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Extended model of the electron in general relativity
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A classical model of the spinning electron is proposed in which this particle is the source of the
Kerr-Newman field. The electron is regarded as a charged rotating shell endowed with surface ten-
sion. It is the boundary where the exterior Kerr-Newman solution is matched to the interior flat
spacetime met~ic. The shell is the surface of an oblate ellipsoid of revolution having a minor axis
equal to the classical electron radius and a focal distance of the order of the corresponding Compton
wavelength. This surface is undergoing rigid rotation with its equator at a. velocity almost equal to
the velocity of light. The arrangement of charges gives rise to a quadrupole electric moment, in ad-
dition to the magnetic dipole moment of the current distribution. The whole spacetime of this
model is shown to be causally well behaved.

I. INTRODUCTIGN

Soon after the discovery of the Kerr-Newman metric, '

1t was 1ca11zc«I that this solutloIl implies R gy1OIDagnct1c
ratio g =2, the same value given by Dirac s relativistic
quantum equation. This result suggested that the spin-
ning electron might be classically visualized as a massive,
charged source of the Kerr-Newman field. This idea was
developed by Israel, who identified the electron with the
equatorial disk spanning the ring singularity of the Kerr-
Newman geometry. However, as pointed out by the same
author, this is not a physically realistic model for several
reasons. (l) The material on the disk rotates at velocities
exceeding or at least equal to the velocity of light. (2) The
IDagnct1c moment pfodUccd by thc CUffcnt distribUtlon
cannot be properly defined in the curved background
space. (3) The edge of the disk carries an infinite amount
of mass, charge, and angular momentum. (4) The ring is
in fact a naked curvature singularity where tidal gravita-
tional forces grow unboundedly. (5) As shown by Carter,
the spacetime off the disk exhibits a gross violation of
causality» QRIncly» glvcn two RfbltfRry events» they can bc
connected by both a future- and a past-directed timelike
CufVC.

In this paper we introduce a new classical extended
model of the spinning electron, derived from the Kerr-
Newman solution, which is free from all the above-
mcntioned inconsistencies. The electron is assuIned to be
a rigidly rotating charged shell of zero thickness with sur-
face tension. This shell is defined by the equation
r =e /2M, where r is the affine parameter along a
congruence of principal null geodesics. At this particular
r all gravitational potentials vanish, allowing the Kerr-
Newman metric to be matched to the Aat vacuum solu-
tion inside the shell. Qn the other hand, since the elec-
tromagnetic potentials are not constant on its surface, the
shell must contain not only a distribution of charges but
also a distribution of electric dipoles. This dipole layer el-
iminates the electromagnetic field inside the surface, so
that Einstein-Maxwell equations hold everywhere. The

electron is thus a bubble of flat spacetime immersed in the
Kerr-Newman geometry. Its wall is actually the surface
of an ellipsoid of Ievolution with a minor axis equal to the
classical electron radius and a focal distance of the order
of the Compton wavelength of this particle. The rotation-
al velocity at the equator happens to be numerically equal
to the eccentricity of the ellipsoid; it is therefore less than
the velocity of light (c = I), albeit very close to it, owing
to the remarkable oblateness of the shell. With the aid of
the theory of distributions, the material stress-energy ten-
sor of the source is determined. It involves a surface ten-
sion of the bubble, which is required to compensate the
repulsive forces of the electric charges. The sign of the
charges is opposite to the electron charge, with the excep-
tion of a narrow ribbon surrounding the equator. The
magnetic «I1polc moment, originated 1Il thc rotary IDot1on
of the bubble, may be defined much the same as in special
relativity, because the metric is Minkowskian right on the
surface of the shell. The result of the calculations is iden-
tical to the value obtained from the asymptotic expression
of the magnetic potential. Also, the model gives the right
values for the electron mass, charge, and angular momen-
tum. The oblateness of the bubble produces, in addition,
Rn clcctflc quadI'Upolc moment pI'opoft1onal to thc squaI'c
of the Compton wavelength. The presence of this mo-
ment does not contradict the known experimental facts,
however, since in quantum mechanics a particle of spin —,

docs not g1vc risc to stat1c quadrupole interactions w1th Rn

external electric field.
Although our model also contains a naked singularity,

because the gravitational field has a finite jump across the
shell, it is of a rather harmless nature. Owing to the fact
that the metric tensor is bounded, we are not dealing here
with a CUrvatul c slngular1ty, so that t1dal gravltatlonal
forces do not grow indefinitely in approaching it.

Perhaps the most interesting property of the model in-
troduced in the present paper is that the whole spacetiIne
is causally well behaved. This circumstance occurs be-
cause the flat spacetime metric inside the bubble replaces
the unphysical region of the Kerr-Newman geometry re-
sponsible for the breakdown of the causality principle.
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II. DESCRIPTION OP THE MGDEI.

We begin by considering the line element of the Kerr-Newman geometry in Kerr-Schild coordinates, namely,

ds =dt dx— dy— dz— (r—+a z ) 'r (2Mr —e )[(r +a ) '[r(xdx+ydy) —a(xdy —ydx)]+r 'zdz+dtj

where r is the affine parameter along a congruence of
prlnclp81 null gcodcslcs Rnd ls glvcn bg thc posltlvc I'cal
root of the equation

A glance at Eq. (1) shows that all gravitational poten-
tials vanish when the affine parameter is equal to one half
the classical electron radius e /M, i.e.,

(3)

Hence, the metric (1) may be joined continuously to the
flat Minkowskian metric across the two-surface
t =constant, r =ro. This fact motivates the building up
of a model for the source of the Kerr-Newman field con-
sisting of a massive, charged shell coincident with this
surface. Inside the bubble the electromagnetic potentials
should also vanish to guarantee that the Einstein-Maxwell
equations hold. From Eq. (2) one discovers the two-
surface r =ra is actually an ellipsoid of revolution having
a major axis equal to 2( ro2+a 2) I~ and a minor axis iden-
tical to the classical electron radius.

81ncc thc metric tcnsox' ls continuous RCI'oss thc shell,
the theory of distributions may be applied to the search of
the stress-energy tensor upon the bubble. In fact, as was
shown by Taub, because the affine connection has only a
finite jump across the shell, the nonlinear terms in the
Einstein equations are well defined as distributions. The
second derivatives of the metric tensor, in turn, develop a
Dirac 5 singularity with support on the shdl, which is
physically identified as a stress-energy surface tensor. On
thc othcI' hRnd, thc clcctloIIlagnctic potcQt181 vector ls
disco ntiQUous Rcross thc shell. Ho%'cvcI', slncc the
Maxwell equations Rrc still lincaI' ln 8 CUI'vcd spacctimc,
they are well defined in the sense of distributions.

Thc calculations Rlc done Qlorc casilp when wc adopt
Boyer-Lindquist coordinates, in terms of which the line
element takes the form

ds =dt —p (5 'dr +d8 ) —(r +az)sin 8dp

(2Mr e)p (dt as—in 8dg)— —

%hen thc gravitational Rnd clcctroIHagnctic potentials
given by Eqs. (4) and (7) are inserted into the left-hand
sides of Eqs. (8) and (9), and the derivatives are evaluated
in the sense of distributions, the following result is ob-
tained:

T, = cru,—u +5, o (a, b =0,2,3),
j =qu" (k =0, 1,2,3),

%'herc thc velocity vector ls given bY

u"=(r +a cos 8) ' (r +a )
' (r +a 00 a)

(10)

satisfying the condition for material particles

The stress-energy tensor (10) has the same structure found
in Ref. 5 for the material source upon the equatorial disk.
Hcncc, thc s1IQplc model lntIodUccd 1Q t4at reference ap-
plies as well to the present case. It consists of a mixture
of two perfect surface fluids, gas and dust, spinning as a
%'hole %9th constant RngUlar vclocitY. Thc energy dcns1-
ties of both fluids must be of the same magnitude but of
opposite sign. The "gas" has in fact a negative pressure
(positive tension), which is equal to

wllci"c po =ro +a cos 8 and 5she» is dcflllcd by its value
on a test function 1t(r, 8,$), namely, by

&4.» 0 & = J,„,»it'(ro 8 N)d& h ii (15)

Hclc dX~he» is tllc 11lvarlailt dcIIlcnt of tllc two-al"ca of tllc
shell in flat spheroidal coordinates, i.e.,

tensor T;" and the current vector j' are defined on the
shell by the distribution-valued left-hand sides of the cou-
pled Einstein-Maxwell equations

gk &pe g Tk

The RSSOCiatCCI. CICCtI'OmagnetiC potCQtlRl ls

erp (1;0,0, —a sin 8) . —
To find the material and dectromagnetic sources on the

shell, we follow the procedure of Ref. 5; the stress-energy
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shell~ 0 Ih(
8

(18)

whence we infer the value of the linear velocity

U=(r11 +a )
'~ a sin8,

which is less than the velocity of hght (c = 1) a11 over the
shell.

The total gravitational energy contained both Qn the
shell and in the electromagnetic field is given by Tolman's
formula

(To T 1 T2 T3ye& (21)

where P* is a test. function equal to 1 over the whole
th1cc-space, w1th thc cxccptlon Qf an arbitrarily slTlall
neighborhood of infinity. Here, 1; is given by Eq. (10)
Upon the bubble and by Maxwell s tcnsoI' 1n clcctI'ovacu-
um. A straightforward integration gives

Follow1ng a similar procedure, the total angular mom. en-
tum J is evaluated

According to Eq. (17), the density q consists of a sur-
fRcc dlstrlbutlon of c1largcs Rlld RIl outward-polntlng di-
pole distribution. Owing to the fact that their moments
point over a11 directions, these dipoles will essentially af-
fect only a small neighborhood of the bubble. Referring
to the charge distribution, we will see later on that
ro «a, so that the factor ro —a cos 8 is negative
tlllollgllout t1lc surface, wlt11 t1lc cxccptloll of a Ilarlow
ribbon embracing the equator.

From Eq. (12) we obtain the angular velocity of the
bubble

co=—II /II =a (ro +a )

in accord with the value derived in Ref. 2 from the
asymptotic expression of Az. As is well known, Eqs. (23)
and (28) reproduce the gyromagnetic ratio given by
Dirac's equation

The f1RttcIllng of tllc sphcr01d Rt tllc poles llllpllcs Rlso
the existence of an electric quadrupole moment D, which
is defined by

((2 2 2 2)jo y4 } (30)

where the Cartesian coordinates x,y,z are related to the
flat spheroidal coordinates by the equations

When we insert these relations into Eq. (30) and perform
the integration, we arrive at the result

The presence of this quadrupole moment might seem to
cont1 Mbct thc known atomic spcctroscoplcal cv1dcncc.
However, acco1ding to quantum Glcchanics, thc quadru-
pole moment of a particle of spin —,

' does not show up in
static interactions with an external electric field. " This
p1opcrty May bc viewed as a Icsult of thc unccrta1nty
principle, which prevents the precise location of the angu-
1RI' momentum vcctol. In fact, fol a partlclc wl't1l

J,= —,A, the vector J is so slightly aligned with the z axis
that the expectation value of the quadrupole moment van-
lshCS.

When we substitute in Eq. (23) the known value
Irl[ —,( —, +1)j'~ for the electron spin, we obtain for the fo-
cal distance of the ellipsoid the following expression:

(33)

Similarly, the electric charge Q is obtained from the
formula

where A., is the electron Compton wavelength. In conse-
quence of this relation, the quadrupole moment (32) can
be written as

where, in this case, tP* =1 in a neighborhood of the shell.
Thus, the dipole term in Eq. (17) gives no contribution
and the integral (24) leads to the result

Next» wc calculate thc IQagnctlc moment pI'oduccd by
the distribution of currents (11). To this end we use the
salllc cxpl'cssloll valid ill flRt spacctlI1M, namc1y,

(26)

and the eccentricity e of the ellipsoid becomes

e=[1+(ro/a) ] '~ =(1+—,'a ) (35)

where a=e /11I'is the fine-structure constant. The shape
of the electron is thus independent of its mass. The bub-
ble look~ like a thin disk ~hose radius is nearly equal to
the Compton wavelength. From Eq. (20) it follows that
the eccentricity is identical to the rotationa1 velocity of
ihe bubMc at thc equator. Its nuQlcr1cal value 1s s11ghtly
less than the speed of light, ' namely,

where the covariant component of the current is calculat-
ed from the metric (4) by putting r =ro. We thus obtain

j3———(ro +a )sin Oj

Again. the dipole layer does not contribute and the result
of the integration is

(28)

U „=@=0.999991.. . .

An interesting feature we want to stress here is that the
c1R»ical radius, as well as the quantum radius (Compton
waveleIlgth)refer , to magllltudes specifying the shape of
the electron. Thus, it seems incorrect to state the classical
radius is meaningless, based on the fact that it is more
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than one hundred tiInes smaller than the region where
quantum effects become important.

The surface tension o', given by Eq. (14), corresponds to
the nonelectromagnetic stresses postulated ad hoc in 1905
by Poincare' to compensate the Coulomb repulsion. This
identification is easily understood in the particular case of
a nonspinning charged particle, which occurs when a =0
in Eq. (14). The magnitude of the surface tension reduces
then to the constant value

o=M(8mro )

whence, on account of Eq. {3),it follows that

ro ——e /16srcr,

(37)

(38)

which is the well-known equilibrium condition for a
charged bubble with surface tension in flat spacetime. '

III. DISCUSSION

The Kerr-Newman geometry (1) describes the field of a
naked singularity when the following relation holds:

The numerical values of these quantities for the electron
al c

a'=1O-" cm', e'=1O-" cm',

M'=10-'" cm',

so that the e term in Eq. (39) exceeds Mz for more than
40 orders of magnitude. Therefore, the intensity of the
gravitational field is negligible compared to the elec-

tromagnetic field all the way down to the surface of the
electron. Besides, the magnitude of the affine parameter r
on the bubble is sufficiently high to ensure the validity of
the causality principle in our model. To prove this asser-
tion, we consider the metric coefficient of dP in the line
element (4), namely,

g33 ———{r +a )sin 8—p (2Mr —e )a sin 8.
Outside the bubble r & e /2M, so that g33 never changes
its sign and, consequently, there are no closed timelike
lines in the whole spacetime.

We have not yet touched on the stability of the model
under arbitrary small perturbations of the bubble. A simi-
lar problem in special relativity was considered by
Gnadig, Kunszt, Hasenfratz, and Kuti. ' They studied
the stability of a classical electron model without spin, in-
troduced by Dirac in 1962.' The electron was represent-
ed by a charged, conducting spherical bubble with surface
tension. These authors found that Dirac's model is un-
stable under quadrupole deformations that change the
sphcrc into R plolatc sphcI'old. On thc othcI hand, thc
sphcrc ls stable under small pcrturbat1ons leading to Rn

oblate spheroid. In Ref. 15, it is suggested that the in-
clusion of spin might stabihze the model. This idea seems
qu1tc rcasonablc 1n light of the f1ndlngs of our work,
which shows that the presence of spin implies a remark-
able flattening of the bubble at the poles. A rigorous
proof of this conjecture is beyond the scope of the present
work.
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