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Quark-mass effects for energy-energy correlations in high-energy e e annihilation are calculat-
ed for arbitrary initial-state polarizations. While the contribution of the massive quark depends sen-
sitively on the mass/(total center-of-mass energy) ratio, the normalized, angle-integrated correlation
is much less sensitive to the quark mass. In particular, at the Z peak, the normalized, angle-
integrated energy-energy correlation changes by at most 10% {6%)for top-quark masses chosen in
the range from 20 GeV to Mz/2 and —0.9&cosg&0.9 (—0.5 &cosg &0.5).

I. INTRODUCTION

Measurement of normalized energy-energy correlations
(EEC's) is one of the promising possibilities for testing
QCD. ' In fact, comparison of the QCD prediction with
experimental data shows a reasonable success of QCD.
However, fragmentation corrections to the pure perturba-
tive result are still large and are necessary to fit the data.
It is thus a natural suggestion to go to higher energies and
in particular to the Z region, where the hadronic e e+
annihilation cross section is large. ' EEC's for these high
energies have already '" been calculated; also the elec-
tromagnetic corrections have been estimated.

All these calculations have been carried out assuming
zero quark masses, i.e., energies much higher than any
quark-mass thresholds. Close to the thresholds quark-
mass effects are expected to be large. With present infor-
mation on the top-quark mass it is clear that the Z-
region EEC will be affected (unless the top-quark mass is
larger than half of the Z mass). To estimate the effect
we calculate in this paper the QCD predictions for EEC's
with massive quarks. The calculation is easily done for
arbitrary initial-state polarizations.

In the zero-quark-mass case the normalized, angle-
integrated EEC turned out to be independent of initial-
state polarizations and weak-interaction parameters (i.e.,
Z mass and width as well as coupling constants). '

Naturally this simple result will be modified in the
massive-quark case. , The normalized, angle-integrated
EEC does depend on initial-state polarizations and weak-
interaction parameters. However, these dependences turn
out to be rather weak. Therefore, even close to a loosely
defined quark-mass threshold the normalized angle-
integrated EEC (or the asymmetry) is a useful quantity to
test QCD.

The organization of the paper is as follows. In Sec. II
we derive the EEC cross section as a function of the struc-
ture functions. Section III is devoted to calculating the
EEC structure functions. Section IV contains a discus-
sion of the result and numerical predictions. Some for-
mulas are collected in the Appendix. With the help of the
formulas in Sec. II and the Appendix, it is possible to cal-
culate completely the EEC cross sections by simple nu-
merical integrations.

II. THE ENERGY-ENERGY-CORRELATION
CROSS SECTION FOR NONVANISHING

QUARK MASSES

The calculation of EEC in the massive-quark case goes
parallel to the zero-mass calculations. We shall follow the
line of reasoning and notations of Ref. 4.

First we recall the definition of the EEC cross section. '

Assume that a large number N of hadronic events in
e e+ annihilation is observed. The individual events are
labeled with A = 1,. . .,N. In each event one measures the
energies dE&,dE& carried by the hadrons into the solid
angles dA=d cos&dP, dQ'=d cos0'dP' that lie in the
directions r and r ' relative to the collision point.

The normalized EEC cross section is given by

I d2y 1 + dE„dE„'
cr„, dQdQ' X z, 8'dQ WdA'

where 8' is the total center-of-mass energy and o„, is the
total hadronic cross section. The angle between r and r '

is denoted by X.
To lowest order in the electroweak interaction, the EEC

is calculated by an energy-weighted phase-space integral
of a squared amplitude

I
T I, which is given as

where j~r
~ „q~ (ter

~ „k~ ) is the lepton (hadron) electromagnetic (weak) current and f is an arbitrary outgoing hadronic fi-
nal state. We rewrite this as

I
T I'~ 2 I

aiv"&f+ I &, I»+a2v"&f+
I ~, I»+a3a"&f+

I I; I
o&+a4a"&f+

I ~, I» I'
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where U" (a") is the matrix element of the vector (axial-
vector) leptonic current and V„(A„) is the hadronic vec-
tor (axial-vector) current. All the coupling constants as
well as the y and Z propagators are included in
ai, . . .,a4. The standard-model expressions for ai, . . .,a4
can be easily written down; they are given in the Appen-
d1x.

As the final state is effectively invariant under charge
conjugation, we have the relation

g &0I V" lf+ )&f+ I

A" I0) =0
f

(4)

g &o
I

A" lf+ &&f+ I
A'I0&—=A"'

f
Neglecting final-state interactions, TCP invariance yields

V" =V",
As in Ref. 4, the necessary integrations and polarization

sums effect only the final-state particle variables, there-
fore they may be performed on the factors V"",A "'. The
final results are denoted by V"",A"". It is clear that both
V" and Ai'" are symmetric tensors depending on W (to-

in the massive-quark case, too. However, the contribu-
tions of V"V and A"3" terms are no longer equal. We
put

2 &oI v" If+ &&f+ I
v'I0&=v""

f.

tal energy), the quark masses, and the directions r, r ' of
the cones in which the energy is detected. Thus, the
space-space parts have the same decomposition as in Ref.
1:

Vik =W(X)(25;k r;rk—r—,'r k)

+9k(X)(5;kr r ' ——,'r;r k ,'r ;'r—k—)

+@(X)5;k,

A;k ——W(X )(25ik r; rk —r,' r k )—
+g(X)(5;kr . r ' —,' r;r k

——
z r,'rk)

+&(X)5;k,

where the EEC structure functions M, . . .F' do depend
also on W. For the zero-quark-mass case,
A =Ã, X =Ã, and the structure functions alculated
to lowest order in perturbative QCD—are given in Ref. 1

(and reproduced in the Appendix). The nonzero-quark-
mass expressions are calculated in Sec. III. The perturba-
tive results should be reliable for X&0 and X&180', pro-
vided fragmentation corrections are also added. (Results
in a simple treatment of fragmentation are given in Ref.
1). Fragmentation corrections fall as I/8' with increas-
ing energy; therefore near the Z peak they are much less,
than at currently available energies.

The EEC cross section is now given for arbitrary e e+
polarizations as

dX 3W2 2
gk

d QdQ' [Vf (U'Uk laif I
+a ak lazf I

+U'aka~fazf+O'Ukaifa3f)

+Af (UPk
I azf I +atak

I a4f I +Urakazfa4f+aiUkazfa4f)] (8)

where the sum goes over the quark flavors. The leptonic polarization tensors U;UI'„. . . have been calculated, ' the sym-
metric parts [only these enter in (8)] are reproduced in the Appendix. Only the space-space components of these tensors
are nonvanishing.

It is reasonable to normalize to the total hadronic cross section given by

cr„,= g I(1 sisL)[( laif I

—+ 1azf I
)(I+2pf )+(

I zf I'+
I 4f I

)( pf4m

+2(sL —si )Re[azfaif(1+2pf )+a4fazf(1 4pf )]I(1 4pf ) Izf =

where sI (s I ) is the longitudinal component of the polarization vector of e (e+).
The form of Eq. (8) is rather complicated. To obtain simpler formulas we integrate over some of the angles (8,$,8', P')

modifying only the V'",A' factors. For arbitrary initial polarizations we get

d X
d cosXd cos8

3W g ( I Wf [6—sin 8(1+cos X)+2cos 8cos X]+Af cosX(4 —2sin 8)+4@fI32 f
X[(1—sisi )(

I aif I
+

I a3f I
)+2(sI —sL )(a3faif+a3faif)]

+ I JVf [6—sin 8( 1 +cos X)+ 2 cos 8 cos X]+Xf cosX(4 —2 sin 8)+4Vf ]

X[(1—sLsi )(
I azf I +

I a4f I')+2(s L sl. )(a4fazf+a4fazf)])— (10)

where 8 is the angle between r and the e momentum and
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g I(4M/+2cosX A/+34'I)[(1 —sqs I }(
~
a~I ~

+ ( a3/ ~
)+2(s I —sL, )(a3ya &I+a3~a&/)]a cosX 4

+(4M&+2cosX %~+3'&)[(1—sis I, )(
~
az~ ~

+
~ a4/

~

)+2(s i. —sL )(a4&az/+a4&apf)]). (11)

The transverse components of polarization vectors drop out from Eqs. (9), (10), and (11).
While in the zero-quark-mass case

1 aX
o.„, d cosXd cos8dg

1 d X
, and

0«t d cos+d cosO

1 dX
otot d cos+

were independent of initial-state polarizations and weak-interaction parameters, it is clear from Eqs. (9), (10) and (11)
that these dependences do not drop out in the present case. (Obviously, taking W/ ——W/=W, etc., we get back the
zero-quark-mass results. ) The above formulas allow us to predict completely these dependences. In practice, it turns out
that for the normalized, angle-integrated EEC [(1/o«, )dX/d cosX] quark-mass effects are not very large.

III. CALCULATION OF THE EEC STRUCTURE FUNCTIONS

In this section we summarize the calculation of V», A;». Since we are interested in angles X&0, X&180' only the
graphs of Fig. 1 are relevant. For y exchange these graphs have been calculated in (for the unpolarized-initial-state case
only). The traces to be calculated are

r

Vi«~ Tr, (p y+p) y~ P Y P y~ y~ P( +k) + (+k)
2p & 2p. A:

~( —.
y ) y

P 'y Py«y«P "Y P( +k) — ( +k) +
2p.k 2p. k

r

(p+k) y+p;; (p+k).y p, —A,„Tr (py+p) y. .
Pyy y yP . .y Py

(12)

To calculate the EEC, we have to integrate over the energy-weighted phase space, i.e.,
3 3—

V'"=f p dpp dp 5(1 E —E—k)5—(p+p+k)V'"+2 f p dpk dk p 5(1 E —E—k)5—(p+p+k)V'",
k

(13}

and similarly for A' . The first integral represents the contribution, when the energies of the q and q are measured in
dQ and dQ, respectively, and the gluon is integrated over. (It is understood that the opposite contribution, i.e., q in dQ
and q in dQ, is also added. ) The second integral represents the contribution, when the qg energies are measured (again
the opposite contributions, i.e., gq, are added). The factor 2 takes into account the qg (gq) contributions.

After taking into account energy-momentum conservation, V'"(A'") is given as a sum of two one-dimensional in-
tegrals. Since we cannot evaluate these integrals analytically and are interested in the EEC structure functions, we multi-
ply by appropriate projection operators' below the integration sign. We use the projectors

(r +r');(r +r')» (r r');(r r')»— —
2( 1 +r.r') ' '

2( 1 rr')—~3ik ~ik lik 2ik ' (14)

These project out the functions A&, Az, A3 (A&, Az, A3} which are easily connected to our structure functions

M = [——,A, (1—cosX) ——,Az(1+cosX)+ A 3]
1 1 1

S111 g

A =[—A&(1 —cosX)+Az(1+cosX) —A32cosX] zs1n g

and similarly for M, A, and X.
The limits of integration in Eq. (13) are obtained from kinematics. The case of the first integral (qq contribution) is

somewhat tricky. If we choose to eliminate the d k dp integration we are left with, e.g.,
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pp p I' V
i
p(1 E—)+pE cosX

i

where in the integrand we have to put

(p
2 +p 2 +2pp cosX )

1 j2 E (p
2 +p2 )

1 /2

(16)

p cosX(1 2E+—2p )+(1—E)[(1 2E—) 4p—2p sin X] ~

2[p cos X—(1—E) ]

For cosX & 0 we have to choose p and for the integration
range we have

r

1 —2p
' 2(1—p)

For cosX &0 both p+ and p yield acceptable kinemati-
cal configurations for appropriate values of p. Choosing
p the range of p integration is

where p, =(E, p)'~, —
1 —p, sinX(l —4p +4@ sin X)'~

Ei ——

2(1—p sin X)

trate the situation p+ (p) is plotted on Fig. 2 for cosX & 0.
In practice it is not advisable to calculate the integral

in this way. Namely, the "Jacobian" cc [p(1 E)—
+pEcosX] ' is singular at pi (for cosX &0). Although
this fact does not mean that the integral is infinite, from
the point of view of numerical integration it is better to
avoid the singular point. We utilize the fact that PI V;k
(and all the other functions) are symmetric with respect to
the exchange of q and q variables, therefore, we calculate

P2 ikP'i ~ik,0 p(1 E)+pE—cosX
(22)

i.e., "half" of the integral, multiplied by 2. The limit p2 is
determined by the condition

Choosing p+ the range of p integration is p (p2)=p2 (23)

1 —2p
P (1 )

&Pi (21)
The second-integral does not offer any complications.

After carrying out the d p dk integrals, the range of the p
integral is

Obviously, we have to add these two integrals. To illus- 1/2
1 —4ppE 0, (24)

e(l, ss, )

The final results of all these calculations are given in
the Appendix. Using the formulas given there it is easy to

e(l, s.s)

e ([,S.S)

e(t, C.S,)

FIG. 1. Lowest-order graphs for EEC cross section at +&0,
+&180'.

FIG. 2. The physical region of the function p (p) for
cosP & 0. Note that the figure is drawn disproportionately in or-
der to emphasize that the function is double valued.
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determine M, . . ., K for arbitrary quark masses by carry-
ing out a few one-dimensional numerical integrals.

IV. DISCUSSION

(4W+ 2 cosXA +34' )(p&0)
(4M+ 2 cosXX+ 3V)(p, =0)

Note that for p=O, W=W, etc.). It is clear that the ef-
fect is large, especially for the axial-vector —axial-vector
terms. However, we have to add the contributions of
several quarks, most of which are light. Furthermore, in
the normalized quantity a very heavy quark does not con-
tribute much. When the quark mass is W/2 the heavy
quark does not contribute at all. In Figs. 4 and 5 we have
plotted (1/o„,)dX/d cosX at W=77 GeV and 8'=Mz.
The weak interaction parameters are taken from the stan-
dard model with sin 0~——0.231. We have put a, equal to
0.13. Also the width I, of the Z is calculated for
nonzero t-quark mass m, . All the quark masses are taken
to be zero except for the t-quark mass. For m, we have
assumed several values in the range (20 GeV, Mz/2).
The deviation of (1/cr„, )dX/d cosX from the m, =0 value
is rather small. Therefore we have plotted

-05 0.0 0.5 Q9

cos(x)
FIG. 3. Ratios of the massive-quark and zero-quark-mass

contributions to dX/d cosg for a single flavor; (a) shows the
vector-vector contributions, (b) the axial-vector —axial-vector
contributions. The quark mass is 90 (in units of W).

In this section we discuss the numerical changes caused
by nonzero quark masses in the EEC cross section. We
calculate for the unpolarized-initial-state case and in-
tegrate over all angles except for X, i.e., we use Eqs. (9)
and (11) with sl ——s I ——0.

Figure 3 shows the contribution of one massive quark
divided by the zero-mass contribution for the vector-
vector and axial-vector —axial-vector terms separately (i.e.,
we plot

(4M+2 cosXA +3K )(p~O)
(4M+ 2 cosXA +3Ã )(p =0)

-2
10.

-0.9 -0.5 0.0 0.5

cos(X)
W

09
FIG. 4. (a) (I/o.„,)dX/d cosp for zero-quark masses at

&=77 GeV. (b)—(d) show

1 dX 1 dX
Otot d COS+ m, =0 O tot d COS+ m, ~o

for top-quark masses I,=30, 35 and 40 GeV, at 8' =77 GeV.

1 dX 1 dX
(m, =0)— (m, ~O)

ato, d cosX ' o„, d cosX

in Figs. 4 and 5 on a logarithmic scale.
There are two effects determining the value of

1/cr«, dX/d cosX in Fig. 4. Increasing m, o«, decreases
(the change is =15%) and also the value of dX/d cosX
decreases. The case of Fig. . s, i.e., W=Mz is somewhat
exceptional. Namely, roughly o„,a: 1/I z, i.e., when m,
increases, o„, increases (the change is = 13%). However,
dX/d cosX is also roughly proportional to 1/I z, there-
fore the effect of the variation of the Z width is partially
compensated. As a result the effect of nonzero m, is even
smaller at O'=Mz than at somewhat lower energies.

Quark-mass effects on the asymmetry, defined' as

(180'—X)— (X)o.to, d cosX d cosg

are even smaller than those for normalized EEC cross sec-
tions. The results for 8'=Mz and several m, values are
given in Table I.

Figure 6 shows our curve for 8'=30 GeV, m, =1.6
GeV, and mb ——5 GeV. For this low energy the Z con-
tribution is negligible. Therefore, our result here agrees
with Ref. 9 (where quark-mass effects on EEC without
Z exchange have been calculated). It is clear that the
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-2

cps(g)

-0.5 0.0 09
- 0.9 -0.5 00 0.5 Q9

FIG. 5. (a) (1/o.„t)dX/dcos+ for zero quark masses at
O'=Mz. (b)—(d) show

1 dX 1 dX
0 tot d cosg m =p cTtpt d cos+ m +0

for top-quark masses m, =20, 30, and 40 GeV, at 8' =Mz.

zero-mass-QCD prediction is not much changed. Howev-
er, it is possible to enhance quark-mass effects if EEC's
are measured in flavor-tagged events. ' Figure 6 shows
the normalized EEC for the sample of flavor-tagged
events of Ref. 10, i.e., events containing 44%%uo bb, 41%%uo cc
decay.

In summary, we have calculated EEC with nonzero
quark masses.

Large quark-mass effects may be looked for in unnor-
malized, fully differential EEC, with polarized initial

cos+ 20 GeV 30 GeV 40 GeV

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0

0.3557
0.1203
0.0611
0.0365
0.0236
0.0157
0.0103
0.0063
0.0030

0.0

0.3345
0.1149
0.0590
0.0356
0.0231
0.0155
0.0102
0.0063
0.0030

0.0

0.3344
0.1135
0.0579
0.0347
0.0225
0.0151
0.0099
0.0061
0.0029

0.0

0.3461
0.1171
0.0595
0.0355
0.0229
0.0153
0.0101
0.0062
0.0029

0.0

TABLE I. Normalized asymmetry at 8'=Mz for several
top-quark-mass values. m, =0 is given for comparison.

FIG. 6. (a) (1/o„t)dX/d cos+ for zero-quark masses at
W =30 GeV. (b) (1/o„,)d X/d cosg for the flavor-tagged
events of Ref. 10 for m, =1.6 GeV, mb ——5 GeV at S'=30
GeV. (c)

1 dX 1 dX
cTtpt d Cos+

b
0 tot d COS+ m ' b+

for m, = 1.6 GeV, mb ——5 GeV at 8' =30 GeV.

state. The QCD predictions may be obtained with the
help of our formulas in Sec. II and the Appendix. While
the simple properties of EEC cross sections with zero-
quark masses —i.e., independence of

1 dX 1 dX
0'top d cosX d cosHdf 0 got d cost d cosH

1 dX
g tot d cosX

on initial-state polarizations and weak-interaction
parameters —are invalidated, the effects of nonzero quark
masses on (1/0«, )dX/dcosX are very small. The total
cross section (and also unnormalized EEC) is much more
sensitive to quark-mass effects than the normalized EEC
cross sections. This again underlines the importance of
experimental determinations of normalized EEC cross
sections. Quark-mass effects on the asymmetry are even
smaller than those for normalized EEC cross sections.
The Z peak region emerges as a particularly good possi-
bility to test QCD via measurement of (I/cr«, )dX/d cosX
and the asymmetry. In this region the hadronic cross sec-
tion is large, fragmentation corrections are smaller by a
factor —,

' than those at currently accessible energies, elec-
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tromagnetic corrections are very small, and —as shown
is this paper —I-quark-mass effects are small, even if this
region is close to the t-quark-mass threshold.

Note added. In a recent paper" Cho, Han, and Kim
have independently calculated EEC taking into account
both Z -exchange and quark-mass effects. We have com-
pared the results and found complete agreement. In com-
paring the numerical results one should keep in mind that
Ref. 11 normalizes to the pointlike ( ly) total cross section
oo ——4Ira /(3W ), while we normalize to the physical to-
tal cross section o.«,. The advantages of our normaliza-
tion are discussed in Ref. 4 and in the text. Since o «, also
depends on quark masses, our normalized EEC's show
much less quark-mass dependences. We emphasize, that
the formulas given in our appendix are better suited for
numerical integration than those of Ref. 11, in particular
we have also included a discussion of the integration re-
gion.
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6vf —gg ( —1 + —, s1n 8p )

GAf gA

0~ is the Weinberg angle and Mz and I z are the Z
mass and width.

The symmetric parts of the leptonic polarization ten-
sors are given by '

V V =(5 —5 5 )(1+ SI' SI—SLS L, )

i k k i

a'a"*=(5'"—5' 5" )(1—si si —sL, s L, )

+SOS L +S LSJ
i k k i

via ke (s s )(haik pi3gk3)

+ ~ (s1 1 2 2 )(pi lgk2+gi2gk 1)

where (sI,sL) [(sI,sL )] refer to the e [e+] polariza-
tion vectors, and e moves in the direction of the third
axis, while e+ moves opposite to it. The polarization vec-
tors are defined as in Ref. 3.

The lowest-order QCD structure functions for zero-
quark mass are given by'

APPENDIX

The propagator factors of Eqs. (3) and (8)—(11) are
given here for flavor f:

e' g VGvf
W2 '+ W2 —I '+iM r

&s 1

12Ir 1 —g'

s

12+ 1 —g

3 —4g 3 5 1
ln(1 —g) +

4(3 —g)(1 —g)
1 1

12 10

(A3)
gvGAf

Q2f = 8 —Mz +iMzI z

gA Gvf
a3f —— 2 2 7P"—Mz'+iM I

(A 1)

n, is the running strong coupling at energy 8" and
g= —,(1—cosX).

We summarize here our results for the structure func-
tions M, A', Ã (M, A, F) of Vik (A;k). First, we decom-
pose all of them into the qq and qg contributions, e.g. ,

Q4f =
7~ —Mz +iMzI z

&=M —+2&qg (A4)

gI =(1—4sm 811 )e/(4SIn8II cos8~),

gg =e/(4 sln8gr cos8g ),
egf is the charge of the quark, and for positive charge

GIf =gz(1 —
&

sin 811.),
GAf gA

while for negative charge

80., E
3Ir 0 p(1 E)+pE cosX—
80! P3 p2

qg 2 dP aqg
3Ir o (1—h)

(A5)

We use the following notations:

Then we write the qq and qg contributions in the form of
integrals and specify later the integrands of the integrals,
e.g.,

a, is the strong coupling at energy 8; p is the quark mass, E =(p +1M )'i,

, E=(p +1M )
p cosX(1 2E+2p ) —(1—E)—[(1 2E) 4p p sin X]—' —— 2+ 2 I/2

2[p cos X—(1—E) ]

k=, h =E—p cosX, p2 is the root of the equation p(p2)=p2, p3 ——
1 —2E 12

2(1—h)

' 1/2
1 —4p

4
(A6)
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With these notations we have

2(p'+p ')
(1—2E)(1—2E)

16p pp
(1—2E)(1—2E)

4p'p'
(1—2E)

4P2P 2

(1—2E)

2 2—8pp cosy 4p —1 4pc —=2p + +
(1—2E)(1—2E) (1—2E) (1—2E)

p (1—2p )+k /2 p p p (p +k )(1—h)
qg h 1 —h

bqg ——2pk 1—2p 1

(A7)

cqs = 8p +8pk cosX+2+(p +k +2pk cosX)P z 2 2 4(1 h)—
2h

1 h—(4p —1)h
h

+ 1-h

a —a
qq qq

bqq
—b,q =—

8u'(p'+p ')
(1—2E)(1—2E)

32p pp
(1—2E)(1—2E)

c —c =4p 4(p +p +2ppcosX) —2(E+E)
qq qq

= p '

(1—2E)(1—2E)

1 1 2 2 1 1+ + +2p
1 2E 1 2—E (1—2E)(1—2E) (1—2E)2 (1—2E)2

2p k
Qqg

—
Qqg

=—
h

(A8)

b.g —
bqg =o

cqs —cqe
— ( —1+2k+2k )+2p2p 1 1 1

h 1 —h

The above integrals are given in a form which makes numerical integration straightforward. In particular none of the
denominators are zero.
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