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We describe a variational estimate of the energy of an elementary-excitation of the SU(2) lattice

gauge theory. The vacuum state is modeled by a disordered trial wave function, which is optimized

by the variational principle; and the excited state is constructed by letting a translation-invariant

sum of plaquette operators act on the vacuum. The result does not have the proper continuum-limit

behavior.

Lattice gauge theories can be formulated in the path-
integral approach of Wilson' or the Hamiltonian operator
approach of Kogut and Susskind. The operator formula-
tion deals directly with quantum states of the fields. For
example, strong-coupling perturbation theory constructs
approximate eigenstates by letting combinations of field
operators act.on the strong-coupling vacuum, the totally
disordered state in which all field configurations are
equally probable. The challenge of the Hamiltonian for-
rnulation of lattice gauge theories is to construct weak-

coupling approximations of the eigenstates; these are
relevant to the continuum limit of the theory.

The variational principle offers a way to study the
states of Hamiltonian lattice gauge theories. ' We have
described a variational estimate of the ground state of the
SU(2) lattice gauge theory, based on a disordered trial
wave function. That work was partly motivated as a first
step toward a study of the vacuum state by the Green's-
function Monte Carlo method. But the variational calcu-
lation is interesting in its own right.

The disordered trial wave function is a product of func-
tions of the single plaquette variables. Thus it is gauge in-

variant, and has minimal coupling between the gauge
fields on different links. The trial function depends on
one variational parameter P. For P=O the trial state is
the strong-coupling vacuum; for large P the wave function
is sharply peaked at field configurations for which every
plaquette variable is small. For any P the state is disor-
dered, in that the expectation value of the Wilson loop
operator obeys an area law. It is an interesting question
whether such a simple disordered state describes the vacu-
um; and if not, what is the nature of the difference be-
tween this state and the vacuum.

Our Monte Carlo calculations provide one way to study
the difference between the disordered trial state and the
vacuum state. However, we find that the ground-state
energy computed by the Monte Carlo method differs little
from the variational energy obtained with this trial wave
function. It does not follow that this naive disordered
state is a good representation of the vacuum, because it
may not describe other quantities accurately. Indeed the
string tension in this variational state does not approach
the weak-coupling limit derived from asymptotic free-
dom.

The purpose of this paper is to describe an estimate of
the energy of an elementary excitation of the gauge fields,
based on the disordered state. The excited state is con-
structed in a way suggested by the strong-coupling expan-
sion, by letting an operator act on the variational ground
state. The operator that we use to create the excitation is
a translation-invariant sum of single-plaquette operators.
This construction is certainly a valid representation of the
vacuum and its excitation in the strong-coupling region.
But the point of the calculation is to check the behavior of
this construction in the weak-coupling limit.

The Hamiltonian of the SU(2) lattice gauge theory is

(1)

where

%p ——exp( ——,PV), (4)

where P is the variational parameter. We used Creutz's
heat-bath Monte Carlo method to calculate the expecta-
tion value of the energy in this state. The result is a set
of magnetic and electric energies for various values of P,
i.e., points on the curves

U{P)=(V), k(P)=(K),
where ( ) denotes the expectation value in the state %p.
Then we fit these points with a function equal to a finite
sum of orthogonal polynomials; the fits are shown in Figs.
1 and 2. The number of orthogonal polynomials in the

Here U(l) is the element of SU(2) associated with link l.
The electric field operator is defined by the commutator

[E,(1),U(l)]= ——,
' o, U(l) .

The first problem to solve regarding a quantum system
with many degrees of freedom is to describe the ground
state. We derived a variational estimate of the ground
state of H, based on the trial wave function
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Eo( k(P)+ u(P) .
g2

2

z 1.8—

To estimate the excitation energy we construct a state
orthogonal to Vo by letting an operator act on %'0. The
operator is the sum of single plaquette variables, i.e., it is
just V; this is gauge invariant and translation invariant.
The reason for this choice is that it creates the elementary
excitation in the strong-coupling expansion. Thus we con-
sider the excited state

0.6—

FIG. 1. The expectation value of the electric energy per pla-
quette in the trial wave function vs the variational parameter P.
The points are for a 3&(3)&3 (spatial) lattice; the three larger
points are for a 6&(6)&6 lattice. The solid curve is an orthogo-
nal polynomial fit with 7 orthogonal polynomials.

sum is 6 for u(p) and 7 for k(p). The points in these fig-
ures are the energies per plaquette for a 3X3X3 (spatial)
lattice; the three larger points are for a 6X6X6 lattice.
There is very little dependence on the lattice size, because
we use periodic boundary conditions, as shown by com-
parison of the 3 and 6 lattices. Also, both the large-p
and small-p limits of vIN& and

klan&

are independent of
lattice size. Strictly speaking our results are for a 3 lat-
tice, but they would not be very different for a larger lat-
tice.

The variational estimate of the vacuum wave function
is %o, with the value of p for which

%,=c,%,+c,V%, ,

where c1 and c2 are chosen such that 41 and %q are
orthogonal and have equal normalizations:.,=(( V'& —( V&')-'". ..= —«).. .
where ( ) denotes the expectation value in the state 0 p.

In Eq. (9) we need to know ( V ). Fortunately, it is not
necessary to calculate ( V ) from the Monte Carlo ensem-
ble; it can be deduced from v (P), since the form of %o im-

plies that

( V ) =u (P)—u'(P) .

This trick, computing expectation values in the state 4'o

by differentiation of u(P) and k(P), can be used for every
expectation value in this calculation; as another example,

(KV) =k(P)v(P) —k'(P) .

We believe that the polynomial fits to u(p) and k(p)
shown in Figs. 1 and 2 are sufficiently good to allow us to
compute such derivatives from the fitted function.

The first estimate of the energy of the elementary exci-
tation of the SU(2) lattice gauge theory is simply the ex-
pectation value of H in the state 4~. This naive excitation
energy is

0=k'(P)+ u'(P), (6) h=(%'p, 4o) '[(%),H4]) —(0'o,H+o)], (12)

where prime denotes differentiation. The energy bound is
where the value of P is that determined in the original
variational calculation. The expectation values in Eq. (12)
are related to u(p) and k (p) by

1 ~ 0—

0 ' 8

and

u"(p)
(pt, +)) v'(p)

(13)

0.6

O. I

0.2—

(% X% )
k"(P)+ 2k(P)

Thus the estimated excitation energy is

(14)

4=[—u'(p)] '
—,'g2 k+ k + v"p2, g2

FIG. 2. The expectation value of the magnetic energy per
plaquette vs variational parameter P. The points and curve have
the same meaning as in Fig. 1. The fit uses six orthogonal poly-
nomials.

Note that the excitation energy is of order 1, whereas the
vacuum energy is of order Nz, the number of plaquettes.

A second estimate is obtained by diagonalizing the
Hamiltonian in the two-dimensional space spanned by %0
and %~. The energy matrix is
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(%p Hep) (%p H% i)—1

(q He) (q Hq )
(16)

'I I I 0 I I I 0 I I ~

/

The diagonal components are given above; the off-
diagonal components are obtained from

(Vp, II.VI) = —k'(P) [—'(P) ]
(Vp, %p)

and

(4p, V+i) = [—v'(p)]'
oi p

This alternative estimate of the energies is computed as
follows. The value of p is chosen to minimize the smaller
of the two eigenvalues of H2,' the minimum is the new
variational bound on the vacuum energy. Then the new
estimate of the excitation energy Z is the difference of the
two eigenvalues of H2 for that value of p.

The diagonal terms of Hz are of order N~, the number
,

of plaquettes, and their difference is of order 1. The off-
diagonal terms are ostensibly of order QNz, but they are
actually equal to zero for the original value of the varia-
tional parameter, by Eq. (6). These dimensions imply that
the correction to the vacuum energy is only of order 1,
negligible compared to the original variational bound
which is of order Nz. On the other hand, the correction
to the excitation energy is also of order 1, comparable to
the first estimate of Eq. (15).

Figures 3(a) and 3(b) show our variational results on the
vacuum energy and the excitation energy. Figure 3(a)
gives the vacuum energy per plaquette obtained with the
trial wave function %p. Curve (a) in Fig. 3(b) gives b„ the
naive estimate of the excitation energy; curve (b) gives 5,
the other estimate of the excitation energy obtained by di-
agonalizing H2. The energies are plotted vs the parame-
ter A, defined by

8

Rather than plot the energy itself, we have plotted the en-

ergy times 2/g; this magnifies the strong-coupling re-
gion, and makes more clear the deviation from the
strong-coupling limit. The sharp variations seen in curve
(b) are presumably irrelevant artifacts of the inaccuracy of
the polynomial fit.

The dashed curves in Figs. 3(a) and 3(b) are strong-
coupling expansions (A, ~O) for these energies, given by

2EO
=A, ——„A, +0(A, ),

g2'
(20)

:3 4io A +O(A )
g

The variational results agree with the strong-coupling re-
sults for small A, , because alp and 4I approximate the
strong-coupling eigenstates for small p. There is a slight
difference between the strong-coupling excitation energy
and the variational excitation energy; both approach 3 as
A, ~O, but from different directions: it can be shown that
the small-i, limit of the variational excitation energy is

4-. 5
DJ

CR

~ 3.0
Ld
PJ

1.5

12

16—

a s I s~ I s s I e s I I

6 9 12

2
variational

(21)

and this A, dependence is visible in Fig. 3(b).
The variational estimate of the excitation energy ap-

proaches a nonzero constant in the weak-coupling limit
(A,~ oo ). The asymptotic value can be deduced from the
large-P limits of u (P) and k(P). It can be shown that as
p~ oo,

v(P)= —,k(P)—= —,P .
1 3

(22)

For large k the variational parameter p is large, so these
limits determine the variational estimates. They imply
that

b,~V 24 (23)

in the limit A, ~oo. Curve (a) in Fig. 3(b) is consistent
with this asymptotic value.

The fact that the variational estimate of the excitation
energy does not approach zero in the weak-coupling limit
implies that the states %0 and %1 are not adequate approx-
imations of the weak-coupling eigenstates. The excitation

FIG. 3. (a) Variational bound on the vacuum energy per pla-
quette. The horizontal axis is A, =8/g . The vertical axis is the
energy times 2/g . The dashed curve is the strong-coupling
limit in Eq. (20). (b) Variational estimates of the excitation ener-

gy. Curve (a) gives 6 and curve (b) gives Z. The axes and the
dashed curve have the same meaning as in (a).
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energy 6 must approach zero as A,—+ ao in order to have a
proper continuum limit. The reason is that b, is actually
the energy in units of the lattice spacing, which is set
equal to 1 in the definition of H. The mass of the particle
associated with this excitation would be 5/a for lattice
spacing a. The continuum limit of the mass can be finite
only if 6 approaches zero in the weak-coupling limit. In
fact, the usual renormalization group analysis of a non-
perturbati. ve quantity implies that 6 should decrease as
exp( —24m /1 lg ) as A,~ ao, i.e., very rapidly on the scale
of Fig. 3(b). Since the excitation energy obtained in this
variational calculation does not. approach zero, the trial
states are not adequate representations of the weak-
coupling eigenstates.

It is not surprising that the result of this variational cal-
culation does not have the proper continuum-limit

behavior. The trial states are not plain strong-coupling
states, but they do resemble strong-coupling states in one
regard. Specifically, there is no explicit correlation be-
tween the fields on different plaquettes in %p' tliis is also a
property of the strong-coupling vacuum. It is true that
4'o approaches an ordered state as P—+ ao, but this alone is
evidently not enough to describe the weak-coupling limit.
Correlations between fields on different plaquettes must
be a significant aspect of the vacuum state of the SU(2)
lattice gauge theory. In fact, in the weak-coupling limit' the theory approaches a critical point, at which the corre-
lation length is infinite. To describe continuum phenome-
na the trial function should incorporate correlations over
lengths of order a exp(12&/I lg ).

The precise nature of the eigenstate in the weak-
coupling limit remains elusive.
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