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If the relativity principle» %'h1ch states that thc la%" of piopagation fox' light has thc same fo~ for
all IIlacx'oscop1c obscx'vcis, 1s extended to include quantulTl observers, this leads d1I'ectly to thc quan-
turn unified field theory which was introduced in a px'evious paper. This theory appears suitable for
describing all known interactions. Gravitation and electroxnagnetism are described by the Einstein

equations 6„=2 (e„„—K„j„—A,j„) —RK„E„,where 6„ is the Einstein tensor, 8 is the Ricci

scalar, ez„ is the usual stress-enex'gy tensor for the free electromagnetic field, and j& is the elec-
tromagnetic current. Thc vector K& plays a dua1 1olc. It 1s thc electromagnetic vccto1 potcnt181 1n

the covariant I.orentz gauge, and, it is also a unit timelike vector interpx'etable as the velocity of the
observex.

I. INTRODUCTION

Ill R pi'cvlous pRpcl, llci'caftcI' referred to Rs I, wc ob-
tained a quantum unified field theory by pursuing a sug-
gestion by Einstein that the diffeomorphisms somehow
be extended to a larger group. The present paper is devot-
ed to the further development of that theory In S. ecs.
IA—IF, we recall those developments from I which are
needed so that subsequent sections may rest upon a firm
nlRtllcnlatlcR1 foundat1on. A further 111Rtllc111atical I'csult
%'hlch %vill be nccdcd subsequently 1s developed 1n Scc. IE.
In Sec. II, we establish a more solid physical foundation
than was recognized in I, by showing that if the relativity
principle, which states that the law of propagation for
light has the same form for all macroscopic observers, is
extended to include quantum observers (observers who
may be large, but not infinitely large, by comparison with
quantum-mechanical systems), this leads to precisely the
group extension of the diffeomorphisms upon which I is
based. In Sec. III, we recall the main physical results of
I, and show that its field equations may be expressed in a
form which makes it far more evident than previously
that they describe gravitation and clcctroIDagnctisID and
also contain terms that appear suitable for describing the
wreak and strong interactions.

Any ordered set of four independent real variables xo,
where e and other ind1ces take the values 0,1,2,3, may be
regarded as coordinates of points in a four-dimensional
arithmetic space o. Let x (A, ) be absolutely continuous
functions of a real parameter k on the interval
—ao & A, & ao. By a path P, we mean the totality of points
in o which are identified by xo=x (A, ) for —ao «A, & A.
Thus, onc cnd point of I 1s thc po1nt I, %1th coordinates
limi „x (A, }, while the other end point is the point x
with coordinates x (A}. We regard i as the initial point,
and regard x as the terminus, of P. The set of all paths in
o is regarded as a space of paths, and is denoted by X.
We impose a topology on X by defining the (coordinate

dependent) distance D between paths A and 8. This dis-
tance D(A, 8) is defined with the aid of the usual (Eu-
clidean) measure of distance d(a, b) between points a and
b D(A, 8. ) is defined as the smallest number D such that
foI' cRcll polilt a oil path A, tllclc exists R polllt 6 oil pRth
8 for which D &d (a,b); and, for each point b on 8, there
exists a point a on A for which D&d(a, b) Let F. be a
path-dependent functional, i.e., a rule which assigns to
each path P a real number FIPI. If, for all paths A and
8, the relation limn &EIBI=FIR[ is satisfied, F is
called a continuous functional. We limit our considera-
tions to continuous functionals. Derivatives of F I PI are
defined by giving P an extension from its terminus x,
while holding the rest of P completely fixed. Any path
may be extended in this way by extending the domain of
x (A, ) to the interval —co &A, &A+AA, where KA&0.
The resulting path P+hP is called a path extended from
P, and the totality of points in cr which are defined by
x =x (A, ) for A «A, & A+hA is called an extension of P
and is denoted by AI'. We define I"by

If the extension hP is chosen so that, along it, only a sin-
gle coordinate x changes, and if the parametrization is
such that on this extension hA=M~, then F' is called
the partial derivative of F with respect to x~, and denoted
either by dttF or by E tt. If, along hP, the coordinate in-
crements M are unrestricted and independent, then E' is
called the total derivative of F with respect to A, and
denoted by dF/dA. It is also convenient to denote
dx /dA, , evaluated for A, =A, by dF/dA. If the partial
dcrlvatlvcs Rlld tllc totR1 dcrlvRtlvc of F Rlc related ln
such a way that the chain rule for differentiation is valid,
i.e., if dF/d A =E dx /d A, then F is called a smooth
functional. A smooth functional whose partial derivatives
of all orders are also smooth is called a regular functional.
%'e limit our considerations to regular functionals. When
we wish to emphasize the path-dependent character of a
functional F, we will use the notation FIP j. However,
our fUnct1onals 1ncludc» as a subclass» thc Usual onc-
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valued functions of x, i.e., functionals which are "path
dependent" in the trivial sense that they depend only on
the terminus x of a path P; for them, we use the notation
E(x). From P, let two extended paths P+M& and
P+AP2 be constructed such that the extensions hP& and
~2 do not coInpletely coincide, but such that the termini
of P+D,Pi and P+b,P1 do coincide. The values of
EIP+~, j and EIP+EP1 j are not generally equal. By
letting b,Pi be an extension along which first only x"
changes Rnd then only x" changes, and letting hPq be an
extension along which first only x" changes and then only
x" changes, we see that B„B„Eequals d+„E for functions
E(x), but not generally for functionals EIP j.

B. Abstract path space

Just as the x are regarded as coordinates of points in o
and the set of paths in o is regarded as a space of paths X,
another set of four independent real variables x' may be
regarded as coordinates of points in another four-
dimensional arithmetic space s and the set of paths in s
may be regarded as another space of paths S. Let H be a
homeomorphism from X onto S; let H be the image path
of P, and let W be the terminus of H. Since W is deter-
mined by H, and H is determined by P (via the
homeomorphism H), it is clear that the coordinates x' of

are functionals of P, i.e., x'=x'I P j. Similarly
x =X~I &j. If the image path of each path extended
from P is a path extended from H, and if x'IP j and
x [%j are regular functionals, then H is called a regular
homeomorphism. %C limit our considerations to regular
homcomorphlsms.

%e began by regarding a homcomorphism H as a path
transformation (which maps each path P in X to a path
H in S, and conversely). There is, however, another point
of view which is more interesting and useful, and which
we now adopt: Vfc introduce an abstract path space II in
which (abstract) paths are the primary elements, and re-
gard H as a path-dependent coordinate transformation
which merely changes the arithmetic-space framework
used for discussing II. The arithmetic spaces o. and s pro-
vide equivalent frameworks for discussing II, and the
path spaces X and S are equivalent representations of the
abstract path space II. A path P and its image path H
are equivalent representations of the same abstract path p
in II. The coordinates x and x' provide equivalent coor-
dinate systeIns for discussing II, but the points which x
and x identify in o. and x, respectively, have no meaning
in II. This is clear because a path-dependent coordinate
transformation does not generally establish a one-to-one
correspondence between points of o and s, even in coordi-
nate patches. The correspondence between x and x' is
generally both one-to-many and Inany-to-one. For exam-
ple, many paths in o. with the same termini may have im-
age paths in s with different termini, and conversely.
Also, a path P in o. which is "closed, " in the sense that its
initial point and terminus coincide, may have an image
path % in s which is not closed, and conversely. Thus,
any assertion that an abstract path is closed (or is not
closed) would have no meaning. The changed point of
view which we have adopted is analogous to that in which
one begins by regarding a suitable transformation

x'=x'(x) as a mapping between the points x and W, and
then recognizes that it is more interesting and useful to re-
gard the transformation as a diffeomorphism, in which
the same point of an abstract point space (a manifold) is
merely relabeled with new coordinate values. Many inves-
tigators have expressed skepticism that a manifold ade-
quately describes physical space. %C assume that physi-
cal space is described by the abstract path space II. Path
space possesses properties which are sufficiently close to
what onc coQcclvcs of 1ntu1t1vcly as a space so that onc
may use it alInost exactly as one conventionally uses a
manifold.

C. The conservation group

A conservation law is a statement of the form / =0,
where F" is a vector density of weight + l. This is a co-
variant statement under a path-dependent coordinate
transformation relating x and x' if and only if it implies
and is iinplied by the statement P"';=0. The transforma-
tion law for a vector density of weight + l is

P '=JP x'

where J is the determinant of x;. Upon differentiating
with respect to x', and using the well-known formula
B„J=Jx' B„x;for the derivative of a determinant, we
obtain

P '; =J(P —7 "x";[8„,B„]x'),

where [B&,B ]=8&B„—Bgz. For arbitrary W", we see
that a conservation law is a covariant stateInent if and
only if

If Eq. (l) is satisfied, the path-dependent coordinate
transformation relating x and x' is called conservative.
We note that Eq. (l) is satisfied if x'=x'(x); thus, it is
clear that each diffeomorphism is a conservative coordi-
nate transformation, but that the converse is not true. In
I, wc gave Rn cxpl1c1t pI'oof that thc conscrvatlvc coordi-
nate transformations form a group, which we call the con-
servation group. Finkelstein, however, has noted that the
group property follows immediately from the derivation
given above.

D. Geometry determined on path space
by the conservation group

The geometry determined on a manifold by the dif-
fcomorphisms is Riemannian geometry, whose structure is
cxpi'csscd by a symmetric 111ct11c gp~(x). F10111 g~„and
its derivatives, one constructs an object 8 ~& which is a
tensor under the diffeomorphisms, and which is called the
Riemann curvature tensor. It is well known that there ex-
ists a diffeoInorphism to a special x coordinate system in
which g—1s COIlstant, 1f Rnd only 1f R pp~ vRI11shcs. %c
coI181dcl thc gcornctry wh1ch 1s determined 1Q this scnsc,
on thc path space II, by the conservation group. The
structure of this geometry is described by a homeomor-
phism h from the path space II onto itself. This
homeomorphism may, Rs dlscusscd 1n Scc. I 8, bc regard-
ed as a transformation from x to x' coordinates and
represented by thc matrix x'~. This matrix may be
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C;=C;—h; x' [B„,B„]x (3)

where C;=C„-h;". It is clear from Eq. (3) that h'& and
h' are related by a conseruatiue coordinate transformationP
if and only if C;=C;. This criterion is especially useful,
because C; involves only h' p, and C; involves only h'„.

F. Introduction of a metric

A symmetric metric g&„IP) is defined by the relation
g„„=gjh'„hj„where g;; =g"=diag( —l, l, l„l). That we
have not introduced g,j in an ad hoc manner may be seen
by recalling the well-known' correspondence in which the
Levi-Civita symbols of two-dimensional complex "spin
space" induce a metric with space-time signature onto
four-dimensional real space. (This also suggests that na-
ture chooses four dimensions, rather than any other num-
ber of dimensions, for reasons of parsimony; with any
other choice, a metric could be introduced only in an ad
hoc way. ) We define g""by gI'"g„=&', where 8' is the
usual Kronecker 5. Latin indices are raised and lowered
by using g'~ and g,j, just as greek indices are raised and
lowered by using g" and g&, . The transformation law
for g&„under a coordinate transformation from x to x
is the usual one, i.e., g&„——g xI'&x ~. The symmetry be-

thought of as a tetrad h'; i.e., h' =x', with h; =x
It is the tetrad which expresses the geometrical structure
of the path space II. A tetrad h' (x) was first used in
physics by Einstein, under the name "vierbein. " Gur
tetrad, however, is generally h'

t P I. Under a transforma-
tion from x to x coordinates h' transforms according
to h'„=h'~ -„and, under a transformation from x' to x'
coordinates it transforms according to h =x";h' with
similar transformation laws for h; . A curvature vector
C„IP J which is analogous to 8 p„„is defined by

C„=h;"(h '„„—h '„„), (&)

or, equivalently, by C„=C;h'„, where C; =h J„(hj";
—h;"J). Under a transformation from x to x coordi-
nates, C& transforms as a vector (and C; as a scalar) if
and only if the transformation is conservative. We
showed in I that the geometrical interpretation of C& is
this: There exists a conseruatiue coordinate transformation
Pom x to a spectal x coordinate system in which h'- is

IT

constant, if and only if C& uanishes An .equivalent inter-
pretation is that there exists a conseruatiue coordinate
transformation from x' to a special x' coordinate system in
which h &

is constant, ifand only if C& uanishes

E. Criterion for determining
whether two tetrads are related by

a conservative coordinate transformation

Any two tetrads h'„and h'„are related by a path-
dependent coordinate transformation between x and x
coordinates. The relation is h'„=h'~ „, where x „ is
defined by x „=h; h'„. Let C~ ——h;"(h'„„—h', „),as re-

quired for consistency with Eq. (2). We noted in I that
the relation between C& and C„- is

C„=C x~„—x" [B„,B„]xn.

Upon multiplying by h;", we obtain

tween coordinate transformations on greek and latin in-
dices, however, is broken by the introduction of a metric.
Indeed, it is clear that a transformation from x' to x'
coordinates leaves g&„ invariant if and only if
g 1 =g„—x";x J, where g;. —.=g~j. Coordinate transfor-
mations on latin indices which satisfy this condition will
be called frame transformations, and the symbol t."; used
instead of x";. It is well known that the homogeneous
Lorentz transformations form a six-parameter Lie group;
i.e., that I."; depends upon six parameters, a&, . . . , a6. If
the a's are constant„ then L"; is constant, and the frame
transformation is called global. If the a's are functions
a(x), then I."; is I.";(x), and the frame transformation is
called local. If the a's are functionals aI PI, then I."; is
I.";IPI, and the frame transformation is called path
dependent. If the a's satisfy conditions such that
1.'„(L";~ I."J.;)—=0, then the frame transformation is
called conservative.

II. QUANTUM OBSERVERS

Newtonian mechanics may be regarded as a relativity
theory which recognizes the equivalence of all observers
who differ only in the fact that they are moving with
respect to each other with constant velocity. In Newtoni-
an relativity, however, the measurements of such ob-
servers are related by Galilean coordinate transformations.
Einstein's replacement of the Galilean group with the
Lorentz group led from a three-dimensional Euclidean
manifold and absolute time to a four-dimensional Min-
kowski manifold, and from Newtonian theory to special
I'elativity. Einstein s recognition of the Ileed to include,
on an equivalent basis, observers who are accelerated with
respect to one another caused him to extend the group
from the Lorentz group to the diffeomorphisms. It was
this step which led from the Minkowski manifold to a
Riemannian manifold with space-time signature, and,
from special relativity to general relativity. Subsequently,
Einstein suggested that a unified field theory be obtained
by somehow extending the diffeomorphisms to a larger
group. %e pursued this suggestion, in I, by introducing
the conservation group. It is necessary to ask, however,
whether the introduction of the conservation group is jus-
tified by the kind of compelling physical motivation
which caused Einstein to introduce the diffeomorphisms.
After a11, there do exist observers who are accelerated
with respect to one another —and, evidence of their
equivalence is provided by the proportionality of inertial
and gravitational mass. But, is there a need for some still
more general class of observers?

General relativity makes use of a classical observer who
can observe the motion of a physical system without dis-
turbing the system. This violates the fundamental princi-
ples of quantum theory. Most discussions of observation
ln quantuol theory IIlake use of a macroscopic classical
observer one who can stand outside" a quantum-
mechanical system and act upon the system without being
acted upon by the system. This is unsatisfactory, because
there exist no observers who are infinitely large by com-
parison with quantum-mechanical systems. One solution
of this problem was given by Everett. " Briefly, he con-
siders a quantum observer's memory to have quantum
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states that are correlated with the states of what he has
observed .Each observer can then consider himself a mac-
roscopic observer (since his different states are indepen-
dent) and still treat other observers as part of his
quantum-mcchRQlcal unlvcrsc. Thc uncertainty prlnclplc
does not limit the precision with which he can do this, be-
cause the four operators which represent his coordinates
commute. Let 0 and 0 be two observers, each of whom
considers himself a macroscopic observer, while treating
the other as part of a quantum-mechanical universe. Let
x and x bc coordinates %'hick Rrc assigned by Q RQd Q,
respectively, to events 1Q their unlvclscs. Thc assumption
that physical space-time is a manifold rests squarely upon
the assertion that It ls possible to cstabIIIsh R one-to-one
correspondence bet%'ccn x RQd x, Rt least 1Q cooIdlnatc
patcllcs. E1Ilstclll cliallcngcd thc validity of Newton's Rb-

solute time OQ the ground that Qo operational method had
been, or could be, given for its measurement. In this spir-
it, we challenge the validity of the assumption that space-
time is a manifold on the ground that no operational
method has been, or can be„given for establishing a one-
to-one correspondence between the coordinates x and
x . Our two observers are free to exchange information
so that, for example, 0 can possess a complete description
of thc pI'occdurc wllicll 0 llscs 111 Rsslglllng coordillRtcs to
events. If Q could also state with certainty (as in general
relativity) that Q's world line is a particular path P, then
he could write a function uniquely specifying 0 s coordi-
nates x in terms of his own coordinates x . Thus, x
could be regarded as a functional of the path P (which has
the terminus x, since the observer in general relativity is
a tetrad at the event being investigated), i.e.,

HG%'ever, Q has described 0 s %orM line Rs completely Rs

nature permits when hc states that aO paths occur with
equal probability amplitude, in the sense that the probabil-
ity amplitude for a path P is Xe' ( ) ~", where I. is Q's
Lagrangian for 0, N is a normalization factor (the same
for all paths), and fi is the usual quantum of angular
momentum. Therefore, Q can only state that the proba-
bility amplitude for 0's coordinate numbers x corre-
sponding to his 0%'Q coordinate numbers x 1s

where g„denotes the democratic sum with equal weight
of contributions due to all paths P with terminus x for
which Eq. (4) yields the value x . As a world-point map-
pmg, 4'(x,x ) is both one-to-many and many-to-one;
hence, nonunique iQ both directions, as are our conserva-
tive coordinate transformations. As the size of observer
fl increases without limit, we find that the competing al-
ternatives in Eq. (5) interfere destructively on all but the
classically allowed path. Thus, Eq. (4) goes over to
x =x (x) in the macroscopic limit. This just means that
the group of all quantum transformations, defined by Eqs.
(4) and (5), contains the diffeomorphisms as a proper sub-
gx'oup, Rs does our conscrvatIGQ group.

We are now in a position which permits us to show that,
thc Blclllslofi of qualltUIB observers, oil an equivalent

basis, requires the extension of the diffeomorphisms to the
conservation group. we could simply say, "Experience
shows that if Q observes that a certain quantity is con-
served, then Q also observes that thc same quantity 1s con-
served. OQ thc othcx' hand, it Is absolutely csseDtial that
such a fundamental principle as the covariance law be
derivable from the simplest possible basic assumption.
We therefore return to the assumption which led Einstein
to special relativity: that the equation @which describes the
propagation of light (the wave equation) has the same
form for all observers. It is well known that in general
relativity the wave equation may be written in the form
(v —gg C ~) p=O, wllclcg 'ls thc determinant of gp~~
and, that this form, which does not involve "covariant
derivatives" or Christoffel symbols, is nevertheless covari-
ant under the diffeomorphisms. We note that this general
rclRt1vlst1c statement of thc %'Rvc cquatlon 1s Rlx'cady IQ
the form of a conservation law: 1 "„=0,where 7 " is
the vector density of weight + 1 which is defined by
P "=&—gg""@„. The discussion given in Sec. IC now
suffices to show that the conservation group is the largest
group of coordinate transformations under which the
equation for the propagation of light is covariant.

A. Quantization of the path-space geometry

We define a scalar I. =C"C~, which is invariant under
conservative coordinate transformations on greek indices
as wdl as conservative frame transformations on latin in-
dices. Because I. is generally I.IPI, rather than L, (x), it
is easy and natural to quantize the geometry of the path
spRcc II by llslng cssentlRHy thc path-lntcgl al QMthod.
Quantum geometry says that all paths occur with equal
probability amplitude in the following sense: The proba-
bility amplitude for a path P is' Xe' ( )~". We use in-
finitesimal extensions from the terminus x of a given path
I 1Q alMost exactly the sRIQC %'Ry that GQc conventionally
uses infinitesimal displacements from a point. Since the
tetrad is generally h'&IPI, it is clear that the behavior of
h '& in the "extension neighborhood" of x is governed by a
"probability amplitude to transit from x to x+M."
This alnplitude or "propagator" (x ~x+Ax) is' the
democratic sum with equal weight of contributions due to
every path extension from x to x + lb&, ; thus,

(x ~x+Ax) =XI e' ( )~"Wx, (6)

where &x is the "volume element" for the sum over these
finite path extensions.

A "classically allowed" path extension 4P, receives
what Misner, Thorne, and Wheeler' call "preference
without preference" over other path extensions &on x to
x+dec. This path extension and path extensions that
differ from it so httle that OI. =I. IP +AP I

I.(8+hP, I is onl—y of order fi and less give contribu-
tions to the probability amplitude (x

~
x +M }in Eq. (6)

that 1nterfcfe constructively. IQ contrastq dcstruct1vc 1Q-
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terference effectively wipes out the contribution that
comes fmm path extensions that differ more from hP, .
Thus, there are quantum fluctuations in the geometrical
structure expressed by h'„, but they are fluctuations of
limited magnitude. The smallness of lri ensures that the
scale of these is unnoticeable at everyday distances. For a
"skeleton path extension, " defined by giving x„=x {A,„)
at A,„=A+

nkvd,

, we see by analogy with Misner, Thorne,
and Wheeler'1 that the volume dement in Eq. (6) is equal
(up to a multiplicative constant) to V —gd x, where d x
denotes dx dx'dx dx . This permits us to use infini-
tCSlmal path CXtCQSlOQS lQ COQSldCAQg tlM IDRCI'OSCOplC

limit of our quantum geometry. We find from Eq. (6)
that the macroscopic limit is described by field equations
which flow from the variational principle
5 I& gL d —x =0, where the 16 components of h'„are
varied independently. We showed in I that the resulting
field equations are

C'= ,' Lx'+b—',

where b'=const. It follows from Eq. (13) that

(13)

C' ——5' C Ck ——0.
If we set i and j equal to the same value N (no summation
on X), we find from Eq. (10) that, for all N,

C ~ ——6C Ck. (11)

It follows from Eq. (11) that C 0——C'1——C z ——C
But, C 0 can depend only upon x; C'

1 only upon x',
etc. Thus, it is clear that C z is a constant (same con-
stant for all N). Hence, Eq. (10) may be written as

C'~= ,'5'JL—,

where L =C"Ck is a constant. We may integrate Eq. (12)
to Ob't81Q

L =g J( —,'Lx'+b')( ,'Lx'+b—j) . (14)

wllC1 CC~ "~ „=Cp ~—C~L ~~ Rild L pe=hi h ~ ~. SlllcC
L ~~ transforms Rs Ril Rfflllc coilllcc'tloil lllldcl Qll coordi-
nate transformations from x to x, it follows that our
field equations are covariant under conservative coordi-
nate transformations. We note that they are also covari-
ant under global, but not local or conservative frame
transformations (from x' to x'). Since L is invariant
under conservative frame transformations (latin) as well
as under conservative coordinate transformations (greek),
it is clear that the quantum theory expressed by Eq. (6) is
invariant under both types of transformation. It may
therefore appear surprising that the corresponding macro-
scopic theory is not covariant under conservative frame
transformations. It seems clear, however, that this is just
an example of a new type of dynamical symmetry break-
ing. In the quantum theory, there is democracy among
Lorentz frames which are connected by conservative
frame transformations; but certain classically allowed
Lorentz frames which are connected by global frame
transformations receive preference without preference
over other Lorentz frames.

C. F1fS't 1ntCgI'81 Of thC f1CId CqQRt1OIS

If we multiply Eq. (7) by h;"h;", we obtain

k I k
Cs,j' —gIJC, k+ 2gIJ'C Ck=o ~

The antisymmetric part of Eq. (8) is C; J
—CJ; =0, which

JUSt lmPllCS that C; IS 8 glad1CQt, 1.C., that C; =C;, %'hCIC

C is a path-independent function of the latin coordinates.
It follows that the C; are path-independent. functions of
the latin COOI'dlQRtCS» RS RIC thCII' PRItlal derlVRtlVCS. FOI'
distinct values of i and j, Eq. (8) becomes C; J

——0. Thus,
%'C SCC that thC fUQCtlOQ C CRQ depCQd Only UpOQ thC Sln"
g1C COOI'd1QatC X; Slmllafly, C CRQ depCQd OQly UpOQ X .
The trace of Eq. (8) is

Upon differentiating Eq. (14) with respect to x+, and us-
ing the fact that L is constant, we obtain

L(Lx~+6b")=0.
If Lx +6b =0, then the constancy of L and b+ implies
that L vanishes. Thus, we see from Eq. (15) that L =0;
i.e., that C Ck vanishes, so that C; must either vanish or
bc llghtilkc. In c1thcr case, wc flild from Eq. (10) that
O'

J
——0; hence, C' must be constant. Our conclusion is

that each tetrad which satisfies the fidd equations gives a
CurVRturC VCCtoI' %"hlCh ClthCI" VRQlShCS OI' lS llghtllke» RQd

that the latin components of this curvature vector are con-
Stant.

D. SO1QtlOI18 Of thC f1Cld. CqURt1OQS

%'hlCh CRQ bC f1SQSfOABCd 1QtO OQC RI10thCf'

Let h'„and h'„be two tetrads which satisfy the field
equations, and let C; and C;. be the latin components of
the curvature vectors which correspond to them, respec-
tively. From the results of Sec. IE, we see that h'„and
h'„are related by a conservative coordinate transforma-
tio~n, if and only if the constants C; and C;. are equal. But
the field equations [Eq. (7)] are covariant under global
frame transformations as wdl as conservative coordinate
transformations. Hence, it is useful to have a criterion for
determining whether h'„and h'„- can be transformed into
one another thmugh the combined action of a conserva-
tive coordinate transformation and a global frame
transformation Clearly, . this is possible if C; and C; are
both zero. It is also possible if C and C- are both
QonzcI'o, bccausc 8ny two constant llghtllkc vcctol's Rlc I'e-

lated by a global frame transformation {perhaps including
a time inversion). It is not possible if one of C and C-. is
ZClo %"hllC the OthCX' lS QOQZCro.

E. SOIC COIVCIKCnt nOtStiOn

Upoii lalslilg tlM lildcx / 111 Eq. (8) Rnd llsing Eq. (9) to
cllmlQRtc C k, vM obtain

A scIQIcoloQ ls used to dcQotc tbc usURl cov8rlaQt
derivative" (i.e., covariant under diffeomorphisms) with
respect to the Christoffel symbol I" &„,defined by
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I p-=-'g «~p. -+g~;p g—p;i).a & aP

Thc Riccl I'otRtloil cocfflcicIlt y,yk is defined by

y~„=h' h;p. „=y,jkh' hj„h „.

tromagnctlc fields ' F p», F p„, F p~ Rlid F p„. Wc c11-

countered a similar situation, in a previous paper, when
we considered how a path-dependent coordinate transfor-
mation from x' to x coordinates transforms the special
relativistic equation of motion for a free particle

y~p„= ,
'

(h; —F'p„+h;pF'~+h; F'„),
whcI'c Ep~=A p ~—A ~@. It 1s convcnlcnt to denote con-
traction on latin indices by a dot between adjacent te~s,

,g,

h'~h) PF;@~EJp ——h~ E~ Fp~.h~ .

The suppression of latin indices via the "dot" notation is
very useful in reducing the cluttered appearance of certain
expressions, thus facilitating their interpretation. The
Riemann curvature tensor (i.e., tensor under diffeomor-
phisms) is defined in the usual way by

tv ~ pv, p, ~ pp„v+~ yp~ pv ~ ye~ pp ~

wh11c thc R1cc1 tcQsoI' R», R1cc1 scalal R, and E1Ilstc1Q
tensor Gp„(under diffeomorphisms) are defined, as usual,
by A» 8 p~~y R 8 ~1 and 6» R» p gpyAo In
the conventional development of Riemannian geometry,
G@~ 1s syIIlmctric; however, wc Ilotcd 1Q I that 6» 1s

symmetric wllc11 gp» ls gp»(x), but not gcllcl'Rlly wlmll gp»
is gp [P). We denote the symmetric part of G„by G„».

where ds =g Jdx'dxJ. We showed that the image equa-
tion under the transformation is

(21)

where ds =g„„dx"dx",P„=VF'„and V'=dx'/ds is
the (constant) first integral of Eq. (20). If h'„ is h'„(x),
then Wp„satisfies the Maxwell equations
+Wp@ ~+X ~p ~=0. Nevertheless, P» cannot bc regard-
ed as the electromagnetic field, because the relation
V'=dx'/ds=h'„dxplds implies that V; depends upon
dx"/ds. Although Pp„ is a linear combination of the
F'„with coefficients V; which are constant along the
world line of a particle, it is unsatisfactory that the values
of these coefficients should depend upon dx" /ds. This
would 1111ply tllat tllc clcctro111Rgllctlc field experienced by
a particle depends upon the velocity of the particle (in
disagreement with experiment). We have, however, con-
sidered ' a tetrad h'„(x) such that the four antisym-
Inetric tensors F'„, are constant multiples of one another;
1.c., such th, at

F'p»=K'fp» ~

where K'= const. Such a tetrad is of the form

J;~ —C;hJ C/hE—
satisfy the conservation laws JJ".,——0, and that the an-
tisymmetric part of the field equations is expressed by
these conservation laws. &e also showed that the sym-
metric part of the field equations may be written in terms
of Gp». Tllc lcslllt is

G„=—,'(E„„+h„J—„+h„.Jp+h .F„pFp h )

,'(hp F~pF ~ h» —gp„h~.F pF —h~)

+-,' h'([a. ,a„]h„+[a.,a,P„—g„.[a.,a,]hi'),

where E„,is defined, in obvious analogy to the usual elec-
tromagnetic stress-energy tensor, by

h'p ——8' p+K'Ap,

where 8' is 8'(x), A„ is A„(x),f„„=A„, A„„,and th—e
determinant of 8'„ is nonzero. We have noted' that,
for such a tetrad, Eq. (21) reduces to

(24)

which is the equation of motion for a particle with
charge-to-mass ratio V;K'. %c have also noted, in I, that
for such a tetrad, similar simplifications occur in the sym-
metric part of the field equations. Equations (17), (18),
and (19) become

G„=—, K'K;ep„,' (Kpj—„+K,j„—+C—pC )

—4f ~f pKpK, ,

and, J& 1s defined, in sixHi1ar analogy to thc electroHlag-
nctlc current~ by

J'p ——E'~ . (19)

The third line of Eq. (17) vanishes when h'p is h'„(x),
aQd, everywhere wc look 1Q thc f1Ist two llncs, wc scc
terms which are suggestive of electroInagnetism. Indeed,
we are confronted with an embarrassing richness of "elec-

V
Jp J p;v

In I, however, we merely noted that these simplifications
occur if the tetrad can be transformed into the form speci-
fied in Eq. (23) via a conservative coordinate transforma-
tloIl Plus global frame transformation. %c arc Ilow 1n a
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position to show that this can be done for any tetrad
which satisfies the field equations. We have seen, in Sec.
IIID, that all solutions of the field equations give either
C; =0, or C; constant Rnd lightlike. %'c Qow show that,
111 cltllcl case, wc Blay tI'allsforIB tllc tctlad 1Ilto tllc foI'IB
given in Eq. (23). Moreover, we shall see that if C;=0,
then we may choose among existing transformations
which lead to Eq. (23) with K timelike, spacelike, or
lightlike. Similarly, we shall see that if C; is constant and
lightlike, then we may choose between existing transfor-
mations which lead to Eq. (23) with K spacelike or light-
like. We proceed by exhibiting specific examples of solu-
tions to the field equations in each of these cases. When
these have been exhibited, the existence of the transforma-
tions leading to these cases follows immediately from the
results of Sec. IIID. From Eqs. (2) and (22), we find that

K spaccllkc, tlM cocfflcicnt of e~~ ls BcgRtlvc, collc-
sponding to the wrong sign for the gravitational constant.
%c have also noted pfcvlouslp that onlp E tlInellke
gURTantccs that Goo ls non-ncgatlve, Rs I'cqullcd bg thc
%'eak energy condltlon. As Singe Rnd Hawking have
emphasized» 600 DIUst bc cvcrff&Ilefc Ilon-ncgatlvc lIl Rnp
theory whlcll gives R lcallstlc description of Blacroscoplc
physics. This is the general relativistic analog of the
Newtonian requirement that the density in Poisson s equa-
tion shall be everywhere non-negative. Stated covariantly,
thc lcqU1I'cmcnt ls that thc clgcnvRluc corresponding to
the timelike eigenvector of 6„, shall be everywhere non-
negative.

For K'=(1,0,0,0) and C; =0, Eq. (25) becomes

G„„=, {e„„——K„j„K„j—„) RK„K—„.
C; =KjfJ,

fII h;"hj "f——q„.
If we multiply Eq. (29) by K', we obtain

A special case of Eq. (23} is

(28)

(29)

(30)

(31)

In obtaining Eq. (34) from (25), we have used the fact (es-
tablished 111 I) tllRt lf C~» F I»»»» F I»»»» F P~» Rnd [I}P»I}~jh
all vanish, then R = ,F~~F p—. From Eq. (23) and the
dCflllltloll K~ =KIh I»» WC Obtain KI =—AI» —8 P. C1CR1-

ly, K„ is the vector potential for f„„in a different gauge
from A„. It is easily seen by using Eqs. (16) and (22) that
KI'.„=0. Thus, we see that K„automatically satisfies the
covariant l.orentz gauge condition. %'e also note that K&
ls 8 Unit tlmcllkc vector, lntcrpI'ctablc Rs 8 vclocltp.

G. The weak and strong interactions

By using Eq. (31), we easily verify that

5" 5 K"A
y 5»»»» cE

I+a~ x ~

From Eqs. (28)„(29), (31), and {32),we find that

8';5'~KJf„„
1+5~ K Ap

{32)

If the constant frame-vector K' is timelike, then there ex-
ists a global frame transformation to a frame in which

K'=( K, K', K', K)=(K,O, O, O) .

In this frame, we find from Eq. (30) that Co vanishes;
hence C& ls either zcI'o QT spaccllkc. SUt» Rs ~c have scen
in Sec. III C, it follows fmm the field equations that C; is
zem or lighthke. Thus, we see that if K is timelike, then
C; must be zero. We now use Eq. (31) for exhibiting the
specific examples mentioned above. For C; =0, let
K'=(1,0,0,0), and let A„=(Ao,AI, A2, A&)=(0,0,x', 0);
alternatively, let K'={0,1,0,0} or K'=(1, 1,0,0), and let
A„=(0,0,x,O). For C; constant and lightlike, let
K'=(0, 1,0,0}and let A„=(O,e" +" —1,0,0); alternative-

ly, let K'=(1,1,0,0), and let Az ——(e" —1,0,0,0). That
thc tctI'Rds ln these cxan1ples field thc stated values foI' C;
is easily verified with the use of Eq. (33).

Having established the possibility of transforming any
tetrad vvhich satisfies the field equations into the form
given in Eq. (23), we note that only for K' timelike and C;
zero does Eq. (25) include the electromagnetic stress-
cncrgp tcIlsoI' ep~ 1Il 8 manner which ls consistent with thc
conventional interpretation of general relativity. For K'
lightlike, the coefficient of e& in Eq. (25) vanishes. For

In I we suggested the following interpretation, which
lnclUdcs Rll kno%'Q lntcI actions.

(a) Gravitation is described by the metric g„, as in gen-
Cl Rl I'C18tlV1 tg.

(b) The timelike vector of the tetrad is identified as the
vcctoI' potcntlRl %hose CUll ls thc RntisgIQIQetfic tensor
(under diffeomorphisms) which represents the electromag-
netic field in Maxwell's theory.

(c) The three spacellke vectors of the tetrad are identi-
flcd as vector potcIltlals %'Ilosc CUIls TcpI'cscIlt thc %'cak
field.

(d) The strong interaction is described by terms such as
h .[I},I}„jh, in Eq. (17), which vanish when h'„ is
h „{x).An argument which supports this identification,
based upon considerations of gauge symmetry, is given in
I.

In obtaining Eq. (34) from (17), we have used a conser-
vative coordinate transformation plus global gauge
'transformat1on to tl ansform away tlM weak Rnd stlollg
fields (analogous to the familiar manner in which a gravi-
tational field which is not "permanent, " such as the
Coriolis force, can be transformed away by a suitable
transformation). We shall now see, however, that these
fields cannot be transformed away by a freely falling, non-
I'otatlng» Observer.

The orthodox interpretation, which we adopt, is that
A @

describes Rn obscrvcf ffaITlc. Thc vector A @ ls thc
(timelikc) velocity vector of an observer carrying a spatial
frRIHC described bp the tTlad A p» h p» A p. It ls %'cll
known that the condition for a freely fall-
ing observer franc ls that thc tctfad be carried bp Ferlm
tI8nsport; i.c., that the Ricci rotation coefficient yojo
shall vanish. This condition is satisfied by the tetrad
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which led to Eq. (34). However, no tetrad of the form
given in Eq (.23) can describe a freely falling, nonrotating,
observer frame (except trivially), in the case where K' is
timelike and C. is zero. It is mell known that the condi-
tion for a freely falling, nonrotating, observer frame is
that the tetrad be carried by Fermi-%alker transport
1.e., that the Rlcc1 ro'tatlon coefflcleIlt ) 1JO s11all va111sll.

For IC timelike and C; zero, the vanishing of y;io implies
that fz„vanishes and that g&, describes a flat Riemann
space. This just means that a freely falling, nonrotating,
observer who transforms away the weak- and strong-
interaction terms in Eq (.17) also transforms away all ma-
terial aspects of the Universe —including all material as-
pects of himself.
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