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Quantized relativistic rotator
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(Received 18 May 1984)

The equations that describe the relativistic rotator classically are summarized to form a basis for
the quantization. Strict adherence to the correspondence principle requires a Hamiltonian without

any free parameters from which a linear wave equation is derived. The equations of motion of the

various operators (in particular, those describing the Zitterbemegung) then depend only on the mass

M and the spin s. The angular frequency co of the Zitterbeuegung is found to be related to M by

Mc ={s+2 )%co. The simplest constraint relation needed to preserve these equations of motion

while defining a spectrum requires that M should be a linear function of s, in excellent agreement

with the data on a number of hadron towers.

I. THE CLASSICAL THEORY

A. Introduction

The classical relativistic theory of a point particle with

spin was initiated in 1926—27 by Frenkel' and Thomas
and developed some ten to fifteen years later by Mathis-
son, Lubanski, Honl and Papapetrou, and Bhabha and
Corben. Since that time many papers have been written
on the subject and a complete bibliography up to the time
was published in 1968, and later some papers on various
aspects of the corresponding quantum theory have ap-
peared. Revived interest in the theory arises from the re-

cent development of a very detailed quantized version
which corresponds in many ways with the earlier work. '
It is the purpose of this paper to offer an alternative quan-
tized theory which is developed on the basis of a much
stricter adherence to the correspondence principle. In par-
ticular, a linear Harniltonian is postulated, and many re-

sults, such as the frequency of the Zitterbeioegung, are de-
rived without introducing any free parameters.

In this paper we consider only a free spinning particle.
Nearly all of the results of Sec. I were published years ago
for the more general case of a charged particle with an
anomalous magnetic moment moving in an electrornag-
netic field. Since Ref. 7 is out of print, it is useful to
summarize the basic ideas and equations, at least for a
free particle, in order to use them as a basis for the corre-
sponding quantum theory described in Sec. II.

The fundamental property of a relativistic classical par-
ticle with intrinsic spin 0. is that its momentum p is not
necessarily in the direction of its velocity v, even for a
free particle. Although known for close to half a century,
this fact is not always recognized. The center of mass of
a point particle with spin coincides with the position of
the particle only in the system in which they are both at
rest, or when v and cr are parallel. The radius p from the
center of mass G to the particle P (and therefore to the
center of charge, if it is charged) is given by

=(Mc ) 'o Xv

for a particle of rest energy Mc, i.e., the energy in the

system in which p is zero, but v is not.
To see this, we can imagine an observer watching an

automobile being driven along a straight road with veloci-

ty v. The average speed of the material in the top halves
of the tires is obviously greater than that in the bottom
halves. The center of mass G of each tire therefore ap-
pears to be displaced upward, i.e., in the direction of
v Xcr, where o is the angular momentum of the tire.
Since the effect does not depend on the density of the tire
and since, being relativistic, it must be inversely propor-
tional to some power of c, expression (1.1) for the negative
of this vector seems reasonable.

For a particle of radius less than o/Mc, Eq. (1.1) im-

plies that there is some observer relative to whom the
center of mass lies outside of the particle. It is therefore
impossible to construct a classical object with radius less
than its "classical Compton wavelength" entirely from
matter of positive energy density. Some neutron stars
come close to this limit, and with sufficient negative grav-
itational energy could even- exceed it. For a point particle,
the slightest motion in a direction other than that of o
moves the center of mass away from it.

This separation of the positions of G and P means that,
if P is charged, an electrostatic field can produce a torque
on the particle, causing it to precess. The separation also
shows up in the Zitterbetoegung of the Dirac and other
relativistic wave equations —the velocity, proportional to
( x,H) is in general not proportional to p.

Expression (1.1) vanishes in the nonrelativistic limit.
Since the analysis that follows is relativistic, we shall
choose units in which c = 1 and, for the quantum theory,
%=1.

B. The equations of motion

Conservation of total angular momentum J =cr+r
X p in a field of force F=d p/dt can be written as

d J - do. dp
dt dt

=r XF= +v Xp+r X
dt

so that
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cf o
dt

+v Xp=O.

Relativistically these equations become (with p, v=0, 1,
2,3)

8'=M sec8, p =M tan8,

where 8 is the constant angle between o. and p.
Equation (1.2) would seem to clearly separate the orbi-

tal and spin angular momenta, but it can also be written

Jpv=~pv+&ppv —xvpp ~

o&„+U&p„u—p& 0——(=J» for a free particle),

(1.2)

(1.3)
Jpv=Xpv+Xppv —Xvpp ~

where

(1.12)

v U=v U~= 1 (1.4)

Up =Xp

The overdot above Uz, o&„, and J&„denotes differentia-
tion with respect to the proper time along the path of the
particle —not along the path of its center of mass. With
g&„diagonal and equal to (1,—1,—1,—1), it follows that

Xp =x~ —p~ ~

&pv= opv+pp pv —pvp p ~

(1.13)

(1.14)

2 cxM p~ ———o.p~p

with

(1.15)

The choice of p& is arbitrary, but the particular choice

We restrict attention to cases in which ~, the polar vec-
tor associated with o. vanishes in the system in which
v =0, so that a charged particle would have no electric
moment in that system. A relativistically covariant equa-
tion that ensures this is

pp=—pa =M'

is of special interest'because it leads to the equation

(1.16)

(1.17)

or

op~v =0

~= v Xo.= —Mp

(1 5)

(1.5')

This relates X» to the four-momentum in the same way
that o&, is related to the four-velocity by Eq. (1.5) and it
ensures that in the center-of-mass rest system the polar
components of X» vanish.

From (1.15) and (1.5)
[using Eq. (1.1)]. In particular,

v" o. =0 .
paP 0~ pav

(1.6)
- so that

(1.18)

A parameter m, with the dimensions of a mass, may now
be defined by mph

——Xpa (1.19)

m =U p~ =—v'p (1.7) This reveals a symmetry between v and p
—=p M

o& and Xz„, m and M:
the classical analog of the Dirac, Majorana, and other
wave equations. Only in special circumstances is m equal
to the mass M of the particle. A consequence of (1.3),
(1.4), (1.5), and (1.7) is that

p~ = 1, v~v = 1, Mpp = —op~p

mph= Xp~v, Xp~p =0, o'p~v =0, (1.20)

'a
pp =mvp —op~v

so that, for a free particle
~ o g

mv& ——o.
& v

and m is a constant of the motion.
For p =0, Eqs. (1.8) and (1.9) have the solution

o =const, v=co Xp, co= — o,
o 2

M=my '= —o'co .

(1.8)

(1.9)

(1.10)

Jp~ =XpM —(X~ )pp, Jp( U =xpm —(x U )pp .

From the last of these equations

(J„~„J„~~)p =(X—qp, X„pq)—
so that, for a free particle the spin and orbital terms of
Eq. (1.12) are separately constant, and in particular

X& ——constant. However, in general the spin and orbital
parts of (1.2) are not separately constant.

Because

P~X =p~v =m

The particle P therefore moves in a circle of radius p with
angular velocity co where

M=oco, p= =(y —1) i—
M m

The center of this circle is the fixed center of mass G, and
the plane of the circle is normal to cr. For p&0 this cir-
cular path is drawn out into a helix. In the consequent
free helical motion the energy 8" and momentum p are
given by

(since p~p =0) it follows that

M
pp —— Xp .

m
(1.21)

Thus the four-velocity X& is in the direction of the

momentum. However, as defined this way X& does not
have unit length because as noted earlier the overdot
denotes differentiation along the path of the particle rath-
er than along the path of its center of mass. We therefore
define
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Xp M X
ds m

(1.22}
Thus Eq. (1.7) may be expressed in the classical Hamil-
tonian form:

so that

dX~ dX dX~

dS ' dS dS
=1. (1.23)

H= —,'(U p~ —m)=0

(p~ —m —cTo cT ~p o pp)
Zm

(1.33)

From Eq. (1.10), for a particle "at rest" (i.e., p =0, v&0) (p~~ —m —M lo oo )
2m

(1.34)

de i. dem=yM, " =y 'X„=
dS

where t is the time in the center-of-mass rest system.
It is useful to define

from (1.15) and (1.26). From (1.29) this leads immediately
to (1.30).

Because of Eq. (1.17) the spin X„„also satisfies (1.6)
and therefore (1.31}.Since

l~v=ppp~ —pvpp

so that, from (1.14)

(1.24) mPp =Xpav

=m XpaX vp
—1 ap

(1.35)

(1.36)

X„„=o.„„+l„„.
Thus

(1 25) it follows after some analysis that

mp„=M v„+M X X„X Pv p . (1.37}

21,'= , 1 ttl t'—=M2p.p

and we define

o-p'= 2~ p~ Xp'= 2X pX

From the definition (1.15) it follows that

o pl = —21oap

so that"

(1.26)

(1.27)

(1.28)

The relation v p =m then becomes

M2 M2X —2m2p pa m2

or

M2 —m Xo (oo2 —Xo )=m

which reproduces Eq. (1.30).
The Hamiltonian (1.34) is easily seen to reproduce Eq.

(1.32) from U"=BH /Bp& or by using the Poisson brackets

X,'=~, —t,'.2 2 (1.29)

From (1.18) and (1.20) in the rest system of the center
of mass,

(Xp~pv)=gatv ~

(trav pa)=0 ~

(o~„,x~)=0 .

(1.38)

pp=O, X)p=O Xp =X =o'

M2 2 P2 2

so that from (1.29)

Equation (1.3) also follows from the Hamiltonian if the
Poisson bracket relation

(opv~opr) (oppgvr + ovrgpp opvgvp ovpgpr
(1.39)

2

Xo =&o +P Xo = &o
2 2 2 2 m 2

M
(1.30)

This relation between invariant quantities is quite general
and is a consequence of the analysis developed in the next
section.

is postulated. Similarly p& is given by ..

pp = (p~,H ) =Up
—mM pp

=M o'o m ( —cTpap +p~pap ) .
(1.40)

C. The Hamiltonian formulation
Thus p p~ is a constant and for the case p =0 (so that
po ——0)

For any antisymmetrical tensor, such as o&„, whose
components satisfy Eq. (1.6) it is possible to write down a
very useful identity, provided that, as is the case classical-
ly, the components commute:

dp M
( ), pXO.

s mop

as compared with Eq. (1.10)

(1 41)

2 aPop opv= —epao' o pv (1.31) dp M( )p (1.10')

mVp ——Pp+O.p
O.pao. Pp .—2 aP (1.32)

Possibly the easiest way to verify this is to choose values
for p and v and write out the various terms. By multiply-
ing Eq. (1.8) by o~tio~" and using (1.5) and (1.31) it is pos-
sible to express the velocity in terms of the momentum
and the spin:

With My=m, copy=a. , yds=dt the two equations are
seen to be identical, i.e., the frequency of this circular
motion as measured in the center-of-mass system is deter-
mined entirely by the mass and the spin. We therefore ex-
pect this to hold in the quantum theory for the Zitter
bewegung frequency [see Eq. (2.47)].
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II. THE QUANTUM THEORY

A. Commutation relations

As we move to the quantum theory, the Poisson bracket
relations (1.38) and (1.39) become commutation relations

(xp&Pv)= —lgpvl &

(x„,cr,p) =0, (p„,o„p)=0,

(O'P, Pp) =l I p,
where [cf. (1.40)]

r„=(~„—M-'(~.p )p„),
I p=I p =-0,

0'p —=o p~

Also

(2.14)

(2.15}

( Opv&~pr ) ( +ppg TV+ ~v g&pp p&g vp vl&g pr}'
together with

(x„,x„)=0, (p„,p, ) =0 .

These relations imply from (1.2) that

(Xp&Jvp) — l (gppX—v gp~p—) &

(Pp& Jvp} (gppPv gpvPp) &

(2.2)

(2.3)

(cr.p, Xap) =0 . (2.17)

This is significant, since o'p will appear explicitly in the
Hamiltonian.

We now postulate that

(O'p, O'v) —— l Op—v' (2.18)

(cTp&Xap) =iM (cr~p cry—pa}Pp+l (gpa&p gpp—I'a)
&

(2.16)

( Jpv& Jpr } l (Jppg vv+ Jvrgpp Jpvgvp vpg pr) &

as required.
From the definition (1.15) of pp, it follows that

(Pp& vv} (+pvPT +pTPV)+ (gpvPr gprPV)

with the condition

(cTp, cT cTa)=0 .

This is a necessary and sufficient condition that

I cTpa& cT ):0
(2.19)

(2.20)

(p„,p, ) = iM —X„
and from (1.16)

(xp, M )= 2ipp-
so that

(xp, M p, ) = iop„—

(2.5)
which also guarantees that

(cr„,crp )=0 . (2.21)
(2.6)

Equation (2.20) would be the quantum generalization of
the classical supplementary condition (1.5) if cr were the
quantum generalization of the four-velocity v . This in
its turn suggests the equation

or

=M (Xp,Pv) 2lPpPv &

(x„,p„)=iM ( crp„+2ppp„) .—

(2.7) (cr p —m)/=0

as a generalization of Eq. (1.7).
We note that

(2.22)

Thus

(x„,p„)+(p„,x )-= —2iM Xp

and, from (1.13),

(Xp,X )=+iM X„„.
It also follows from (2.5) that

(P„,P P )= iM (op P—+P crpa 2PaP Pp), —

(0,P P )= lM [(P o' p+o—pP )P

(xp, cr p) = i.op, (o„,—o"p) =iM p„,
so that

(o.„,(o"p) ) =iM [p„(o p)+(o"p')pp] .

(2 8) Also

(crp, Xp') =i [Pp(cr"P )+ (cr P )P„]

so that [Eq. (1.20)]

(crp, (cr.p)' —Xp') =0 .

(2.23)

(2.24)

(2.25)

(2.26)

so that

(Xp,p pa) =0 .

(P Crav+CravP )Ppl & (2.10)

(2.11)

B. The Ham'iltonian formulation

By analogy with Eq. (1.33) we postulate the Hamiltoni-
an [cf. Eq. (2.22)]

We now introduce the operators o.z, which transform as
vectors with respect to the cr„z..

(Crp&CTvp) = l(gppCTv gpvCTp) .

H= —,(cr pa —m) .

For o. to correspond to v it is required that

0'p=xp =l (xp, H ) .

(2.27)

(2.28)
Thus

(o„,p„)=iM (p„o g„„(crp)), — (2.13)
Since (xp, o„)=0 it follows that m must be an operator
that satisfies the relation
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(xq, m) =ioq

so that

(cr&,m ) =io&

(229) where e is a constant, so that, from (2.38)

(q„,Xo )=(1+2cr p. )q„—.

(2.30) Thus if

(2.40)

m = [s(s+ 1)—rie ]+const,1 2

2I2
(2.31)

where ri=(I& I2)/—I~, e=s,s —1,. . . —s, and I&,I2,I2
are the moments of inertia. Thus for a sphere with

I]——I2 ——I,
1

m = s(s+1)+const.
2I

(2.31')

if also (m, o"p)=0. The physical significance of the
operator rn has been determined for a more general classi-
cal theory of the symmetric top. ' The result reduces to
the well-known nonrelativistic expression for the energy
which quantum mechanically is

cr'pro=ago, Xo Po ——s(s+ 1)ri'o,

+ +0„—=q„4o
then

Xo2$~ ——(s +s+1+2a)f~, o"pQq =(a+1)Q~ ~

With

Xo Pq
——(s+1)(s+2)Qq

Xo2gp ——(s —

1)span

it follows that

(2A1)

(2.42)

(2.43)

Since m is invariant, these values hold when the particle is
executing Zitterbemegung, but they are then no longer
equal to the energy M [see Eqs. (2.53) and (2.65)].

From (1.15), (2.18), (2.27},and (2.30)

cd = t (cd,H )

a = —(s+ —,
' ), (2.44)

i.e., the eigenvalue of cr p operating on a state of spin s is
—(s+ —, ), the quantum form of Eq. (1.30). The value of e
in Eq. (2.39) is therefore ~ .

From the definition of X„[Eq.(1.13)] we now have [cf.
(1.21)]

Similarly

(cr&~a p) =i (ozp„ovp&) = —(o&,m )—

from (2.13) so that

(2.32)

(2.33)

Xq op I p
——M—'cr p——pp

———(s+ —,
'

)pq

so that

X X =(s+ —,')
As before [Eq. (1.22)] we define'

(2.45)

(p&, m ) =i I z (p&, o——"p)—
so that

(2.34)

pq =i (pq, H ) = I q .

Since Eq. (2.32) may be written as

(2.35)

(2.32')

we have

p„+3f p =0, I p+M I p
——0, (2.36}

equations which describe the internal oscillations of the
Zitterbewegung. We define

q„—= I „+iMp„, q" = I I'+ilpi',

so thai

(2.37)

(q;,o.p) =+q,
i.e., the q& are lowering and raising operators on o"p.

From (2.26) and (2.27)

(2.38)

crpv= (crppv ovpp }—
which is the quantum generalization of the conservation
equation (1.3).

It also follows that

de
dS

(2 46)

the quantum generalization of the four-velocity of the
center of mass. Thus, although the angular velocity of the
Zitterbewegung along the path of the particle is M [Eq.
(2.36)] its angular velocity co in the center-of-mass system
is M/(s+ —,

'
), or with A' and c no longer set equal to unity

[cf. (1.11)]:

Mc = (s + —,
'

)fico . (2.47)

M (p„,p~p ) =iM (cr po&+o„cr p)

+2ipz(p p Mocr ) . — .(2.48)

This simple and convincing equation relates the mass
spectrum to the modes of oscillation of the Zitter
bewegung and is in disagreement with Eq. (3.24) of Ref. 9,
which relates co to the spin and mass and an arbitrary pa-
rameter A, . With different Hamiltonians postulated, it is
natural that these results need not agree.

Equation (2.39) (with e= —,) is derived in Ref. 9 [Eq.
(2.50)] and Ref. 10 [Eq. (A 19)] for the Majorana repre-
sentation. The above analysis implies this representation.
To see this, we note that from (2.5), after some algebra
[cf. (2.9)]

(o"p) =Xo +e, (2.39) Qn contracting with p" we conclude that
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o o =(o"p) +10 (2.49) since from (2.49)

=op +4 (2.49') r.r =M'p. p =I,'. (2.59)

by (1.29). However, from (2.12) and (2.18)

2(o'~opcT '—o~lJ o'p) = —3op

so that, on multiplying by o.",
a 2 2Oao =

3 O'p

(2.50)

(2.51)

Thus the q& are commuting null vectors, so also are the

q& . Each time that a wave function is multiplied by q&
the spin of the state increases by one unit, and, as in atom-
ic physics, the parity is changed. In the center-of-mass
rest system, qp

——0 and
II

q;
—=o;+iMp; .

Hence, from (2.49)

2 3 a (2.52)

characteristic of the Majorana representation. The latter
relation is a contracted form of the representation relation
postulated in Ref. 9 [Eq. (2.41)]. In fact, the basic Ma-
jorana equation derived from (2.27) implies that

Thus the q;
— are null vector operators in three dimen-

sions, since o.;o'=M p;p'=s +s+ 4 and pp ——0.
Most of the results described so far also apply to the

Dirac equation, those results that are valid being trivial
but instructive. Equation (2.48) vanishes so that, although
(2.51) is valid, (2.49') and (2.52) are not. Hence the q„-
are no longer null vectors. It is found that

M=+
s+ —,

(2.53)
3IaI =Ip =
4 oa=Tya

the well-known down-going mass spectrum for constant
m. Here, however, it is turned around to give Eq. (2.44):

q„+ =(—y„+p„)(M+mo ),
2M

where
o. p= —(s+ —,

'
) . (2.44')

(y p —mo)/=0 .
In the center-of-mass system pp

——0, so that the radius p
of the Zitterbemegung motion is given by'

s +s+4p= pap =
M

(2.54)

When this is compared with (2.47) we find that the speed
v
—=cop of the motion is determined entirely by the spin:

v =1+2= 1

2(s+ —,
'

)
(2.55)

(r„,r, )= —ir„, ,

(r„,p, ) = iM '(g„. M —'p„p„-)(o p)—, -
(r„,r.r ) = i(~.pp„+p„o p)—,

(p„,r.r ) =iM-'(~ pr„+r„op),

(2.56)

(2.57)

(qp+, q,+ ) =0=(q„,q ),
(q+, q, )= 2iX„„2M '(g„—Mp—„p„)(o"p),—

qa q+ =qa q =0,+ a — a

q p
——+iMqp

—,(q+q +q~ q+)=I I +M p p =2lo

(2.58)

The speed is therefore greater than that of light, but since
no energy is being transported at that rate, the result does
not present any difficulty. In fact, from (2.53) this leads
to the relation

M =m [2(v —1)]'

which apart from a factor v 2 reproduces (1.10).
We complete this section by listing a number of com-

mutation relations between the I &, p, and hence between
the qp..

Thus if M =m p & 0 then q&
——0 and q& lowers y -p by

2mp to give the corresponding negative energy state; if
M = —mp & 0 then q& ——0 and q& raises y p by 2mp.
While the radii p of the hadrons [Eq. (2.54)] are real, the
"radius" p of a Dirac particle is given by p = —3/4M
and therefore is not observable. An arbitrary parameter is
clearly not needed or admissible, at least in this case.

C. The mass spectrum

It has been suggested many times' that some of the ex-
cited states of hadrons may be rotational levels. As with
molecules and atomic nuclei, it should be possible to
determine these levels, at least approximately, without any
knowledge of the internal structure, except for the values
of one or two parameters. The Hamiltonian (2.27) relates
the eigenvalues of M and m, but it does not provide
enough information to determine the mass spectrum.
However, it leads to the conclusion that p p, (o. p), and
o-p ———

4 are constants for a free particle. It is necessary
to postulate a constraint relation between them and exam-
ine the consequences.

In Ref. 9, Eq. (2.56), the postulated relation is in the
form of the Hamiltonian

A =PIp p —A, [(o"p) +a ——', ]I =0, (2.60)

where A, and o. are constants. The equations of motion are
derived from this Hamiltonian, or from various
equivalent forms that it can assume. Here, however, the
equations of motion for the Zitterbewegung have already
been derived from the Hamiltonian (2.27). Since they also
describe the Zitterbemegung of the Dirac equation and
correspond very closely to the relativistic classical theory
of Sec. I, we would like them to remain unchanged for
any modified form of the Hamiltonian that is proposed.
Since the Hamiltonian (2.27) is linear in (o"p), we postu-



30 QUANTIZED RELATIVISTIC ROTATOR 2689

H=M(A, p~ +rr p b)—=0, (2.61)

where k and b are arbitrary constants. The only equation
of motion that is modified by this Hamiltonian, as op-
posed to (2.27) is Eq. (2.28) which becomes

xp ——o.p+ 2M', Pp (2.62)

which does not affect the internal motion. Note that the
sign of cr& is not determined by the defining Eqs. (2.12)
and (2.18)—rather it is prescribed by the assumption
(2 43) that Pz+ represents a state with spin (s + 1) and P&
a state with spin (s —1). If this identification is reversed,
so also is the sign of cr&, and Eq. (2.61) is replaced by

H'=M(Ap~, a o'p —b) =—0 . (2.61')

It is a short step from Eqs. (2.60), (2.61), and (2.61') to
the corresponding mass spectra. From (2.43), (2.44), and
(2.61) we obtain the spectrum

M =A, (s+ —,'+b) . (2.63)

This linear relation between M and s is remarkably accu-
rate for many C =0 hadron towers, with A, assuming ap-
proximately the same value for more than 50 hadron
states that form a wide variety of types:

A, =1.1+0.06 (GeV/c ) (2.64)

The parameter b is essentially constant for a given tower

late that, instead of (2.58), the relation between p~ and
(a"p ) should also be linear in (o'P):

and for a number of towers it is close to an integer or
half-integer. Equation (2.63} has been studied from the
basis of Regge poles' supplemented either by the princi-
ple of maximum strength' or by the three-quark model
for baryons. ' The group structure of Eq. (2.61') has been

examined in detail' and the equation has been studied as
a consequence of a generalization of the 1971 Dirac
equation, ' and Eq. (2.63) has been examined simply in

terms of the data.
It may be noted that from (2.31') and (2.53}

1M = (s+ —, )+const (s+ —, ) (2.65)

where R is the radius of gyration. Comparison with Eq.
(2.63) suggests a possible physical model for the parame-
ter A, , i.e., A, =2 '~ R ' for a spherical top.

The analysis of this paper does not distinguish between

the masses of states of different parity, isospin, baryon
number, and strangeness, and there is considerable evi-

dence that for ihe higher states Nature does not appear to
distinguish between them either. For example, there are
at least 14 mesons and baryons with masses reported to
range between 1.71 and 1.65 GeV/c and with mass un-

certainties less than +30 MeV/c . Their spins range
from —,

' to 3, with
~

S
~

=0,1,3 and I =0,—,', 1,—', . With

the value (2.64) and s+b=2, Eq. (2.63) gives M=1.66
GeV/c . Variations between the masses of the ground
states are of course due to the internal SU(3) structure not
considered here, but these variations, while presumably
still present, play a relatively less important role for the
excited states.
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