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Einstein-Weyl field equations in a Bianchi type-IX space-time
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It is proved that there exists no solution of the combined gravitational-neutrino field equations in
general relativity if the space-time metric admits a group of isometrics of Bianchi type IX and the
neutrino field has geodesic and shearfree rays.

I. INTRODUCTION

In general relativity, the interaction of a classical spin-
Dirac field with a space-time admitting a three-

parameter group of isometrics was investigated by
Michalik and Melv1n, Ray, Henneaux, Obregon and
Ryan, " and Jantzen. In Refs. 3—5 the nonzero-rest-mass
Dirac field case is studied with the use of Hamiltonian
techniques. In particular, in Ref. 3 the general solution of
the Einstein-Dirac field equations for a Bianchi type-I
metric is obtained. In Refs. 1 and 2 the neutrino field
case is studied and exact (but not general) solutions of Bi-
anchi types V and V~ are obtained. The stationary axially
symmetric solution of the Einstein-Weyl field equations,
presented recently by Kolassis, has a four-parameter
group of isometrics which contains a subgroup of Bianchi
type II.

Here we consider a neutrino field with geodesic and
shearfree rays coupled via the Einstein field equations to a
Bianchi type-IX metric. From the mathematical point of
view the hypothesis of geodesic and shearfree rays consti-
tutes a restriction on the Einstein-Weyl field equations so
that our investigations seem to be not quite general. How-
ever, this hypothesis results from physical considerations.
Indeed, Wainwright has proved that a neutrino field
satisfying the weak energy condition E2 necessarily has
geodesic and shearfree rays. The weak energy condition
Ez is stated as follows: A field is said to satisfy the weak
energy cond1tlon Ep 1f 1ts energy flow vec'tor Tp~u &s

timelike or null for all observers with four-velocity vector
u" at each event for which T„&0 The Newm. an-
Penrose formalism is used throughout.

II. THE FIELD EQUATIONS

The Einstein-Weyl f'ield equations governing the in-
teraction of a neutrino field with a gravitational field read

indices. To treat the above equations it is convenient to
introduce a two-spinor X so that with g it forms a spi-
nor frame. This spinor frame gives rise to the adapted
null tetrad

IP oP gAgx (2.4a)

IP —I 'P

k"=k'"+ gm '~+ Pm '"+goal'",

m" =m '"+t7l'"

(2.5a)

(2.5b)

(2.5c)

with 1( any complex function of the coordinates. The hy-
pothesis that the neutrino field has geodesic and shearfree
rays implies that the spin coefficients v and o. associated
with the adapted null tetrad vanish,

(2.6)

In the Newman-Penrose notat1on the sp1nor-frame
components of the Einstein-Weyl field equations (2.1) and
(2.2) are written

(2.8)

m" =o." .g"Xx
AX

m "=o".1'"gx, (2.4d)
AX

where I" is the neutrino flux vector. The adapted null
tetrad is determined up to the so-called null rotations
about I" given by

(2.1)

gi.p~ = —Tp~ (2.2)

T =—(o' g~g' +o" g~g—c c )' (2.3)

is the symmetrized energy-momentum tensor of the neu-
trino field g". Here, capital latin indices are two-spinor

Woo ——0,
~'Ol =O

+'o2=0

@()=(i/8)(p —p),
@~2——(i/8)(a —2r),
@22——(~/4)(y —y) .

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

(2.10f)
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The space-time is assumed to be of Bianchi type IX.
The canonical basis elements of the Lie algebra of the
transitive group of isometrics are denoted by I nt,
i= 1,2,3 I and satisfy the relation

p kW~.nf =e g~ng,

&herc E )J 1s thc Lcvl-Clv1ta syIIll301.
From a theorem proved recently which concerns the

inheritance of space-time symmetries by the neutrino fie.d
it follows that the adapted null tetrad obeys the equations

W„ l"=0, (2.12a)

W„k"=—r;m" —r;m ",
W„,m"= r;1"—is;m—", (2.12c)

where s; are real constants and r; are complex functions
of the coordinates. Equation (2.11) can also be written in
the operator form

D b =(p+P)b,

b, b = —(p+p) a+a c +ac,
(2.18a)

(2.18b)

(2.18c)

D a =(y+y)b+(vr ct —P)—c +(m —a —P) c, (2.19a)

5a=(~—a —P)a+Vb+(p, —P) c+r;
D c =(m+r)b —pc,
5 c =—(m+7)a+{y —y+p) c+Xc —r,
5 c = pa+—(y y+p—)b+(a P) c,—
5c =kb+(P —a) c .

(2.19b)

(2.19c)

(2.20a)

(2.20b)

Q.20c)

(2.20d)

From the linear independence of the Kilhng vector fields
fig~ 1t folio%'s that

Acting on m" by means of this equation and using Eqs.
(2.12a) and (2.12c), we obtain rank I a, b, ( —,

'
)( c+ c ),(i/2)( c —c)I =3 . (2.21}

The vector fields nf' can be expanded in terms of the
adapted null tetrad Rs

Inserting Eq. (2.14) into Eqs. (2.11) and (2.12a)—(2.12c)
and taking into account Eq. (2.13), we obtain

(2.15a)

In order that the neutrino field be compatible with a Bian-
chi type-IX metric the solution of the differential Eqs,
(218a}—(2.20d) must satisfy conditions (2.17a)—(2.17c)
»d (2.21). In the next section we give the proof of the
following theorem.

"There exist no solutions of the Einstein IIeyl f~'«-d

equations in a Bianchi type IX spac-e time for a -neutrino
field with geodesic and shearfree rays. "

W~, CJ +&J.r; =e~tjck

(2.15b)

(2.15c)

b;„=n (l,„—l„.„), .

ag p
—ng (k~.p

—kp. y) r;mp —r;m~, —

cI p =n; (m~@ —mp ~) —rtlp

(2.16a)

(2.16b)

(2.16c)

With the help of Eqs. (2.16a)—(2.16c), (2.6)—(2.9), and the
expansions of l„.„,k„. ,m„.„on the adapted null tetrad, 9

Eqs. (2.15a)—(2.15c) can be written

In the sequel the various restrictions satisfied by the
spin coefficients, the Einstein field equations
(2.10a)—(2.10f), and the equations (2.18a)—(2.20d} are
often used without explicit reference. In particular, the
spin coefficients e and P are replaced in all equations by
their equals p and ~, respectively. For the Ricci and Bian-
chi identities we use as in Refs. 6 and 8 the following no-
tation: by (R.i), where i = 1, . . . , 18 [(B.j) where

j=1, . . . , 11], we denote the ith Ricci identity [the jth
Bianchi identity] in the order of the listing given, e.g., by
P11Rn1.

At fII'st wc observe thRt Accessarily

—c A r+c.c.

b=pa h b+ab 5 c+pc h c+c c. ,

c

=(w+r)ahab+pc

h a+Ab h c

+(y —y+p, )b h c+(P—ct) c A c+r hb .

(2.17a)

(2.17b)
because, if p —p =0, the scalar multiplication of Eq.
{2.17b) by b gives b =0, Rlld then, by scalar multiplica-

tion of Eq. (2.17c) by c, we obtain c =0; finally, Eq.
(2.17a}yields a=0 so that n/'=0

By virtue of Eq. (3.1) the adapted null tetrad can now

bc chosen so that
The arrow indicates three-tuplets, e.g., c —=(c~,c2,c3).
The symbol 5 denotes the exterior pI'oduct of two three-
tuplets. Using the intrinsic derivatives D,6,5,5 associated
with the adapted null tetrad, Eqs. (2.16a)—(2.16c) can be
vrritten equivalently,

This choice of the null tetrad implies

(3.3)
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From Eqs. (R.5) and (R.l 1) it follows that

Dr=(2p p—)r+r7p .

By scalar multiplication of Eq. (2.17b) by c and Eq.
(2.17c) by b and comparison between the resulting equa-
tions, we obtain

By using Eqs. (3.14), (3.16), (3.17), (3.18), and the 6
derivative of Eq. (3.12), we obtain

By virtue of this last equation, Eqs. (2.17c), (3.3), (3.6),
(3.12), and the other restrictions satisfied by the spin coef-
ficients, it follows that

P(ahb)c=r(c h c)b . (3.5)

By virtue of Eqs. (R.1), (3.3), and (3.4) and the conditions
{2.21) and {3.1), the D derivative of Eq. (3.5) yields

(3.6)

(3.7)

(3.20)

Clearly, this equation is in contradiction to (2.21) and
so the proof of the theorem is now completed.

IV. DISCUSSION

(3.8)

where 8 is a real function of the coordinates. Using Eq.
(3.7) and the condition (3.1), we get from Eq. (R.16)

(3.9)

Inserting Eq. (3.6) into Eq. (2.17a) and taking into account
Eqs. (2.17b), (3.3), and (2.21) we obtain

(3.10)

(3.11)

which, with Eq. (3.11), yields

(3.12)

The D derivative and b, derivative of Eq. (3.6), respective-

ly, yield

DB =y+y &(p+p), —

aa =s'(p+p) B(y+y) . —
(3.13)

(3.14)

From Eqs. (R.8), (R.12), (R 14), »d {R17) we obta'n

(3.15)

{3.16)

(3.17)

By using Eqs. (R.l), (3.13), (3.15), »d the D derjvat»e of
Eq. (3.12), we obtain

@'ii =XP+'VP+PIT- (3.18)

By scalar multiplication of Eq. (2.17c) by c and taking
the purely imaginary part of the resulting equation, we
obtain

The nonexistence of Bianchi type-IX solutions of the
Einstein-Weyl field equations is a generalization of simi-
lar results concerning spherical symmetry which were ob-
tained by Trim and Wainwright, ' Audretsch, ' and Grif-
fiths. ' In particular, Griffiths, without the use of the as-
sumption of geodesic and shearfree rays, proved the
nonexistence of nonsingular solutions of the Einstein-
Weyl field equations in a spherically symmetric space-
time.

It is worthwhile to note that the theorem which is
proved here holds even if a cosmological term is intro-
duced in the Einstein field equations. The proof of this is
similar to that given in Sec. III and is left to the interested
reader.

The experimental observation seems to show that only
left-handed neutrinos exist and this is in accordance with
Weyl s equation which describes fields with definite heli-

city. However, it is interesting to note that one of the
main reasons for the nonexistence of Bianchi type-IX
solutions of the Einstein-Weyl equations seems to be this
restriction on the helicity. In fact, Soares and Novello'

proved that a spherically symmetric space-time is compa-
tible only with a neutrino field with nondefinite helicity.

A corollary of the theorem we proved here is that the
k=1 Friedmann-Robertson-%alker metric is incompati-
ble with a neutrino field with geodesic and shearfree rays.
This is in accordance with a result obtained by Isham and
Nelson' and later in a more general context also by Gbre-

gon and Ryan. It must be pointed out that although the
above authors consider the general case of a nonzero-rest-
mass Dirac field, they made the assumption for the Dirac
field to be homogeneous, i.e., to inherit space-time sym-
metries. But it is not at all clear if this assumption is a
consequence of the Einstein-Dirac field equations or if it
constitutes a restriction so strong that the solution of the
Dirac field equation collapses to zero.
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