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If the relativity principle, which states that the law of propagation for light has the same form for
all macroscopic observers, is extended to include quantum observers, this leads directly to the quan-
tum unified field theory which was introduced in a previous paper. This theory appears suitable for
describing all known interactions. Gravitation and electromagnetism are described by the Einstein
equations G,,,,:—;—(em——K,, Jjv—K,j,) —RK,K,, where G, is the Einstein tensor, R is the Ricci

scalar, ey, is the usual stress-energy tensor for the free electromagnetic field, and j, is the elec-
tromagnetic current. The vector K, plays a dual role. It is the electromagnetic vector potential in
the covariant Lorentz gauge, and, it is also a unit timelike vector interpretable as the velocity of the

observer.

I. INTRODUCTION

In a previous paper,' hereafter referred to as I, we ob-
tained a quantum unified field theory by pursuing a sug-
gestion by Einstein? that the diffeomorphisms somehow
be extended to a larger group. The present paper is devot-
ed to the further development of that theory. In Secs:
IA—IF, we recall those developments from I which are
needed so that subsequent sections may rest upon a firm
mathematical foundation. A further mathematical result
which will be needed subsequently is developed in Sec. I E.
In Sec. II, we establish a more solid physical foundation
than was recognized in I, by showing that if the relativity
principle, which states that the law of propagation for
light has the same form for all macroscopic observers, is
extended to include quantum observers (observers who
may be large, but not infinitely large, by comparison with
quantum-mechanical systems), this leads to precisely the
group extension of the diffeomorphisms upon which I is
based.> In Sec. III, we recall the main physical results of
I, and show that its field equations may be expressed in a
form which makes it far more evident than previously
that they describe gravitation and electromagnetism and
also contain terms that appear suitable for describing the
weak and strong interactions.

A. Noncommutativity of partial derivatives
of path-dependent functionals

Any ordered set of four independent real variables x %,
where a and other indices take the values 0,1,2,3, may be
regarded as coordinates of points in a four-dimensional
arithmetic space 0. Let x%(A) be absolutely continuous
functions of a real parameter A on the interval
— o <A< . Bya path P, we mean the totality of points
in o which are identified by x*=x%A) for — 0 <A <A.
Thus, one end point of P is the point { with coordinates
limy_, _ , x%A), while the other end point is the point x
with coordinates x%(A). We regard i as the initial point,
and regard x as the terminus, of P. The set of all paths in
o is regarded as a space of paths, and is denoted by =.
We impose a topology on = by defining the (coordinate
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dependent) distance D between paths A and B. This dis-
tance D(A,B) is defined with the aid of the usual (Eu-
clidean) measure of distance d(a,b) between points a and
b. D(A,B) is defined as the smallest number D such that
for each point a on path A, there exists a point b on path
B for which D >d(a,b); and, for each point b on B, there
exists a point @ on A for which D >d(a,b). Let F be a
path-dependent functional, i.e., a rule which assigns to
each path P a real number F{P}. If, for all paths 4 and
B, the relation limp_, 4 F{B}=F{A} is satisfied, F is
called a continuous functional. We limit our considera-
tions to continuous functionals. Derivatives of F{P} are
defined by giving P an extension from its terminus x,
while holding the rest of P completely fixed.* Any path
may be extended in this way by extending the domain of
x%A) to the interval — oo <A <A-+AA, where AA>O0.
The resulting path P + AP is called a path extended from
P, and the totality of points in o which are defined by
x%=x%A) for A <A <A-+AA is called an extension of P
and is denoted by AP. We define F’ by

F{P+AP}—F{P}
AA—O AA

If the extension AP is chosen so that, along it, only a sin-
gle coordinate x? changes, and if the parametrization is
such that on this extension AA=Ax?8 then F’ is called
the partial derivative of F with respect to x#B, and denoted
either by dgF or by F g. If, along AP, the coordinate in-
crements Ax? are unrestricted and independent, then F' is
called the total derivative of F with respect.to A, and
denoted by dF/dA. It is also convenient to denote
dx®/d\, evaluated for A=A, by dF/dA. If the partial
derivatives and the total derivative of F are related in
such a way that the chain rule for differentiation is valid,
ie., if dF/dA=F ,dx®/dA, then F is called a smooth
functional. A smooth functional whose partial derivatives
of all orders are also smooth is called a regular functional.
We limit our considerations to regular functionals. When
we wish to emphasize the path-dependent character of a
functional F, we will use the notation F{P}. However,
our functionals include, as a subclass, the usual one-
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valued functions of x% i.e., functionals which are “path
dependent” in the trivial sense that they depend only on
the terminus x of a path P; for them, we use the notation
F(x). From P, let two extended paths P+ AP, and
P + AP, be constructed such that the extensions AP; and
AP, do not completely coincide, but such that the termini
of P+AP;, and P +AP, do coincide. The values of
F{P +AP,} and F{P +AP,} are not generally equal. By
letting AP; be an extension along which first only x*
changes and then only x* changes, and letting AP, be an
extension along which first only x* changes and then only
x" changes, we see that 9,0, F equals 3,3, F for functions
F(x), but not generally for functionals F{P}.

B. Abstract path space

Just as the x“ are regarded as coordinates of points in o
and the set of paths in o is regarded as a space of paths =,
another set of four independent real variables x‘ may be
regarded as coordinates of points in another four-
dimensional arithmetic space s and the set of paths in s
may be regarded as another space of paths S. Let H be a
homeomorphism from = onto S; let & be the image path
of P, and let £ be the terminus of 2. Since £ is deter-
mined by #, and Z is determined by P (via the
homeomorphism H), it is clear that the coordinates x‘ of
& are functionals of P, ie., x‘=x‘{P}. Similarly
x%=x%{Z}. If the image path of each path extended
from P is a path extended from £, and if x‘{P} and
x%{ 2} are regular functionals, then H is called a regular
homeomorphism. We limit our considerations to regular
homeomorphisms.

We began by regarding a homeomorphism H as a path
transformation (which maps each path P in 3 to a path
Z in S, and conversely). There is, however, another point
of view which is more interesting and useful, and which
we now adopt: We introduce an abstract path space II in
which (abstract) paths are the primary elements, and re-
gard H as a path-dependent coordinate transformation
which merely changes the arithmetic-space framework
used for discussing II. The arithmetic spaces o and s pro-
vide equivalent frameworks for discussing II, and the
path spaces X and S are equivalent representations of the
abstract path space II. A path P and its image path &
are equivalent representations of the same abstract path p
in I1. The coordinates x* and x’ provide equivalent coor-
dinate systems for discussing II, but the points which x¢
and x’ identify in o and x, respectively, have no meaning
in II. This is clear because a path-dependent coordinate
transformation does not generally establish a one-to-one
correspondence between points of o and s, even in coordi-
nate patches. The correspondence between x* and x’ is
generally both one-to-many and many-to-one. For exam-
ple, many paths in o with the same termini may have im-
age paths in s with different termini, and conversely.
Also, a path P in o which is “closed,” in the sense that its
initial point and terminus coincide, may have an image
path & in s which is not closed, and conversely. Thus,
any assertion that an abstract path is closed (or is not
closed) would have no meaning. The changed point of
view which we have adopted is analogous to that in which
one begins by regarding a suitable transformation

x’=x%x) as a mapping between the points x and #°, and
then recognizes that it is more interesting and useful to re-
gard the transformation as a diffeomorphism, in which
the same point of an abstract point space (a manifold) is
merely relabeled with new coordinate values. Many inves-
tigators® have expressed skepticism that a manifold ade-
quately describes physical space. We assume that physi-
cal space is described by the abstract path space II. Path
space possesses properties which are sufficiently close to
what one conceives of intuitively as a space so that one
may use it almost exactly as one conventionally uses a
manifold.

C. The conservation group

A conservation law is a statement of the form 7™* ,=0,
where 77% is a vector density of weight + 1. This is a co-
variant statement under a path-dependent coordinate
transformation relating x and x‘ if and only if it implies
and is implied by the statement 7~ i_ ;=0. The transforma-
tion law for a vector density of weight + 1is

=Jrext,,

where J is the determinant of x*;. Upon differentiating
with respect to x‘, and using the well-known formula®
a,J =in,a8,,xa,,~ for the derivative of a determinant, we
obtain

Y =Ty — P xY ;[8,,0,]x1) ,

where [d,,0,]=0,0,—0,0,. For arbitrary 7*, we see
that a conservation law is a covariant statement if and
only if

X" [8,,8,]x'=0 . (1)

If Eq. (1) is satisfied, the path-dependent coordinate
transformation relating x® and x' is called conservative.
We note that Eq. (1) is satisfied if x’=x(x); thus, it is
clear that each diffeomorphism is a conservative coordi-
nate transformation, but that the converse is not true. In
I, we gave an explicit proof that the conservative coordi-
nate transformations form a group, which we call the con-
servation group. Finkelstein,” however, has noted that the
group property follows immediately from the derivation
given above.

D. Geometry determined on path space
by the conservation group

The geometry determined on a manifold by the dif-
feomorphisms is Riemannian geometry, whose structure is
expressed by a symmetric metric g,,(x). From g,, and
its derivatives, one constructs an object R“g,, which is a
tensor under the diffeomorphisms, and which is called the
Riemann curvature tensor. It is well known that there ex-
ists a diffeomorphism to a special x? coordinate system in
which 8y is constant, if and only if R%g,, vanishes. We
consider the geometry which is determined in this sense,?
on the path space II, by the conservation group. The
structure of this geometry is described by a homeomor-
phism # from the path space Il onto itself. This
homeomorphism may, as discussed in Sec. IB, be regard-
ed as a transformation from x® to x’ coordinates and
represented by the matrix x",a. This matrix may be
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thought of as a tetrad h'y; i.e., h'y=x',, with h,*=x%;
It is the tetrad which expresses the geometrical structure
of the path space II. A tetrad h’,(x) was first used in
physics by Einstein,’ under the name “vierbein.” Our
tetrad, however, is generally hi (P }. Under a transforma-
tion from x® to xZ coordinates h‘, transforms accordlng_
to h';=h’,x® and, under a transformatlon from x'to x?
coordmates it transforms according to h",=x% ;h’, with
similar transformation laws for ;% A curvature vector
C,{P} which is analogous to R“B‘w is defined by

C,=hh, ,—h',,), )

or, equivalently, by C,=C; hi s where C;= h Ah;”
—h;¥ ;). Under a transformatlon from x% to x“ COOI‘dl-
nates, C, transforms as a vector (and C; as a scalar) if
and only if the transformation is conservative. We
showed in I that the geometrical interpretation of C, is
this: There exists a conservative coordinate transformation
from x to a special x% coordinate system in which hiﬁ is
constant, if and only if C, vanishes. An equivalent inter-
pretation is that there exists a conservative coordinate
transformation from x' to a special x' coordinate system in
which h', is constant, if and only if C,, vanishes.

E. Criterion for determining
whether two tetrads are related by
a conservative coordinate transformation

Any two tetrads h‘# and h’- are related by a path-
dependent coordinate transformatlon between x? and x¢
coordinates. The relation is h‘ =h' ax o where x% , is
defined by x% ,=h;%h’,. Let C_—h “(h'y, _—h'--) as re-
quired for consistency w1th Eq (2). We ‘noted m I that
the relation between C,, and C,_‘ is

Cu=Cyx®,—x" ;[8,,3,]x®
Upon multiplying by h;*, we obtain
Cizc-'i_hiy'xv'[ap,’av]x‘7 ’ (3)

where C;=CzhP. 1t is clear from Eq. (3) that h’, and
h'_ are related by a conservative coordinate transformatton
if and only if C;=C;. This criterion is especially useful,
because C; involves only k', and C; involves only A';.

F. Introduction of a metric

A symmetric metric g,,{P} is defined by the relation
8uv=8ijh',h’,, where 8;j=8 Y=diag(—1,1,1,1). That we
have not 1ntroduced 8ij in an ad hoc manner may be seen
by recalling the well-known!? correspondence in which the
Levi-Civita symbols of two-dimensional complex “spin
space” induce a metric with space-time signature onto
four-dimensional real space. (This also suggests that na-
ture chooses four dimensions, rather than any other num-
ber of dimensions, for reasons of parsimony; with any
other choice, a metric could be introduced only in an ad
hoc way.) We define g** by g"'g,,=8",, where 8, is the
usual Kronecker 8. Latin indices are raised and lowered
by using g and gj;, just as greek indices are raised and
lowered by using g*” and g,,. The transformatlon law
for g, under a coordinate transformation from x* to x®
is the usual one, i.e., g, —-g__x" X’ v The symmetry be-

tween coordinate transformations on greek and latin in-
dices, however, is broken by the introduction of a metnc
Indeed, it is clear that a transformation from x‘ to x’
coordinates leaves 8uv invariant if and only if
8ij =8z mX X" ,j» Where grz=g;;. Coordinate transfor-
mations on latin indices which satisfy this condition will
be called frame transformations, and the symbol L7 used
instead of x”;. It is well known that the homogeneous
Lorentz transformations form a six-parameter Lie group;
i.e., that L?; depends upon six parameters, ay, . . ., aq If
the a’s are constant, then L? is constant, and the frame
transformation is called global. If the a’s are functions
al(x), then L" is L™(x), and the frame transformation is
called local. If the a’s are functionals a{P}, then L7 is
L% {P}, and the frame transformation is called path
dependent. If the a’s satisfy conditions such that
L'(L™ ;—L";;)=0, then the frame transformation is
called conservative.

II. QUANTUM OBSERVERS

Newtonian mechanics may be regarded as a relativity
theory which recognizes the equivalence of all observers
who differ only in the fact that they are moving with
respect to each other with constant velocity. In Newtoni-
an relativity, however, the measurements of such ob-
servers are related by Galilean coordinate transformations.
Einstein’s replacement of the Galilean group with the
Lorentz group led from a three-dimensional Euclidean
manifold and absolute time to a four-dimensional Min-
kowski manifold, and from Newtonian theory to special
relativity. Einstein’s recognition of the need to include,
on an equivalent basis, observers who are accelerated with
respect to one another caused him to extend the group
from the Lorentz group to the diffeomorphisms. It was
this step which led from the Minkowski manifold to a
Riemannian manifold with space-time signature, and,
from special relativity to general relativity. Subsequently,
Einstein® suggested that a unified field theory be obtained
by somehow extending the diffeomorphisms to a larger
group. We pursued this suggestion, in I, by introducing
the conservation group. It is necessary to ask, however,
whether the introduction of the conservation group is jus-
tified by the kind of compelling physical motivation
which caused Einstein to introduce the diffeomorphisms.
After all, there do exist observers who are accelerated
with respect to one another—and, evidence of their
equivalence is provided by the proportionality of inertial
and gravitational mass. But, is there a need for some still
more general class of observers?

General relativity makes use of a classical observer who
can observe the motion of a physical system without dis-
turbing the system. This violates the fundamental princi-
ples of quantum theory. Most discussions of observation
in quantum theory make use of a “macroscopic” classical
observer—one who can ‘“stand outside” a quantum-
mechanical system and act upon the system without being
acted upon by the system. This is unsatisfactory, because
there exist no observers who are infinitely large by com-
parison with quantum-mechanical systems. One solution
of this problem was given by Everett.!! Briefly, he con-
siders a quantum observer’s memory to have quantum
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states that are correlated with the states of what he has
observed. Each observer can then consider himself a mac-
roscopic observer (since his different states are indepen-
dent) and still treat other observers as part of his
quantum-mechanical universe. The uncertainty principle
does not limit the precision with which he can do this, be-
cause the four operators which represent his coordinates
commute. Let Q and  be two observers, each of whom
considers himself a macroscopic observer, while treating
the other as part of a quantum-mechanical universe. Let
x® and xZ be coordinates which are assigned by Q and 0,
respectively, to events in their universes. The assumption
that physical space-time is a manifold rests squarely upon
the assertion that it is possible to establish a one-to-one
correspondence between x¢ and x%, at least in coordinate
patches. Einstein challenged the validity of Newton’s ab-
solute time on the ground that no operational method had
been, or could be, given for its measurement. In this spir-
it, we challenge the validity of the assumption that space-
time is a manifold on the ground that no operational
method has been, or can be, given for establishing a one-
to-one correspondence between the coordinates x¢ and
xZ%. Our two observers are free to exchange information
so that, for example, { can possess a complete description
of the procedure which () uses in assigning coordinates to
events. If ) could also state with certainty (as in general
relativity) that Q’s world line is a particular path P, then
he could write a function uniquely specifying Q’s coordi-
nates xZ in terms of his own coordinates x®. Thus, xZ
could be regarded as a functional of the path P (which has
the terminus x %, since the observer in general relativity is
a tetrad at the event being investigated), i.e.,

x%=x%{P} . 4)

However, Q has described Q’s world line as completely as
nature permits when he states that all paths occur with
equal probability amplitude, in the sense that the probabil-
ity amplitude for a path P is N eL{P}/% where L is O’s
Lagrangian for Q, N is a normalization factor (the same
for all paths), and # is the usual quantum of angular
momentum. Therefore, Q can only state that the proba-
bility amplitude for Q’s coordinate numbers x& corre-
sponding to his own coordinate numbers x¢ is

W(x%x%)= 3 NelLPI/A, (5)
P

where ¥ , denotes the democratic sum with equal weight
of contributions due to all paths P with terminus x* for
which Eq. (4) yields the value x%. As a world-point map-
ping, W(x%x%) is both one-to-many and many-to-one;
hence, nonunique in both directions, as are our conserva-
tive coordinate transformations. As the size of observer
Q) increases without limit, we find that the competing al-
ternatives in Eq. (5) interfere destructively on all but the
classically allowed path. Thus, Eq. (4) goes over to
x%=x%x) in the macroscopic limit. This just means that
the group of all quantum transformations, defined by Egs.
(4) and (5), contains the diffeomorphisms as a proper sub-
group, as does our conservation group.

We are now in a position which permits us to show that
the inclusion of quantum observers, on an equivalent

basis, requires the extension of the diffeomorphisms to the
conservation group. We could simply say, “Experience
shows that if Q) observes that a certain quantity is con-
served, then () also observes that the same quantity is con-
served.” On the other hand, it is absolutely essential that
such a fundamental principle as the covariance law be
derivable from the simplest possible basic assumption.
We therefore return to the assumption which led Einstein
to special relativity: that the equation which describes the
propagation of light (the wave equation) has the same
form for all observers. It is well known that in general
relativity the wave equation may be written in the form
(Vv —ggh'®,) ,=0, where g is the determinant of g,,,
and, that this form, which does not involve “covariant
derivatives” or Christoffel symbols, is nevertheless covari-
ant under the diffeomorphisms. We note that this general
relativistic statement of the wave equation is already in
the form of a conservation law: 7™* =0, where 7™ is
the vector density of weight + 1 which is defined by
PB=v —gghl'® ,. The discussion given in Sec. IC now
suffices to show that the conservation group is the largest
group of coordinate transformations under which the
equation for the propagation of light is covariant.

III. PHYSICS AS A MANIFESTATION
OF PATH-SPACE GEOMETRY

A. Quantization of the path-space geometry

We define a scalar L =C*C,,, which is invariant under
conservative coordinate transformations on greek indices
as well as conservative frame transformations on latin in-
dices. Because L is generally L{P}, rather than L (x), it
is easy and natural to quantize the geometry of the path
space Il by using essentially the path-integral method.
Quantum geometry says that all paths occur with equal
probability amplitude in the following sense: The proba-
bility amplitude for a path P is'? N e {P1/% We use in-
finitesimal extensions from the terminus x of a given path
P in almost exactly the same way that one conventionally
uses infinitesimal displacements from a point. Since the
tetrad is generally h’,{P}, it is clear that the behavior of
h', in the “extension neighborhood” of x is governed by a
“probability amplitude to transit from x to x +Ax.”
This amplitude or “propagator” (x |x +Ax) is!? the
democratic sum with equal weight of contributions due to
every path extension from x to x 4 Ax; thus,

(x |x+Ax)=N [ L PVigyx (6)

where & x is the “volume element” for the sum over these
finite path extensions.

B. Macroscopic limit of the quantum geometry

A “classically allowed” path extension AP, receives
what Misner, Thorne, and Wheeler!? call “preference
without preference” over other path extensions from x to
x +Ax. This path extension and path extensions that
differ from it so little that &L =L{P-+AP}
—L{P+AP,} is only of order # and less give contribu-
tions to the probability amplitude (x |x +Ax ) in Eq. (6)
that interfere constructively. In contrast, destructive in-
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terference effectively wipes out the contribution that
comes from path extensions that differ more from AP,.
Thus, there are quantum fluctuations in the geometrical
structure expressed by hi”, but they are fluctuations of
limited magnitude. The smallness of # ensures that the
scale of these is unnoticeable at everyday distances. For a
“skeleton path extension,” defined by giving x, =x%A,)
at A, =A+nAA\, we see by analogy with Misner, Thorne,
and Wheeler'? that the volume element in Eq. (6) is equal
(up to a multiplicative constant) to V' —gd*x, where d*x
denotes dx°dx'dx?dx3. This permits us to use infini-
tesimal path extensions in considering the macroscopic
limit of our quantum geometry. We find from Eq. (6)
that the macroscopic limit is described by field equations
which flow from  the variational principle
8 f vV —gLd 4x =0, where the 16 components of h‘“ are
varied independently. We showed in I that the resulting
field equations are

Cuiv—8uwC® a+58uCCo=0, )

where C,|,=C,,—C,L%, and L%, =hh’, . Since
L?,, transforms as an affine connectlon under all coordi-
nate transformations from x? to x%, it follows that our
field equations are covariant under conservative coordi-
nate transformations. We note that they are also covari-
ant under global, but not local or conservative frame
transformations (from x’ to x?). Since L is invariant
under conservative frame transformations (latin) as well
as under conservative coordinate transformations (greek),
it is clear that the quantum theory expressed by Eq. (6) is
invariant under both types of transformation. It may
therefore appear surprising that the corresponding macro-
scopic theory is not covariant under conservative frame
transformations. It seems clear, however, that this is just
an example of a new type of dynamical symmetry break-
ing. In the quantum theory, there is democracy among
Lorentz frames which are connected by conservative
frame transformations; but certain classically allowed
Lorentz frames which are connected by global frame
transformations receive preference without preference
over other Lorentz frames.

C. First integral of the field equations
If we multiply Eq. (7) by h;*h;", we obtain
C,;—8iC* k+58;C*C,=0. (8)

The antisymmetric part of Eq. (8) is C;;—C;; =0, which
just implies that C; is a gradient, i.e., that C;=C ;, where
C is a path-independent function of the latin coordinates.
It follows that the C; are path-independent functions of
the latin coordinates, as are their partial derivatives. For
distinct values of i and j, Eq. (8) becomes C; ;j=0. Thus,
we see that the functlon C; can depend only upon the sm-
gle coordinate x’; similarly, C* can depend only upon x°.
The trace of Eq. (8) is

3¢k, —2Cc*C,=0. 9

Upon raisin, kg the index 7 in Eq. (8) and using Eq. (9) to
eliminate C* ;, we obtain

Cl;—8,CkC,=0. (10)

If we set i and j equal to the same value N (no summation
on N), we find from Eq. (10) that, for all N,

c¥ y=-1ckc; . an

It follows from Eq. (11) that C°,=C! ,=C2,=C3,.
But, C°, can depend only upon x% C! | only upon x‘,
etc. Thus, it is clear that CN is a constant (same con-
stant for all N). Hence, Eq. (10) may be written as

Clj=<8L, (12)
where L =C*Cy is a constant. We may integrate Eq. (12)
to obtain

C'=+Lx'+b’, (13)

where b’=const. It follows from Eq. (13) that
L =g;(+Lx’+b")(+Lx/ +b)) . (14)

Upon differentiating Eq. (14) with respect to x¥, and us-
ing the fact that L is constant, we obtain

L(LxY+6bY)=0. (15)

If Lx"+6b"=0, then the constancy of L and b” implies
that L vanishes. Thus, we see from Eq. (15) that L =0;
i.e., that C"Ck vanishes, so that C; must either vanish or
be lightlike. In either case, we find from Eq. (10) that
C'; =0; hence, C' must be constant. Our conclusion is
that each tetrad which satisfies the field equations gives a
curvature vector which either vanishes or is lightlike, and
that the latin components of this curvature vector are con-
stant.

D. Solutions of the field equations
which can be transformed into one another

Let h‘ and h"# be two tetrads which satisfy the field
equatlons, and let C; and C— be the latin components of
the curvature vectors which correspond to them, respec-
tively. From the results of Sec. IE, we see that h' and
}z"‘7 are related by a conservative coordinate transforma—
tion, if and only if the constants C; and C,— are equal. But
the field equations [Eq. (7)] are covariant under global
frame transformations as well as conservative coordinate
transformations. Hence, it is useful to have a criterion for
determining whether h‘, and h'; can be transformed into
one another through the combined action of a conserva-
tive coordinate transformation and a global frame
transformation. Clearly, this is possible if C; and C_',.— are
both zero. It is also possible if C; and C; are both
nonzero, because any two constant lightlike vectors are re-
lated by a global frame transformation (perhaps including
a time inversion). It is not possible if one of C; and Cris
zero while the other is nonzero.

E. Some convenient notation

A semicolon is used to denote the usual “covariant
derivative” (i.e., covariant under diffeomorphisms) with
respect to the Christoffel symbol I'%,,, defined by
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T%u= 788 guv+8pvu—8uvs) -

The Ricci rotation coefficient' y,; is defined by
Yapy=h"ahig.y="ijxh'chIh %,

In I, we showed that
Vo= hiaF yy+ HiyFlout+hiy Flg) (16)

where F ',w—h’ h’ It is convenient to denote con-
traction on latin 1nd1ces by a dot between adjacent terms,

e.g.,
B hiPFyy Flog=h o F,Foyh?

The suppression of latin indices via the “dot” notation is
very useful in reducing the cluttered appearance of certain
expressions, thus facilitating their interpretation. The
Riemann curvature tensor (i.e., tensor under diffeomor-
phisms) is defined in the usual way by

R aﬂiwz Faﬁvyu - Faﬁ#m‘*’ rawryﬁv_ Farvryﬁﬂ ’

while the Ricci tensor R,,, Ricci scalar R, and Einstein
tensor G, (under diffeomorphisms) are defmed as usual,
by R,,=R%, R=R%, and G,,=R,, — 2gm,R In
the conventional development of Riemannian geometry,
G,, is symmetric; however, we noted in I that G,, is
symmetric when g, is g,,(x), but not generally when g,
is g, {P}. We denote the symmetric part of G, by Gpy.

F. Transformation of the field equations
to electromagnetic coordinates

By using Noether’s theorem, we showed in I that the six
currents

J’jv:Cith__ th,‘v

satisfy the conservation laws J;*;,=0, and that the an-
tisymmetric part of the field equations is expressed by
these conservation laws. We also showed that the sym-
metric part of the field equations may be written in terms
of Guv. The result is

Guv=—5(Eu,+h,J,+h,J,+h®FgF,,h®
— 4 (hy,-FougF°P-h,—g, hyF,5F°hP)
+ 57 ([30,8]hy + [0, 11y — 8y [0 D51 P)
(17
where E,, is defined, in obvious analogy to the usual elec-

tromagnetic stress-energy tensor, by
Euszua'Fva_%gvaaB'FaB ’ (18)

and, J, is defined, in similar analogy to the electromag-
netic current, by

J=F.",. (19)

The third line of Eq. (17) vanishes when hi# is hi,,(x),
and, everywhere we look in the first two lines, we see
terms which are suggestive of electromagnetism. Indeed,
we are confronted with an embarrassing richness of “elec-

tromagnetic fields” F°, F‘,w, F%,,, and F3,, We en-
countered a similar 51tuat10n, in a previous paper, when
we considered how a path-dependent coordinate transfor-
mation from x‘ to x* coordinates transforms the special
relativistic equation of motion for a free particle

d2xi
ds?

where ds?=g;;dx'dx). We showed* that the image equa-
tion under the transformation is

=0, (20)

d*® . dx* dx" o dx”
* ax” _ , 21
ds? W ds v ds @D
where ds’=g,,dx"dx", 7 ,,=V,F',,, and V'=dx'/ds is

the (constant) ﬁrst mtegral of Eq. (20)
then #,, satisfies the Maxwell v, B
+F gu,v+F vp,u=0. Nevertheless, #,, cannot be regard-
ed as the electromagnetic field, because the relation
Vi=dx'/ds =h',dx"/ds implies that V; depends upon
dx*/ds. Although % ,, is a linear combination of the
F',,, with coefficients ¥; which are constant along the
world line of a particle, it is unsatisfactory that the values
of these coefficients should depend upon dx*/ds. This
would imply that the electromagnetic field experienced by
a particle depends upon the velocity of the particle (in
disagreement with experlment) We have, however, con-
sidered'*!> a tetrad h',(x) such that the four antisym-
metric tensors F', i, are constant multiples of one another;
i.e., such that

Fip,v=Kify.v ’ (22)

If h' is hi,,(x),
equatlons F

where K‘=const. Such a tetrad is of the form
hi, =0 ,+K'd, (23)

where 6' is 6(x), Ay is A,(x), fuy=A4,,—A4,,, and the
determinant of 0‘_,, is nonzero We have noted"® that,
for such a tetrad, Eq. (21) reduces to

dzx“+ « dx* dx¥
ds? B ds ds

which is the equation of motion for a particle with
charge-to-mass ratio V;K !, We have also noted, in I, that
for such a tetrad, similar simplifications occur in the sym-
metric part of the field equations. Equations (17), (18),
and (19) become

VK'f“ x , (24)

Guv=—3K'Kieyy— 5Ky jy+Ky ju+CuC,)
— i/ Pfap K, K, (25)
where K, =K;h",,
euv="Fua fv* =58 FPf ap » (26)
and
Ju=Su"w - 27

In I, however, we merely noted that these simplifications
occur if the tetrad can be transformed into the form speci-
fied in Eq. (23) via a conservative coordinate transforma-
tion plus global frame transformation. We are now in a
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position to show that this can be done for any tetrad
which satisfies the field equations. We have seen, in Sec.
III D, that all solutions of the field equations give either
C;=0, or C; constant and lightlike. We now show that,
in either case, we may transform the tetrad into the form
given in Eq. (23). Moreover, we shall see that if C;=0,
then we may choose among existing transformations
which lead to Eq. (23) with K' timelike, spacelike, or
lightlike. Similarly, we shall see that if C; is constant and
lightlike, then we may choose between existing transfor-
mations which lead to Eq. (23) with K’ spacelike or light-
like. We proceed by exhibiting specific examples of solu-
tions to the field equations in each of these cases. When
these have been exhibited, the existence of the transforma-
tions leading to these cases follows immediately from the
results of Sec. III D. From Egs. (2) and (22), we find that

Ci=K'f; , , (28)
where
fij =hi”hjvfuv . (29)
If we multiply Eq. (29) by K, we obtain
KC;=0. (30)
A special case of Eq. (23) is
h"yzéin+KiAu . (31)
By using Eq. (31), we easily verify that
8,8%K"A
b =8 ————— (32)
1488, KmAg
From Egs. (28), (29), (31), and (32), we find that
88" K/
= V8K (33)
14+88,KmAg

If the constant frame-vector K’ is timelike, then there ex-
ists a global frame transformation to a frame in which

Ki=(K° K K%K3)=(K"0,0,0) .

In this frame, we find from Eq. (30) that C, vanishes;
hence C; is either zero or spacelike. But, as we have seen
in Sec. IIIC, it follows from the field equations that C; is
zero or lightlike. Thus, we see that if K’ is timelike, then
C; must be zero. We now use Eq. (31) for exhibiting the
specific examples mentioned above. For C;=0, let
K'=(1,0,0,0), and let A”=(A0,A1,A2,A3)=(O,O,x1,0);
alternatively, let K'=(0,1,0,0) or K‘=(1,1,0,0), and let
A,=(0,0,x%0). For C; constant and lightlike, let
K'=(0,1,0,0) and let 4, =(0,e*"+*’—1,0,0); alternative-
ly, let K*=(1,1,0,0), and let A,=(e* —1,0,0,0). That
the tetrads in these examples yield the stated values for C;
is easily verified with the use of Eq. (33).

Having established the possibility of transforming any
tetrad which satisfies the field equations into the form
given in Eq. (23), we note that only for K’ timelike and C;
zero does Eq. (25) include the electromagnetic stress-
energy tensor e, in a manner which is consistent with the
conventional interpretation of general relativity. For XK'
lightlike, the coefficient of e, in Eq. (25) vanishes. For

K' spacelike, the coefficient of ey, is negative, corre-
sponding to the wrong sign for the gravitational constant.
We have also noted previously'® that only K' timelike
guarantees that G, is non-negative, as required by the
weak energy condition.!® As Synge!” and Hawking!® have
emphasized, Gy, must be everywhere non-negative in any

.theory which gives a realistic description of macroscopic

physics. This is the general relativistic analog of the
Newtonian requirement that the density in Poisson’s equa-
tion shall be everywhere non-negative. Stated covariantly,
the requirement is that the eigenvalue corresponding to
the timelike eigenvector of G, shall be everywhere non-
negative.

For K=(1,0,0,0) and C; =0, Eq. (25) becomes

Guy=7(euy—K, j,~K,j,)—RK,K, . (34)

In obtaining Eq. (34) from (25), we have used the fact (es-
tablished in I) that if C,, F',,, F?,,, F*,,, and [3,,0,]h",
all vanish, then R =+4F*F,g. From Eq. (23) and the
definition K, =K;h iﬂ, we obtain K, =—4, — 6° u- Clear-
ly, K, is the vector potential for f,, in a different gauge
from A,. It is easily seen by using Egs. (16) and (22) that
K*.,,=0. Thus, we see that K, automatically satisfies the
covariant Lorentz gauge condition. We also note that K,
is a unit timelike vector, interpretable as a velocity.

G. The weak and strong interactions

In I we suggested the following interpretation, which
includes all known interactions.

(a) Gravitation is described by the metric g, as in gen-
eral relativity.

(b) The timelike vector of the tetrad is identified as the
vector potential whose curl is the antisymmetric tensor
(under diffeomorphisms) which represents the electromag-
netic field in Maxwell’s theory.

(c) The three spacelike vectors of the tetrad are identi-
fied as vector potentials whose curls represent the weak
field.

(d) The strong interaction is described by terms such as
h%[34,0,]h, in Eq. (17), which vanish when hiu is
h’u(x). An argument which supports this identification,
based upon considerations of gauge symmetry, is given in
I

In obtaining Eq. (34) from (17), we have used a conser-
vative coordinate transformation plus global gauge
transformation to transform away the weak and strong
fields (analogous to the familiar manner in which a gravi-
tational field which is not ‘“permanent,” such as the
Coriolis force, can be transformed away by a suitable
transformation). We shall now see, however, that these
fields cannot be transformed away by a freely falling, non-
rotating, observer.

The orthodox interpretation, which we adopt, is that
hi,, describes an observer frame. The vector ho” is the
(timelike) velocity vector of an observer carrying a spatial
frame described by the triad h‘n,hzu,h3,, It is well
known that the condition for a freely fall-
ing observer frame is that the tetrad be carried by Fermi
transport;!’ i.e., that the Ricci rotation coefficient Yojo
shall vanish. This condition is satisfied by the tetrad
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which led to Eq. (34). However, no tetrad of the form
given in Eq. (23) can describe a freely falling, nonrotating,
observer frame (except trivially), in the case where K’ is
timelike and C; is zero. It is well known that the condi-
tion for a freely falling, nonrotating, observer frame is
that the tetrad be carried by Fermi-Walker transport;!’
i.e., that the Ricci rotation coefficient y;;, shall vanish.

For K’ timelike and C; zero, the vanishing of Yijo implies
that f,, vanishes and that g,, describes a flat Riemann
space. This just means that a freely falling, nonrotating,
observer who transforms away the weak- and strong-
interaction terms in Eq. (17) also transforms away all ma-
terial aspects of the Universe—including all material as-
pects of himself.

ID. Pandres, Jr., Phys. Rev. D 24, 1499 (1981).

2A. Einstein, in Albert Einstein: Philosopher-Scientist, edited by
P. A. Schilpp (Harper, New York, 1949), Vol. I, p. 89.

3Much of the material presented in Sec. II was discussed by the
author at the Second New Orleans Conference on Quantum
Theory and Gravitation, Loyola University, 1983. The
proceedings of this conference are to be published in the Int.
J. Theor. Phys.

4D. Pandres, Jr., J. Math. Phys. 3, 602 (1962); S. Mandelstam,
Ann. Phys. (N.Y.) 19, 1 (1962).

5See, e.g., footnote 3 of Ref. 1.

6C. E. Weatherburn, Riemannian Geometry and the Tensor Cal-
culus (Cambridge University Press, Cambridge, England,
1966), p. 3.

D. Finkelstein (private communication).

8We would say more generally, “The unquantized geometry
which is determined by our group in the sense of Klein’s Er-
langer program,” but this could cause some confusion.
Roughly speaking, Klein’s program states that a group of
transformations on a space determines a geometry on the
space, and vice versa; however, mathematicians appear to
differ somewhat concerning the precise modern interpretation

of Klein’s program. See, e.g., F. Klein, Math. Ann. 43, 63
(1893); H. Weyl, The Theory of Groups and Quantum
Mechanics (Dover, New York, 1931), p. 112; R. S. Millman,
Am. Math. Monthly 84, 338 (1977), and references therein.

9A. Einstein, Sitzungsber. Preuss. Akad. Wiss Phys. Math. KL
217 (1928); 224 (1928).

10E, M. Corson, Introduction to Tensors, Spinors, and Relativis-
tic Wave Equations (Hafner, New York, 1953), p. 14.

11H, Everett, III, Rev. Mod. Phys. 29, 454 (1957).

12C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973), pp. 320, 419, 499, and refer-
ences contained therein.

13L. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, N.J., 1925), p. 97.

14D, Pandres, Jr., Lett. Nuovo Cimento 8, 595 (1973).

15D. Pandres, Jr., Found. Phys. 7, 421 (1977).

163, W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space Time (Cambridge University Press, Cambridge, Eng-
land, 1973).

173, L. Synge, Relativity: The General Theory (North-Holland,
Amsterdam, 1960).



