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Symmetry operators for neutrino and Dirac fields on curved spacetime

N. Kamran and R. G. McLenaghan
University of Waterloo, Department ofApplied Mathematics, Waterloo, Ontario, Canada %21.361

(Received I9 December 1983)

We characterize tensorially all first-order differential operators whose commutator with the mass-
less Dirac operator is proportional to it on a general curved background in terms of skew-symmetric
tensors satisfying conformally invariant generalizations of the Killing-Yano equations. The same
problem is also solved for the massive charged Dirac equation on a general curved background.

I. INTRODUCTION

Symmetries play a crucial role in the analytic solution
of the equations satisfied by the variables describing a
physical system. A well-known example of this is given
by Pauli's' solution of the hydrogen-atom problem via the
O(4,R) symmetry group. This symmetry group appears as
the product of a group of geometrical symmetries of the
system, which turns out to be a subgroup of the isometry
group of the ambient Euclidean space with a group of
dynamical symmetries whose existence reflects the hidden
symmetry associated with the Runge-Lenz vector. In par-
ticular, when the analytic solutions are obtained by seek-
ing separable or R-separable solutions, the symmetries
appear in the form of symmetry operators, that is (matrix)
differential operators whose commutators with the dif-
ferential operator appearing in the field equations are pro-
portional to it. Symn1etry operators thus map the space
of solutions into itself. Commuting operators are the
most familiar examples of symn1etry operators and are in-
terpreted as constants of the motion, their eigenvalues
yielding quantum numbers for the system. They have
been studied by Carter in the general context where the
equations satisfied by the variables describing the physical
system are rth-order self-adjoint linear homogeneous par-
tial differential equations and they were characterized by
him as those operators leaving the Lagrangian density ad-
mitted by such equations invariant up to a divergence.

In the case of the equation of a massive charged test
scalar field (or the motion of a massive charged test parti-
cle) intel actlllg wltll hackgl ound gl avltatlollal aIld elec-
tron1agnctlc flclds, thc con1muting symmctl y opcI'atoI s
may be characterized tensorially in terms of valence-two
symmetric E&IIing tensors. The existence of irreducible
Killing tensors reflects the presence of dynamical syln-
rnetries which are not isometrics. A remarkable example
of such a situation was given by Carter when he
discovered the fourth constant of the motion for the
massive-particle orbits in the Kerr solution. The existence
of such tensors is also required in the theorems ensuring
the existence of separable coordinates for the Hamilton-
Jacobi equation for the n1assive-particle orbits, or the
Klein-Gordon equation for massive scalar fields, on R

curved background.
Operators commuting with the Dirac operator have

also been considered, an important example of which is

given in flat spacetirne by the total angular momentum J
which is associated with the separability in spherical coor-
dinates of the Dirac equation for a central potential, and
which ad1Tllts thc sepal Rtcd solutions as clgcnfunctlons
with the separation constants arising therefrom as eigen-
values. First-order operators commuting with the Dirac
operator on a curved background were obtained by Carter
and McLenaghan ' through their analysis of the
separation-of-variables procedure devised for the Dirac
equation in the Kerr spacetime by Chandrasekhar. ' Car-
ter and McLenaghan showed that these operators admit
the separated solutions as eigenfunctions with the separa-
tion constants as eigenvalues, and characterized one of
them tensorially in terms of a skew-symmetric valence-
two Penrose-Floyd tensor" D ~, whose spinor equivalent
E~z ls a EIIIEng spinor' satlsfylng a further skew-
Hermiticity condition. ' Spindel and McLenaghan'" sub-
sequently gave a tensorial expression for the Inost general
first-order operator cornrnuting with the charged Dirac
operator on a general curved background in terms of a
Killing vector, a Penrose-Floyd tensor, and a Killing-
Yano tensor of valence three.

In contrast with the fact that one obtains commuting
symmetry operators when separating the massive
(charged) Klein-Gordon or Dirac equations, when dealing
with the conformally invariant Klein-Gordon or Dirac
cquatlons foI zeI0-Mst-IQss paltlclcs, onc has to coIlslder
symmetry operators which are not necessarily commuting
operators. Nontrivial exan1ples of such operators have
long been known' foI' the Laplace equation in Euclidean
space, where they are associated with the R-separable
coordinate systems. On the other hand, examples of such
operators for the neutrino equation for massless spln- —,

particlcs in curved space have only recently been given. '

They arise in the class W of solutions' of Einstein's vac-
uum and electrovac field equations with cosmological
constant for a nonsingular aligned Maxwell field through
the existence for the entire class of a separable coordinate
system and spin frame, the separated solutions being
eigenfunctions of these operators with the separation con-
stants as eigenvalues.

As has been previously noted, the existence of an opera-
tor which cornrnutes with the Dirac operator on the Kerr
background gives rise to R valence-two Killing spinor
which satisfies an additional skew-Hermiticity condition.
In view of the existence in the whole class N of a
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valence-two Killing spinor not necessarily satisfying this
RddltlonR1 condition, the following qUcstlon arises natural-
ly: Upon which gconlctrlc objects ls thc most-gener 81
first-oI'dcI symmetry opclRtoI' foI' thc ncutrlno opcI'atol
constructed on 8 gcncI'Rl cUI'vcd backgrouIMD This ques-
tion is answered in theorem I of our paper (which was
given without proof in a previous note ), where this sym-
metry operator is characterized in terms of a conformal
Killing vector, 8 conformal generalization of the Pcnrose-
Floyd tensor, and a conformal generalization of the
Yano-Killing tensor of valcncc thlec. As cxpcctcd, thc
two-index spinor associated with the conformal Penrose-
Floyd tensor satisfies the Killing spinor equation, but not
necessarily the skew-Hermiticity condition. %C are thus
able to derive the existence of the Killing spinor in the
whole class Q' via the separability of the neutrino equa-
tion therein. In theorem II, we show that modulo a "trivi-
al" symmetry operator, every symmetry operator for the
massive Dirac equation without electromagnetic interac-
tion is 8 commuting oper'ator, thus showing that
McLenaghan and Spindel had in fact determined essen-
tially all the symmetry operators for this operator. In
theorem III, wc generalize the McI.enaghan-Spindel result
by determining the most general first-order symmetry
operator for the massive charged Dirac operator. In the
last section of our paper, we give thc lntegrablhty condl-
tlons for thc cquatlons of thc conformal Pcnrosc-Floyd
teQsoI' Rnd dl Mv some gcncral conclusions aboUt thc
spacetimes admitting such a tensor. %C also discuss fur-
ther thc conllcctloQ between thc separation of varlRblcs fol
the neutrino equation in & and the Killing spinor pos-
scsscd by thc class-N solutions.

where A'0, 9P, and W are 4 &&4 matrices to be determined.
It should be noted at this point that Ao, E, and L, map,
respectively, the spaces of solutions of the neutrino equa-
tion, thc Dlr'Rc cqURtlon 1Q thc Rbscncc of electromagnetic
lntcI'RctloIls, and thc 01I'Rc equation %'ith electromagnetic
interactions into themselves, and that we recover as a spe-
cial case of Eqs. (2.4)„(2.5), and (2.6), when 980, A, and
W vanish identically, the relation defining a constant of
the motion.

We shall treat Eqs. (2.4), (2.5), and Q.6), as far as possi-
ble, slQ1UltancoUsly by writing

(2.8a)

(F yP yF )R p
—y y +8y V'BG

+Sic [F yPAB~+Ap(GyP yPG)]—

(2.8b)

—SI'eP'y A +Sim&=0 . (2.8c)

To analyze Eqs. (2.8), we introduce the standard tensorial
basis for M4(C)

where I' and 6 are 4&4 matrices of complex-valued
functions, and then expanding the commutator in Eq.
(2.6), distinguishing between the cases m =0 and m&0
only when necessary.

By cquatlng to zclo thc cocfflclcnts of the covRrlRnt
derivatives of each order in Eq. (2.6) and using the Ricci
identity on four-spinors, ave obtain the following three
colldl'tlolls wlllcll ale Ilcccssal'y Rlld sllfflclcllt fol Eq. (2.6)
to be satisfied:

5 cxI,y'= e.pysy yp—y —y', y,y'y, y B=y[ yp], (2.9)AP/6

%c cons1dcl thc ncUtrino and 01I'Rc equations

Hg=iy V /=0,
(H+ey A mI)$=0, — (2.2)

where Iy I is a set of Dirac matrices associated with a
four-dimensional Lorcntzian metric g~p by thc Rnticom-
mutatlon relations

[X,H] =A'H,

[K,H —mI] =A'(H —mI),

[L,H+ey A mI]=W(H+ey —A mI), (2.6)—

where V denotes the covariant differentiation operator
on four'-spinors associated with the choice of y 's and the
I.evi-Civita connection of g p, where A is a covcctor
field on spacetime, e is the charge, m is the mass, and P is
thc four-coIIlponcQt 011ac spinor.

%c scck thc IIlost gcnclRl first-order dlffercntlal opcra-
tols E, E, and L, which satisfy thc commutation I'clatlons

where we denote by e~p&~ the components of the volume
foIm of spacctlmc.

EquRtloll (2.8R) will bc ldcntlcally sa'tlsf lcd lf Rlld ollly

F—:8 I+Cy +D py y~+E~I3 yI~,

whclc thc tcnsol flclds D~I3 and E~p& satis fy

Q. 10a)

(2.10b)

To study conditions (2.8b) and Q.7c), we expand G and W
in the basis (2.9):

(2.11a)

J[yII+Xy'+F.y +g.y—'y +U.py p. Q. llb)

K = ,'D~ p~ , Q +ieApD—P,. —

Q. 12a)

(2.12b)

It is then readily shown that Eq. (2.8b) will be satisfied if
RIld only lf
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1L~p= —,( B—~ p+. 2E py y.
—2UP M—g P+4ieAyE yP),

(2S —N)g~ —— E—~ys e . y „U—~se ),„,
(2.12c)

D~p;y Dy[~;p]+ 3Q[~ gp]y ~

E px;~=- —E~i p;~]
—4U~ pg~]~

where we have introduced the Hodge duals

(2.13e)

(2.13fl

W~~"~]= D"y; "'~~ ~
—Q e "~a+~,[~~"p]

+I [p5 ]+2leCA[ 5 p] (2.12e)
It should be noted that Eqs. (2.13e) and (2.13f) may be
rewritten in the equivalent form

It follows from these equations, after lengthy calculations,
that

Da(pyl Qugpy Q(pgy)a ~ (2.14a)

8(~.p)
———Mg~p,

K =—Q +ieApD P,

J =—,*D ~.~—iecA

(2.13a)

(2.13b)

(2.13c)

(2.13d)

E p(y;s)= Up—gys Up(y—gs) +U (ygs)p. (214b)

We now see from Eqs. (2.13a), (2.14a), and (2.14b) that
8 satisfies the conformal Killing vector equation and
that D p and E~p& satisfy conformally invariant generali-
zations of the generalized Killing equations of Yano and
Bochner. We are now left with Eq. (2.8c), which is
satisfied if and only if

J . +ieCA ' —ieA I' +irnM =0,
K ieAp. .D—P 2ieA K—+ieA Q imN =0—,

2L . +4 ——,8 R +ieA . 8 —2ieA . E ~ —4ieA L —2ieA U —ieMA +imI' =0,
L p ye Pys+S s+ , E pye

P—yt'R ps+ieAp Ey,ey'.Ps 2ieSAs—+ ieAsN ieA Up, e—P'
s imQs=—O,

K~ pE ys+J[s y] 2D pe [y(R~p~(s]+leCA[s y] TleAp~D ~ ys+2leA[sJy]

—ieP[y A s] + , ieA Q pe—P ys+i m Uys =0 .

(2.15a)

(2.15b)

(2.15c)

(2.15d)

(2.15e)

Using Eqs. (2.13), it may be shown after considerable cal-
culations that Eqs. (2.15) reduce to

(2.16a)

(P p+ , M p+—ie(Ap B+A B . p)+imPp .0, (2.16——b)

[K iy V ]=Aiy V'
is giUen by

K =(B I+Cy +D py'yP+E'p, yPy)V.

(2.18a)

2imQ —+4ieF yEy=O,

er.~PD&] +m*U» =0,
(2.16c)

(2.16d)

+(-,B,.+@)I+ ,E ',s+ —y'—+ , *D s—.s—y,

(2.18b)where we have introduced the electromagnetic field tensor
I p=—2A)p. ] and the Hodge dual *U

p
———,'e pygU~ .

Equations (2.10), (2.11), (2.13), and (2.16) are equivalent to
our starting conditions (2.8). They express in terms of C,

8~, D~p, E~py, and A ~ necessary and suff1clent
conditions for L to be a symmetry operator.

It should be noted that W is completely determined in
terms of L via Eqs. (2.13a), (2.13d), (2.12a), (2.13e), and
(2.13f); explicitly we have

where the tensor fields B, D p, and E py and the scalar
fields N and 4 satisfy

(2.18c}

(2.18d)

(2.18e)

(2.18fl

& p=Dt p] E px=&) py]

=0,
' ux

(a;p) 4;ygap ~

& R5 & R5
a(p;y) = —T a;5gpy+T (p; lsl Sy)a ~

1 1

Q = , D .p, U p= ——,E py y. (2.17)—.
In view of Eqs. (2.15) we must, as one would have expect-
ed, distinguish between the massless and massive cases in
writing the final expression of our symmetry operators.
%hen m =0, we have proved by Eqs. (2.10), (2.11},
(2.12a), (2.13), and (2.16), the following.

Theorem I. The most general first order sy-mmetry-
operator for the neutrino field operator, that is an operator
K satisfying

1 l~l& P(y;~)= 2E P; gys+ PEP(y
l lies)

l~la(y; lal 85)P ~

A= —48 ' I+X@ —C y —3D p~. py y

~p
ap;yX

(2.18g)

(2.18h}
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In the case m&0, e =0 wc have shown in view of Eqs.
(2.10), (2.11), (2.12a), (2.13), and (2.16), the following.

Theorem II. The most gen-eral first ord-er symmetry
operator for the massiue Dirac operator in the absence of
electromagnetic interactions, that is an operator K satisfy
Eng

I. =(B I+Cy +D,y'yP+E p,y»)V.

+@I—4
E5 5y .+( , '—D5

5 . i—eCA )y

+( ,'D—P p+. ieApD P)y y

+( 4 E pr r .4B—p+.ieArEarp)y

[K,iy V' m—I]=%(iyaV' —mI),

ls glUen Ap

K=(B I+Cy +D pysyP+E pyyir)V.

++I ——E .5y + —,*D .5y ——,8 .py

(2.19R)

D~P D[~P] ~ E~Py EI&Py j ~

~[a;p]
& ~5 & ~5

+&[P;y]= —
3 ~ &;5gPy+ 3 ~ [P; ~5~ gy]a ~

(2.21c)

(2.21d)

(2.2 le)

where the tensor fields B, Dap, and Eapr and the scalar
fields C and C) satisfy

EaP(y;5j 2 laP;oly5+ 2 ~P[y; ~o I
g5)a

~P D[~P] ~ E~Py EI~Py j ~

~(a;P) +a(.P; y ) EaP(y;5)

imC p ——4p,

(2.19c)

(2.19d)

(2.19e)

&9 p+ie(Ap. B +A B p) imC. p
—0, ——

(2.21f)

(2.21g)

{2.21h)

(2.21i)

(2-19f)

%'e remark that we can rewrite, modulo an obvious redefi-
nition, the symmetry operator K given in (2.19b) as fol-
lows:

(2.20a)

where L2 is given by

(2.21j)

Let us finally note that if we require K (or K or I.) to
formally self-adjoint, we must have, by an arguInent iden-
tical to that given by McLenaghan and Spindel,

(2.22)

K2 ——Cy V' +CI, imc p
—4 p,

and hcncc satisfies

(2.20b)
III. DISCUSSION

[KI,II mI] = C.y—(0 m—I), — (2.20c)

and where E] is the Inost-general first-order operator
commuting with the massive Dirac operator in the ab-
scncc of clcctl omagnctic interactions whose cxpI csslon
has been given by McLenaghan and Spindel. This im-
plies that working in the quotient space of symmetr'y
operators modulo operators of the form (2.20b), every
syIIlIIlctry opcI'atol fox' the ITlasslve Dirac opelatoI' ln thc
absence of electromagnetic interaction is a commuting
operator (an analogous property is mell known to hold for
the Helmholtz equation in Euclidean space ).

Finally, in the case m &0&e, we have shown, in view
of Eqs. (2.10), (2.11), {2.12a), (2.13), and (2.16), the follow-
ing.

Theorem III. The most general first order-symmetry-
operator for the massiue Dirac operator with electromagnet
ic interactions, that is an operator I.satisfying

[I.,iy (V ieA ) —mI]=W—[iy (V ieA ) —mI]—,
{2.21a)

The confoITIlal PcnI osc-Floyd equation posscsscs ln-
tegrability conditions which put significant restrictions on
the backgrounds in which symmetry operators for the
neutrino operator may exist. Indeed, every solution to Eq.
(2.14a) must satisfy

Dap;5y T~ y[aP5]p+2g5[pQa];r+gW'Q[a'5]

+gayQ[5 p]+grsQ[p a] ~ (3.1a)

which reduces when Q—:0 to the integrability condition
given by Carter and MCLcnaghan for the full Penrose-
Floyd tensor, and generalizes the well-known condition
satisfied by any solution of the conforInal Killing equa-
tion. From Eq. (3.1a), it may be deduced that every con-
foITIlal Pcnrosc-Floyd tcIlsoI IIlust satisfy

Dp[aB p]sr+Dp[5~ y]ap+gpr Q(a;5)

—g rQ(p;5) —gp5Q(;r)+g 5Q(p;r)=o {3~ 1»

which yields upon contraction

Dp( ~ ) +52pQ(;5)=o.

It cR11 easily be obta1ned fI'OIrl Eqs. (3.lb) Rnd (3.lc) 'tllaf,

D p IHUst satisfy
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which is the full integrability condition for the conformal
Penrose-Floyd tensor. It should be noted that the confor-
mally invariant condition (3.1d) holds also for the full
Penrose-Floyd tensor. However, in that case there is an
extra integrabillty cond1t1OIl, which turns out to be glveQ

by Eq. (3.1c), where ga is set equal to zero, which in-
volves the Ricci tensor instead of the Weyl tensor, and
which is, as one could expect, not conformally invariant.

The integrability condition'(3. 11) has been studied by
Spindel and McLenaghan in the more restricted context of
full Penrose-Floyd tensors. However, since their discus-
sion is purely algebraic, it is easily seen that their con-
clusions also hold for conformal Penrose-Floyd tensors.
We may therefore conclude that those nonconformally
flat spacetimes admitting a conformal Penrose-Floyd ten-
sor are either Petrov type D with an algebraically general
D p whose two distinct null eigenvectors aI'e aligned with
the two repeated principal null directions of the Petrov
type-D %eyl tensor, or Petrov type X with an algebraical-
ly special D p whose repeated null eigenvector is aligned
with the quadruply repeated principal null direction of the
Weyl tensor.

An example of a noncommuting symmetry operator for
the neutrino equation constructed on a conformal
Penrose-Floyd tensor Dat» arises from the separation of
variables for the neutrino equation in the class & of
solutions of Einstein's vacuum and electrovac field equa-
tions with cosmological constant for a nonsingular aligned
Maxwell field. The symmetric two-index spinor associat-
ed to the conformal Penrose-Floyd tensor & ti by the
canonical correspondence

and (3.2), it can be deduced that KAii satisfies the twistor
equation

and is consequently a Kilhng senor. ' We are thus able
to explain the existence for every solution in W of a two-
index Killing spinor Knit of the form given in (3.2b), from
the separability of the neutrino equation therein, via the
construction of the symmetry operator underlying this
separability property.

In contrast, the separation of variables for the massive
charged Dirac equation within the class W is only possi-
ble in the subclass of Carter's [A] solutions and the null
orbit solution Ao found by Debever and McLenaghan in
which case the symmetry- operator reduces to a coIDmut-
ing operator (first introduced by Carter and
McLenaghan in the special case of the Kerr-Newmari
solution) constructed on a full Penrose-Floyd tensor
whose associated two-mdex spinor K~tt satisfies the twis-
tor equation (3.2c) and the following skew-Hermiticity
cond1tlon:

(3.2d)

which expresses the vanishing of Q in terms of two-
splnoI's.

It finally should be mentioned that the symmetry
operators E, E, and L, introduced in theorems I, II, and
III generalize the Lie-derivative operatoI' on spinors which
was introduced by Kossrnann and which corresponds to
the parts depending on 8~ and 8~ in K, E, and L,.

D =:= E. . +g. .E
al3 A8 ~& && A8 '

is of the form

(3.2a)
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