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A classical model of the spinning electron is proposed in which this particle is the source of the
Kerr-Newman field. The electron is regarded as a charged rotating shell endowed with surface ten-
sion. It is the boundary where the exterior Kerr-Newman solution is matched to the interior flat
spacetime metric. The shell is the surface of an oblate ellipsoid of revolution having a minor axis
equal to the classical electron radius and a focal distance of the order of the corresponding Compton
wavelength. This surface is undergoing rigid rotation with its equator at a velocity almost equal to
the velocity of light. The arrangement of charges gives rise to a quadrupole electric moment, in ad-
dition to the magnetic dipole moment of the current distribution. The whole spacetime of this

model is shown to be causally well behaved.

I. INTRODUCTION

Soon after the discovery of the Kerr-Newman metric,!
it was realized that this solution implies a gyromagnetic
ratio g =2, the same value given by Dirac’s relativistic
quantum equation.? This result suggested that the spin-
ning electron might be classically visualized as a massive,
charged source of the Kerr-Newman field. This idea was
developed by Israel,® who identified the electron with the
equatorial disk spanning the ring singularity of the Kerr-
Newman geometry. However, as pointed out by the same
author,’ this is not a physically realistic model for several
reasons. (1) The material on the disk rotates at velocities
exceeding or at least equal to the velocity of light. (2) The
magnetic moment produced by the current distribution
cannot be properly defined in the curved background
space. (3) The edge of the disk carries an infinite amount
of mass, charge, and angular momentum. (4) The ring is
in fact a naked curvature singularity where tidal gravita-
tional forces grow unboundedly. (5) As shown by Carter,?
the spacetime off the disk exhibits a gross violation of
causality, namely, given two arbitrary events, they can be
connected by both a future- and a past-directed timelike
curve.

In this paper we introduce a new classical extended
model of the spinning electron, derived from the Kerr-
Newman solution, which is free from all the above-
mentioned inconsistencies. The electron is assumed to be
a rigidly rotating charged shell of zero thickness with sur-
face tension. This shell is defined by the equation
r=e?/2M, where r is the affine parameter along a
congruence of principal null geodesics. At this particular
r all gravitational potentials vanish, allowing the Kerr-
Newman metric to be matched to the flat vacuum solu-
tion inside the shell. On the other hand, since the elec-
tromagnetic potentials are not constant on its surface, the
shell must contain not only a distribution of charges but
also a distribution of electric dipoles. This dipole layer el-
iminates the electromagnetic field inside the surface, so
that Einstein-Maxwell equations hold everywhere. The
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electron is thus a bubble of flat spacetime immersed in the
Kerr-Newman geometry. Its wall is actually the surface
of an ellipsoid of revolution with a minor axis equal to the
classical electron radius and a focal distance of the order
of the Compton wavelength of this particle. The rotation-
al velocity at the equator happens to be numerically equal
to the eccentricity of the ellipsoid; it is therefore less than
the velocity of light (¢ =1), albeit very close to it, owing
to the remarkable oblateness of the shell. With the aid of
the theory of distributions, the material stress-energy ten-
sor of the source is determined. It involves a surface ten-
sion of the bubble, which is required to compensate the
repulsive forces of the electric charges. The sign of the
charges is opposite to the electron charge, with the excep-
tion of a narrow ribbon surrounding the equator. The
magnetic dipole moment, originated in the rotary motion
of the bubble, may be defined much the same as in special
relativity, because the metric is Minkowskian right on the
surface of the shell. The result of the calculations is iden-
tical to the value obtained from the asymptotic expression
of the magnetic potential. Also, the model gives the right
values for the electron mass, charge, and angular momen-
tum. The oblateness of the bubble produces, in addition,
an electric quadrupole moment proportional to the square
of the Compton wavelength. The presence of this mo-
ment does not contradict the known experimental facts,
however, since in quantum mechanics a particle of spin +
does not give rise to static quadrupole interactions with an
external electric field.

Although our model also contains a naked singularity,
because the gravitational field has a finite jump across the
shell, it is of a rather harmless nature. Owing to the fact
that the metric tensor is bounded, we are not dealing here
with a curvature singularity, so that tidal gravitational
forces do not grow indefinitely in approaching it.

Perhaps the most interesting property of the model in-
troduced in the present paper is that the whole spacetime
is causally well behaved. This circumstance occurs be-
cause the flat spacetime metric inside the bubble replaces
the unphysical region of the Kerr-Newman geometry re-
sponsible for the breakdown of the causality principle.
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I1. DESCRIPTION OF THE MODEL

We begin by considering the line element of the Kerr-Newman geometry in Kerr-Schild coordinates, namely,*

ds2=dt2—dx2—dy2—dzz—(r4+a222)“1r2(2Mr—ez){(r2+a2)”[r(x dx +ydy)—a(xdy —ydx)|+r~'zdz +dt}?,

where r is the affine parameter along a congruence of
principal null geodesics and is given by the positive real
root of the equation

rt—(x24+y*+z22—a*)r?—a%?=0. (2)

A glance at Eq. (1) shows that all gravitational poten-
tials vanish when the affine parameter is equal to one half
the classical electron radius e%/M, i.e.,

r=ro=e?/2M . (3)

Hence, the metric (1) may be joined continuously to the
flat Minkowskian metric across the two-surface
t =constant,r =ry. This fact motivates the building up
of a model for the source of the Kerr-Newman field con-
sisting of a massive, charged shell coincident with this
surface. Inside the bubble the electromagnetic potentials
should also vanish to guarantee that the Einstein-Maxwell
equations hold. From Eq. (2) one discovers the two-
surface r =r is actually an ellipsoid of revolution having
a major axis equal to 2(r4*>+a2)!/? and a minor axis iden-
tical to the classical electron radius.

Since the metric tensor is continuous across the shell,
the theory of distributions may be applied to the search of
the stress-energy tensor upon the bubble.’ In fact, as was
shown by Taub,’ because the affine connection has only a
finite jump across the shell, the nonlinear terms in the
Einstein equations are well defined as distributions. The
second derivatives of the metric tensor, in turn, develop a
Dirac 6 singularity with support on the shell, which is
physically identified as a stress-energy surface tensor. On
the other hand, the electromagnetic potential vector is
discontinuous across the shell. However, since the
Maxwell equations are still linear in a curved spacetime,
they are well defined in the sense of distributions.

The calculations are done more easily when we adopt
Boyer-Lindquist coordinates,’ in terms of which the line
element takes the form

ds?=dt>—pH A~ 'dr*+d6?*)—(r?+a?)sin’0 d ¢*

—(2Mr —e)p~Xdt —a sin’*0d¢)? )

with
p?=r’+a’cos?6 , (5)
A=r2—2Mr+a’+e?. (6)

The associated electromagnetic potential is
A;= —erp~%(1;0,0, —a sin%9) . (7

To find the material and electromagnetic sources on the
shell, we follow the procedure of Ref. 5; the stress-energy

(1)
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tensor T;* and the current vector j* are defined on the
shell by the distribution-valued left-hand sides of the cou-
pled Einstein-Maxwell equations

R;*—58;*R=8x7T/*, (8)
Fo, =47j° . 9
When the gravitational and electromagnetic potentials
given by Egs. (4) and (7) are inserted into the left-hand
sides of Eqgs. (8) and (9), and the derivatives are evaluated

in the sense of distributions, the following result is ob-
tained:

T,’=—ou,u®+8,%0 (a,b=0,2,3), (10)
j*=qu* (k=0,1,2,3), (11)
where the velocity vector is giveﬂ by
u*=(ro?+a%c0s?0) " ry2+a*) " 2ry*+a%0,0,a) ,
(12)
satisfying the condition for material particles
uuk=1. (13)

The stress-energy tensor (10) has the same structure found
in Ref. 5 for the material source upon the equatorial disk.
Hence, the simple model introduced in that reference ap-
plies as well to the present case. It consists of a mixture
of two perfect surface fluids, gas and dust, spinning as a
whole with constant angular velocity. The energy densi-
ties of both fluids must be of the same magnitude but of
opposite sign. The “gas” has in fact a negative pressure
(positive tension), which is equal to

o=(8m)""Mp,~Nre>+a*) "8 gen (14)

where po?=ry?+a%cos?0 and 8, is defined by its value
on a test function ¥(r,0,4),® namely, by

(Bspers ) = fshell¢(r0;9’¢)dzshe1] . (15)

Here dX, is the invariant element of the two-area of the
shell in flat spheroidal coordinates, i.e.,

d3gea=po(ro’+a?)?*sin0d0d¢ . (16)

On the other hand, the surface charge density g has the
form

q= (4m)~ 19[)04( r02 —a 200826 )Sshell

——(41r)‘1er0p0‘2%55hen , (17)

where the derivative on the second term is defined as®
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d d
(575she11,¢> =—f - ¥(r,0,¢) .

shell 37 rOdEShe" ) (18)

According to Eq. (17), the density g consists of a sur-
face distribution of charges and an outward-pointing di-
pole distribution. Owing to the fact that their moments
point over all directions, these dipoles will essentially af-
fect only a small neighborhood of the bubble. Referring
to the charge distribution, we will see later on that
ro’ <<a? so that the factor ry>—a’cos’d is negative
throughout the surface, with the exception of a narrow
ribbon embracing the equator.

From Eq. (12) we obtain the angular velocity of the
bubble

o=u’/u’=a(ry’+a?!, (19)

whence we infer the value of the linear velocity

v =(ro’+a?~"2asind (20)

which is less than the velocity of light (¢ =1) all over the
shell.

The total gravitational energy contained both on the
shell and in the electromagnetic field is given by Tolman’s
formula’®

U=(T°—T'—=T,2—T33¢*) , (21)

where ¥* is a test function equal to 1 over the whole
three-space, with the exception of an arbitrarily small
neighborhood of infinity. Here, T;* is given by Eq. (10)
upon the bubble and by Maxwell’s tensor in electrovacu-
um. A straightforward integration gives

U=M. (22)

Following a similar procedure, the total angular momen-
tum J is evaluated

J=(T;°¢*)=—Ma . 23)

Similarly, the electric charge Q is obtained from the
formula

Q =<j0’¢*> ’ (24)

where, in this case, ¥* =1 in a neighborhood of the shell.
Thus, the dipole term in Eq. (17) gives no contribution
and the integral (24) leads to the result

Q:e . (25)

Next, we calculate the magnetic moment produced by
the distribution of currents (11). To this end we use the
same expression valid in flat spacetime, namely,10

PRI 26)

where the covariant component of the current is calculat-
ed from the metric (4) by putting » =r;. We thus obtain

j3=—(ro*+a?)sin®0j3 . 27

Again the dipole layer does not contribute and the result
of the integration is

u=ea, (28)

in accord with the value derived in Ref. 2 from the
asymptotic expression of A3. As is well known, Egs. (23)
and (28) reproduce the gyromagnetic ratio given by
Dirac’s equation

p/|J | =e/M . (29)

The flattening of the spheroid at the poles implies also
the existence of an electric quadrupole moment D, which
is defined by

D =((222—x2—y?)j%¢*) , (30)

where the Cartesian coordinates x,y,z are related to the
flat spheroidal coordinates by the equations

22=r2c0s?0, x*+y*=(r*+a?)sin0 . (31)

When we insert these relations into Eq. (30) and perform
the integration, we arrive at the result

D=—2ea?. (32)

The presence of this quadrupole moment might seem to
contradict the known atomic spectroscopical evidence.
However, according to quantum mechanics, the quadru-
pole moment of a particle of spin 5 does not show up in
static interactions with an external electric field.!! This
property may be viewed as a result of the uncertainty
principle, which prevents the precise location of the angu-
lar momentum vector. In fact, for a particle with
J,=+#, the vector T isso slightly aligned with the z axis
that the expectation value of the quadrupole moment van-
ishes.

When we substitute in Eq. (23) the known value
#[ + (5 +1)]'/? for the electron spin, we obtain for the fo-
cal distance of the ellipsoid the following expression:

2a =V3%, , (33)

where %, is the electron Compton wavelength. In conse-
quence of this relation, the quadrupole moment (32) can
be written as

D =—6ek,?, (34)
and the eccentricity € of the ellipsoid becomes
e=[1+(ro/a)]7?=(1+ 52?2, (35)

where a=e?/% is the fine-structure constant. The shape
of the electron is thus independent of its mass. The bub-
ble looks like a thin disk whose radius is nearly equal to
the Compton wavelength. From Eq. (20) it follows that
the eccentricity is identical to the rotational velocity of
the bubble at the equator. Its numerical value is slightly
less than the speed of light,12 namely,

Vmax =€=0.999991. .. . (36)

An interesting feature we want to stress here is that the
classical radius, as well as the quantum radius (Compton
wavelength), refer to magnitudes specifying the shape of
the electron. Thus, it seems incorrect to state the classical
radius is meaningless, based on the fact that it is more
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than one hundred times smaller than the region where
quantum effects become important.'3

The surface tension o, given by Eq. (14), corresponds to
the nonelectromagnetic stresses postulated ad hoc in 1905
by Poincaré!* to compensate the Coulomb repulsion. This
identification is easily understood in the particular case of
a nonspinning charged particle, which occurs when a =0
in Eq. (14). The magnitude of the surface tension reduces
then to the constant value

o=M(8mry®)" !, (37)
whence, on account of Eq. (3), it follows that
ro’=e?/16mo , (38)

which is the well-known equilibrium condition for a
charged bubble with surface tension in flat spacetime.'®

III. DISCUSSION

The Kerr-Newman geometry (1) describes the field of a
naked singularity when the following relation holds:

a’+e?>M?. (39)

The numerical values of these quantities for the electron
are

2 2

a’~10"%2 cm?, e2~10~% cm?,
(40)

M?=10"19cm?

so that the e? term in Eq. (39) exceeds M? for more than
40 orders of magnitude. Therefore, the intensity of the
gravitational field is negligible compared to the elec-

tromagnetic field all the way down to the surface of the
electron. Besides, the magnitude of the affine parameter
on the bubble is sufficiently high to ensure the validity of
the causality principle in our model.? To prove this asser-
tion, we consider the metric coefficient of d¢? in the line
element (4), namely,

g1 =—(r’+a%sin’0—p~22Mr—e?a’sin*e .  (41)

Outside the bubble 7 >e2/2M, so that g;; never changes
its sign and, consequently, there are no closed timelike
lines in the whole spacetime.”

We have not yet touched on the stability of the model
under arbitrary small perturbations of the bubble. A simi-
lar problem in special relativity was considered by
Gnidig, Kunszt, Hasenfratz, and Kuti.!? They studied
the stability of a classical electron model without spin, in-
troduced by Dirac in 1962.!® The electron was represent-
ed by a charged, conducting spherical bubble with surface
tension. These authors found that Dirac’s model is un-
stable under quadrupole deformations that change the
sphere into a prolate spheroid. On the other hand, the
sphere is stable under small perturbations leading to an
oblate spheroid. In Ref. 15, it is suggested that the in-
clusion of spin might stabilize the model. This idea seems
quite reasonable in light of the findings of our work,
which shows that the presence of spin implies a remark-
able flattening of the bubble at the poles. A rigorous
proof of this conjecture is beyond the scope of the present
work.
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