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We characterize tensorially all first-order differential operators whose commutator with the mass-
less Dirac operator is proportional to it on a general curved background in terms of skew-symmetric
tensors satisfying conformally invariant generalizations of the Killing-Yano equations. The same
problem is also solved for the massive charged Dirac equation on a general curved background.

I. INTRODUCTION

Symmetries play a crucial role in the analytic solution
of the equations satisfied by the variables describing a
physical system. A well-known example of this is given
by Pauli’s! solution of the hydrogen-atom problem via the
O(4,R) symmetry group. This symmetry group appears as
the product of a group of geometrical symmetries of the
system, which turns out to be a subgroup of the isometry
group of the ambient Euclidean space with a group of
dynamical symmetries whose existence reflects the hidden
symmetry associated with the Runge-Lenz vector. In par-
ticular, when the analytic solutions are obtained by seek-
ing separable or R-separable’ solutions, the symmetries
appear in the form of symmetry operators,® that is (matrix)
differential operators whose commutators with the dif-
ferential operator appearing in the field equations are pro-
portional to it. Symmetry operators thus map the space
of solutions into itself. Commuting operators are the
most familiar examples of symmetry operators and are in-
terpreted as constants of the motion, their eigenvalues
yielding quantum numbers for the system. They have
been studied by Carter* in the general context where the
equations satisfied by the variables describing the physical
system are rth-order self-adjoint linear homogeneous par-
tial differential equations and they were characterized by
him as those operators leaving the Lagrangian density ad-
mitted by such equations invariant up to a divergence.

In the case of the equation of a massive charged test
scalar field (or the motion of a massive charged test parti-
cle) interacting with background gravitational and elec-
tromagnetic fields, the commuting symmetry operators
may be characterized tensorially in terms of valence-two
symmetric Killing tensors. The existence of irreducible
Killing tensors reflects the presence of dynamical sym-
metries which are not isometries. A remarkable example
of such a situation was given by Carter’ when he
discovered the fourth constant of the motion for the
massive-particle orbits in the Kerr solution. The existence
of such tensors is also required in the theorems® ensuring
the existence of separable coordinates for the Hamilton-
Jacobi equation for the massive-particle orbits, or the
Klein-Gordon equation for massive scalar fields, on a
curved background.

Operators commuting with the Dirac operator have
also been considered, an important example of which is
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given in flat spacetime by the total angular momentum’ B
which is associated with the separability in spherical coor-
dinates of the Dirac equation for a central potential, and
which admits the separated solutions as eigenfunctions
with the separation constants arising therefrom as eigen-
values. First-order operators commuting with the Dirac
operator on a curved background were obtained by Carter
and McLenaghan®® through their analysis of the
separation-of-variables procedure devised for the Dirac
equation in the Kerr spacetime by Chandrasekhar.!® Car-
ter and McLenaghan showed that these operators admit
the separated solutions as eigenfunctions with the separa-
tion constants as eigenvalues, and characterized one of
them tensorially in terms of a skew-symmetric valence-
two Penrose-Floyd tensor!'! D g, whose spinor equivalent
K, g is a Killing spinor'? satisfying a further skew-
Hermiticity condition.!* Spindel and McLenaghan'# sub-
sequently gave a tensorial expression for the most general
first-order operator commuting with the charged Dirac
operator on a general curved background in terms of a
Killing vector, a Penrose-Floyd tensor, and a Killing-
Yano tensor!® of valence three.

In contrast with the fact that one obtains commuting
symmetry operators when separating the massive
(charged) Klein-Gordon or Dirac equations, when dealing
with the conformally invariant Klein-Gordon or Dirac
equations for zero-rest-mass particles, one has to consider
symmetry operators which are not necessarily commuting
operators. Nontrivial examples of such operators have
long been known!® for the Laplace equation in Euclidean
space, where they are associated with the R-separable
coordinate systems. On the other hand, examples of such
operators for the neutrino equation for massless spin-+
particles in curved space have only recently been given.!”
They arise in the class & of solutions!'® of Einstein’s vac-
uum and electrovac field equations with cosmological
constant for a nonsingular aligned Maxwell field through
the existence for the entire class of a separable coordinate
system and spin frame, the separated solutions being
eigenfunctions of these operators with the separation con-
stants as eigenvalues.

As has been previously noted, the existence of an opera-
tor which commutes with the Dirac operator on the Kerr
background gives rise to a valence-two Killing spinor
which satisfies an additional skew-Hermiticity condition.
In view of the existence in the whole class & of a
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valence-two Killing spinor not necessarily satisfying this
additional condition, the following question arises natural-
ly: upon which geometric objects is the most-general
first-order symmetry operator for the neutrino operator
constructed on a general curved background? This ques-
tion is answered in theorem I of our paper (which was
given without proof in a previous note!®), where this sym-
metry operator is characterized in terms of a conformal
Killing vector, a conformal generalization of the Penrose-
Floyd tensor,”® and a conformal generalization of the
Yano-Killing tensor of valence three. As expected, the
two-index spinor associated with the conformal Penrose-
Floyd tensor satisfies the Killing spinor equation, but not
necessarily the skew-Hermiticity condition. We are thus
able to derive the existence of the Killing spinor in the
whole class & via the separability of the neutrino equa-
tion therein. In theorem II, we show that modulo a “trivi-
al” symmetry operator, every symmetry operator for the
massive Dirac equation without electromagnetic interac-
tion is a commuting operator, thus showing that
McLenaghan and Spindel had in fact determined essen-
tially all the symmetry operators for this operator. In
theorem III, we generalize the McLenaghan-Spindel result
by determining the most general first-order symmetry
operator for the massive charged Dirac operator. In the
last section of our paper, we give the integrability condi-
tions for the equations of the conformal Penrose-Floyd
tensor and draw some general conclusions about the
spacetimes admitting such a tensor. We also discuss fur-
ther the connection between the separation of variables for
the neutrino equation in & and the Killing spinor pos-
sessed by the class-& solutions.

II. CONSTRUCTION OF THE MOST-GENERAL
FIRST-ORDER SYMMETRY OPERATORS
FOR THE WEYL NEUTRINO
AND DIRAC OPERATORS
ON CURVED SPACETIME

We consider the neutrino and Dirac equations
Hy=iy"Vah=0, .1
(H +ey®4,—mDy=0, (2.2

where {y®} is a set of Dirac matrices associated with a
four-dimensional Lorentzian metric g,g by the anticom-
mutation relations

{yevP}=2¢%r1, 2.3)

where V,, denotes the covariant differentiation operator’!
on four-spinors associated with the choice of y®s and the
Levi-Civita connection of g,g, where A, is a covector
field on spacetime, e is the charge, m is the mass, and ¥ is
the four-component Dirac spinor.

We seek the most general first-order differential opera-
tors I?, K, and L which satisfy the commutation relations

[K,H|=ZH , (2.4)
[K,H —mI|=HH —mlI) , (2.5)
[L,H +ey®Aq—mIl=5(H +ey®d,—mI), (2.6)

where %y, #, and ¥ are 4 X 4 matrices to be determined.
It should be noted at this point that K,, K, and L map,
respectively, the spaces of solutions of the neutrino equa-
tion, the Dirac equation in the absence of electromagnetic
interactions, and the Dirac equation with electromagnetic
interactions into themselves, and that we recover as a spe-
cial case of Egs. (2.4), (2.5), and (2.6), when %#,, #, and
% vanish identically, the relation defining a constant of
the motion.??

We shall treat Egs. (2.4), (2.5), and (2.6), as far as possi-
ble, simultaneously by writing

L=F"V 4G, 2.7)

where F® and G are 4X4 matrices of complex-valued
functions, and then expanding the commutator in Eq.
(2.6), distinguishing between the cases m =0 and m=40
only when necessary.

By equating to zero the coefficients of the covariant
derivatives of each order in Eq. (2.6) and using the Ricci
identity®® on four-spinors, we obtain the following three
conditions which are necessary and sufficient for Eq. (2.6)
to be satisfied:

F(a'yﬁ)-—y(aFﬂ)———O , (2.8a)
GYP—yPG —y "V FP—ied(FPy"—y"FP)— 7yP=0,

(2.8b)
(FoyP—y°FB)R 15,57 7v®+ 8YPV G
+8ie[FoyPApq+A5(GyP—7PG)]
—Bie S Y*A,+8imS=0. (2.8¢)

To analyze Egs. (2.8), we introduce the standard tensorial
basis for M,(C)

1
Ly’= ey VP Yy =yt L 29)

where we denote by €,p,5 the components of the volume
form of spacetime.

Equation (2.8a) will be identically satisfied if and only
if

F*=B° +Cy*+D%y*yP+E% v? , (2.10a)
where the tensor fields D,g and E,g, satisfy
Dap=Diap)s Eapy=Efapy - (2.106)

To study conditions (2.8b) and (2.7¢), we expand G and .
in the basis (2.9):

G=®I +SY° +J o+ Ko7 v*+Lagv*®, (2.11a)

F=MI+NY’ +Poy®+ Q.7 v+ Uygy®® . (2.11b)
It is then readily shown that Eq. (2.8b) will be satisfied if
and only if

Co=—P,, (2.12a)

’

K®=1DF 54 2Q%iedgD® , (2.12b)



30 SYMMETRY OPERATORS FOR NEUTRINO AND DIRAC FIELDS . .. 359

Laﬂz%( —Ba;B'*'ZEaﬂy;Y
—2Ugy,—Mgyg+4ied E,"p) , (2.12¢)
(28 —N)guy=—Epy5;0€"%— Uns€™,, (2.12d)
2J1u8"01=7D"ya€yp— 7 Qa€™p+C, 148"
+P['u8 p]+2i€CA[p6v#] . (2.12¢)

It follows from these equations, after lengthy calculations,
that

Bo,py=—Mgup , (2.13a)
Ko=—Q,+iedgD,P, (2.13b)
Jo=73"DC;s—ieCA, , (2.13¢)
S=—%E5;s+—12y—, 2.13d)

J

J% o+ ieCA " —ied ,P*+imM =0 ,
K% o—ieApoDP—2ied K®+ied ,Q%—imN =0,
2LP, g+ ® ,— 7BPR g, +ied g pBP—2ied,,

Logy€P"5+S 5+ 57 Ep €P1PR 05 +ieA B;aE"‘Yse"eﬁ —2ieSAs+iedsN —ied ,UpceP®s—imQs=0

Ko peP s+ 1551~ 3D e
— iePp, Ag)+ 1ied o QpeP® 5 +imU, ;=0 .

Using Egs. (2.13), it may be shown after considerable cal-
culations that Egs. (2.15) reduce to

mM =mN =0, (2.16a)
D g+ 3M gtie(ApaBo+ A, B%g)+imPg=0, (2.16b)
N o —2imQq +4ieF 4 EY=0 , (2.16¢)
eF, 1BDY1e L m*UPr =0 , (2.16d)

where we have introduced the electromagnetic field tensor
Fop=2A(p,) and the Hodge dual *U,g=7€np,sU"".
Equations (2.10), (2.11), (2.13), and (2.16) are equivalent to
our starting conditions (2.8). They express in terms of C,
N, @, B,, Dyg, E,p,, and A, necessary and sufficient
conditions for L to be a symmetry operator.

It should be noted that . is completely determined in
terms of L via Egs. (2.13a), (2.13d), (2.12a), (2.13e), and
(2.13f); explicitly we have

M=—4B/%, Qu=1DsPp, Up=—+E.",. (.17
In view of Egs. (2.15) we must, as one would have expect-
ed, distinguish between the massless and massive cases in
writing the final expression of our symmetry operators.
When m =0, we have proved by Egs. (2.10), (2.11),
(2.12a), (2.13), and (2.16), the following.

Theorem 1. The most-general first-order symmetry
operator for the neutrino field operator, that is an operator

K satisfying

pEPY —4iedgLP,

Dapy =Dyia;p1+3Q128p1y » (2.13¢)

Eapy6=—Esiapy1—4Uap8r15 » (2.13f)
where we have introduced the Hodge duals

*Dop="3€apysD™, Ea=t€apysEP"® . (2.13g)

It should be noted that Egs. (2.13e) and (2.13f) may be
rewritten in the equivalent form

(2.14a)

Eopy;6)=—Uap8y5—Upy 881a+Uay&s)p - (2.14D)

We now see from Egs. (2.13a), (2.14a), and (2.14b) that
B, satisfies the conformal Killing vector equation and
that D,g and E,g, satisfy conformally invariant generali-
zations of the generalized Killing equations of Yano and
Bochner.* We are now left with Eq. (2.8¢c), which is
satisfied if and only if

Da(B;‘r) :QagB'y_Q(ﬁgy)a ’

#B%y | R aguv 57 +ieCA 5] — %ieAB;aDaeeeﬂrﬁ"'”ZieA[BJrl

(2.15a)
(2.15b)
—2ieAgU,P—ieMA,+imP,=0, (2.15¢)
(2.15d)
(2.15¢)
I
[K,iy®V,]=Riy*V, , (2.182)
is given by
K=(B°I +Cy*+D gy’ yP+E %, yP")V,
3ipna &b 358 ﬁ 5 xRN 6 a
+H(FB%+P) + |- FE o (VT D°ysv
+3D 2 g v * +($Eap".y— +Bap)y®® (2.18b)

where the tensor fields B, Daﬁ, and Eaﬁy and the scalar
fields N and ® satisfy

Dog=Diap), Eopy=E(apy, (2.18c¢)
N o=%,=0, (2.18d)
Bp=5B"\8ap » (2.18¢)
5a<ﬁ;y) =— %5 sa;Bgﬂy +3D Btﬂ; 18| 8y > (2.18f)
Eopiyie)=5Eap"08+5Epy %! 10| 850
—5Eq, 17 151 8008 > (2.18g)
and where
R=— 3B I + Ny —C oy — 3D Popr™y®
—3Eag" v (2.18h)
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In the case m=:0, e =0 we have shown in view of Egs.
(2.10), (2.11), (2.12a), (2.13), and (2.16), the following.

Theorem II. The most-general first-order symmetry
operator for the massive Dirac operator in the absence of
electromagnetic interactions, that is an operator K satisfy-
ing

[K,iv?Vy—mI)=ZRiy°V y—mI) (2.192)
is given by
K =(B°I +Cy*+Dgy°yP+ E%, PV,

+®I —FE% 5y ++*D% sy*— +Bopy®®,  (2.19b)

where the tensor fields B, Dab, and E,g, and the scalar
fields C and ® satisfy

Dup=Diap)> Eapy=Etapy] » (2.19)

B =Dagy) =Eapy;8=0, (2.19d)

imC = 4, (2.19¢)
and where

R=—C 7", (2.199)

We remark that we can rewrite, modulo an obvious redefi-
nition, the symmetry operator K given in (2.19b) as fol-
lows:

K=K, +K,, (2.20a)
where K, is given by

K, =CyV,+®I, imCpg=>4, (2.20b)
and hence satisfies

(K2, H—mlI]|=—C ,yH —mlI), (2.20c)

and where K; is the most-general first-order operator
commuting with the massive Dirac operator in the ab-
sence of electromagnetic interactions whose expression
has been given by McLenaghan and Spindel.>* This im-
plies that working in the quotient space of symmetry
operators modulo operators of the form (2.20b), every
symmetry operator for the massive Dirac operator in the
absence of electromagnetic interaction is a commuting
operator (an analogous property is well known to hold for
the Helmholtz equation in Euclidean space?®).

Finally, in the case m=£0£e, we have shown, in view
of Egs. (2.10), (2.11), (2.12a), (2.13), and (2.16), the follow-
ing.

Theorem III. The most-general first-order symmetry
operator for the massive Dirac operator with electromagnet-
ic interactions, that is an operator L satisfying

[L,iy*(Vy—ied,)—mI]|=Siy(V,—iedy)—mlI],
(2.21a)

is given by

L =(B%I +Cy“+Da3y5yB+E“3y7/B")Va
+®I— %EE;S'VS"F( %*Dsa;ﬁ_ieCAa)Va
+(5DP, priedgD Pryy®

1 1

+(5Equp".y— 7Baptied,E Tgy™ ,  (2.21b)

where the tensor fields By, Dop, Eup,, and A, satisfy

Dog=Diag)s Eapy=E[apy] (2.21¢)
B(yp=0, (2.21d)
Dagyy=—3D%:s88,+5D%p 15/ 8y2a » (2.21e)
Eopyir=1Eap" 085+ TEpy ") 0| 85)a

—5Eay; 10| 858 » (2.21f)
® p+ie(ApaBO+ AgB% 5 —imC =0, (2.21g)
mQ,—2eF,,E"=0, (2.21h)
eF,[PDTe  m*UPY =0, (2.21i)

and where

S =—C v~ DB gy — TEu" v . (2.21))

Let us finally note that if we require K (or K or L) to
formally self-adjoint, we must have, by an argument iden-
tical to that given by McLenaghan and Spindel,?’

5:—5’ (T):(I), Eaz—ﬁa’
- 2.22)
ap=ap> aB‘r:Eaﬁr'

III. DISCUSSION

The conformal Penrose-Floyd equation possesses in-
tegrability conditions which put significant restrictions on
the backgrounds in which symmetry operators for the
neutrino operator may exist. Indeed, every solution to Eq.
(2.14a) must satisfy

Dapsy =3 RPy1apDs1p+28618Qary +8 6y Qlass)

+ga7Q[8;ﬂ] +gY§Q[B;a] s (3.1a)

which reduces when Q, =0 to the integrability condition
given by Carter and McLenaghan?® for the full Penrose-
Floyd tensor, and generalizes the well-known condition
satisfied by any solution of the conformal Killing equa-
tion.?” From Eq. (3.1a), it may be deduced that every con-
formal Penrose-Floyd tensor must satisfy

Do RPg18y +Dpis Ry 10p+8 8y Clas8)

— 80y Q8.8 —88Q(x;y) +8a6Qgy) =0, (3.1b)

which yields upon contraction
DpoR5°+2Q (g5 =0 .

It can easily be obtained from Egs. (3.1b) and (3.1¢) that
D,g must satisfy

(3.1¢c)

Dty CPo1a5+DptaClp1ys=0 » @.19)
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which is the full integrability condition for the conformal
Penrose-Floyd tensor. It should be noted that the confor-
mally invariant condition (3.1d) holds also for the full
Penrose-Floyd tensor. However, in that case there is an
extra integrability condition, which turns out to be given
by Eq. (3.1c), where Q, is set equal to zero, which in-
volves the Ricci tensor instead of the Weyl tensor, and
which is, as one could expect, not conformally invariant.

The integrability condition (3.1d) has been studied by
Spindel and McLenaghan in the more restricted context of
full Penrose-Floyd tensors. However, since their discus-
sion is purely algebraic, it is easily seen that their con-
clusions also hold for conformal Penrose-Floyd tensors.
We may therefore conclude that those nonconformally
flat spacetimes admitting a conformal Penrose-Floyd ten-
sor are either Petrov type D with an algebraically general
D,p whose two distinct null eigenvectors are aligned with
the two repeated principal null directions of the Petrov
type-D Weyl tensor, or Petrov type N with an algebraical-
ly special D,g whose repeated null eigenvector is aligned
with the quadruply repeated principal null direction of the
Weyl tensor.

An example of a noncommuting symmetry operator for
the neutrino equation constructed on a conformal
Penrose-Floyd tensor D,g arises from the separation of
variables®® for the neutrino equation in the class & of
solutions of Einstein’s vacuum and electrovac field equa-
tions with cosmological constant for a nonsingular aligned
Maxwell field. The symmetric two-index spinor associat-
ed to the conformal Penrose-Floyd tensor D,z by the
canonical correspondence

Da‘s«»eABK/i 3t GAéKAB R (3.2a)
is of the form
K 4p=po atp), (3.2b)

where 0o, and tp are the repeated eigenspinors of the
Petrov type-D Weyl tensor. Moreover, from Egs. (2.14a)

and (3.2), it can be deduced that K 5 satisfies the twistor
equation

v. K =0,

A(A""BC) (3.2¢)

and is consequently a Killing spinor.’! We are thus able
to explain the existence for every solution in & of a two-
index Killing spinor K 45 of the form given in (3.2b), from
the separability of the neutrino equation therein, via the
construction of the symmetry operator underlying this
separability property.

In contrast, the separation of variables for the massive
charged Dirac equation within the class & is only possi-
ble in the subclass of Carter’s [ 4] solutions’? and the null
orbit solution A, found by Debever and McLenaghan®? in
which case the symmetry operator reduces to a commut-
ing operator (first introduced by Carter and
McLenaghan® in the special case of the Kerr-Newman
solution) constructed on a full Penrose-Floyd tensor
whose associated two-index spinor K 4p satisfies the twis-
tor equation (3.2c) and the following skew-Hermiticity
condition:>’

c . g€
V..K B+VBC.K 1=0, (3.2d)
which expresses the vanishing of Q, in terms of two-
spinors.

It finally should be mentioned that the symmetry
operators K, K, and L introduced in theorems I, II, and
III generalize the Lie-derivative operator on spinors which
was introduced by Koss_rgnann36 and which corresponds to
the parts depending on B, and B, in K, K, and L.
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