hi——9:7‘—7‘.[A.-,H] .
We assume that A has no explicit time dependence. Then,
Fi=— g — 14y H]
pjr_nAj —v;, [A:,pj]=—%g—f:; _
So that
=_a§§+e,.jk[ %—%—i[Ai,Aj] —‘;LL

3. Contributions of the term proportional to L,
to the “magnetic” field

We have
94; a4; A A
k= Ox - ax,- +l[ i _/] ’

j

_ 04, a4,
B = b E =—1i A9A >
k an axi l[x j]

. ix
1 [AyrAz]z—g, [Lx:Ly]_—z_[Lz’Ly]
r rxy

=2 i, — 2 (—iL,)
r Xy
xL, xzL,
S r3rxy '
Therefore,
— xL,
Bx (Lz )= 3 >
r
. i z
i[A,4;]= _y3_ - [Lx’Ly 1+ _—[Lz:Ly]
r Pxy
zL
— %Lz + y3 X
r Pl
Thus,
= Y.
B(L)=—"",

i [Ax’Ay]:: :21—[ _xa+yi;’yé\+x6\]
r

= (—x[8,b]+y[b,41)
;

2
(X2+,V2) A~ -rxy A
=l——2—_[a’b]=l 2 [a’b] ’
r r
where
zL N L zL
a= 2 , b=— —= 22 ’
ITxy Iy Ty
A~ z z?
[@,b]=— Z[Ly’Lx]+ 3 [Ly’Lz]
Txy xy
izL,  iz’L,
- Ty rrxy3 ’
2 2
zL z°L
i[Ax’Ay]=_ XJ; 22 J; ]
r Py Ty
zL, z’L,
- r3 - rsrxy3
Therefore,
— zL,
B(L,)="F .
r

4. Calculation of the line integral
around the flux singularity

In Appendix D1 we have shown that

A L g L,+ 6,L i cos6,
=—— |[sin - —_
1x " @1Lx +-cosgicosf, L, —sing, sind,

z

383

’



384 Y. AHARONOV AND T. KAUFHERR

30
1 0391 In what is to follow, we shall, for the sake of conveni-
A= _;1_ cosg L, —sing,cost L, —cose; sin0, L, ence, drop the subscript 1. We now calculate
I
$ AdT=[Adx+a,dy,
rxy=const
dx = —rysingde ,
dy =rycospdg ,
¢ AdT= ——y— f sing [singL, +cosp cosOL, —sing COSZL do
Txy 27 . cos@
— fo cos@ |cosgL, —sing cosfL, —cosp sin0 L, |de
Iy 2L, . 2 cosB
== fo sin“pL, +sing cosg cosfL,, —sin P in0 L2
Ty 27 N . 2 cosé
+ . f o |c08 @L, —cosg sing cosOL, —cos P ind L, |dop
Iy cosG "xy Txp
== o[x < - f : |dp="22rL,—Z2mL,
(I
Taking the limit 7,, —0, it follows that (Fy+8m)2
=—F—+V
2] . o, TV
§ (dm)?  wdm e
and we obtain =om, M, + M, +Vig,) .
—2wL,, z>0 . .
lim gﬁA dl= ? In this expression,
Ty =0 27L,, z<O0.
y z (817-,)2
2M,
APPENDIX E

- X is negligible because of (E4). 7;%/2M, is a constant and
Suppose that we have a sufficiently heavy object, of may therefore be removed.
mass M, such that its velocity changes may be neglected

. . . : Using (E3), we obtain
Let its Hamiltonian be
172 H=877'1+V(ql)
1
H= M, +Vig;) (ED)

Since 8m; has the same commutation relation with ¢, as

does 7}, we may write
and assume that the average velocity o; =1 and that the

uncertainty Av; << 1. Define H=m+V(q) .
dmi=m —7, (g2) Then
where 7, is the momentum of the particle and 7, is the in- = i
itial value of the momentum average. We then have 94,
T =1 (E3) and
M, gi=1.
and Solving for q,(¢), we have
_8_711,<<1 (E4) q:1()=q(0)+1 . - (ES)
M Thus q,(¢) differs from the “external” time ¢ by the
Substituting (E2) into (E1), we obtain

constant operator g,(0).
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Consider now the Hamiltonian

Pi2

m; (E6)

H =7Tl+ 2
i1

Suppose that (E6) describes an isolated system so that the
total energy is constant. Assume further that the system
is in a stationary state whose energy equals zero. Then,

H=0

or

, 0 Piz

= . E7

aq 1 il 2m,- ( )
Recalling the result of (E5) above, and in view of (E7), we
can now identify the coordinate ¢, as the internal time of
the system, particle 1 thus serving as a clock. In terms of
this internal time, Eq. (E7) is the time-dependent
Schrodinger equation of the system’

. d Pi2

I— = .
atl il Zm,-
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