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The single-particle wave equations for a spin (1 charged particle coupled covariantly to an exter-
nal electromagnetic plane-wave potential are solved in a simple and unified manner. The vector
solution is new and corresponds ta a Yang-Mills coupling to the external field. It is found that the
solutions for spin & 1 are all generated from the free-field solutions in the same way by local gauge
and Poincare transformations yielding a structure that is a distinctive feature of local gauge symme-

try and corresponding to a certain equivalence between the free-field action and the external-field
action.

I. INTRODUCTION

Long ago Volkov' found that the Dirac equation for a
charged spin- —,

' particle in an external plane-wave field

[A& A&(n ——x), n =0], colud be solved exactly, implying
a similar solution for the Klein-Gordon equation. Since
then these solutions have been rederived many times and
widely exploited often in conjunction with investigations
of their physical significance. In particular, Taub s stud-
ies revealed a Lorentz structure of the Volkov solution
much after which Kupersztych elucidated further aspects
of the solution as a transformation. Recently, we have
shown that the full underlying structure of spin (1 solu-
tions consists of a product, ULT, of local gauge ( U),
Lorentz (L), and space-time displacement (T) transfor-
mations acting on the free-field ( Az ——0) wave function.

The preceding general structure is destroyed by
anomalous-magnetic-moment terms (g&2) even though
an exact solution is still possible. The distinctive
behavior of classical charged-particle observables (four-
velocity and four-spin vectors) as evolving according to
the same Lorentz transformation when g =2 was em-
phasized by Brodsky and Primack. ' This suggests a re-
lationship between the symmetry-transforma, tion realiza-
tion of the Volkov solutions for the Klein-Gordon and
Dirac equations and the minimal-gauge-coupling prescrip-
tion. A crucial test of this conjecture involves a charged
spin-I particle in a. plane electromagnetic field since in
this instance the minimal-coupling prescription is decid-
edly nontrivial. Indeed, one finds that for a value tc= 1

and only this value of the magnetic-moment parameter of
the vector particle, a spin-1 version of the Volkov solution
is realized that has the same symmetry-transformation
identifications as in the Dirac and Klein-Crordon cases.

This association of ULT-type Volkov solutions of the
wave equations for spin —= s & l particles gauge-
covariantly' coupled to an external plane electromagnetic
wave is intrin. sically interesting as a new characteristic of
locally gauge-invariant renormalizable field theories. The
single-particle solutions themselves are relevant to the rep-
resentation of modifications arising from a background
plane wave of the charged-particle lines appearing in a

II. CLASSICAL CHARGED-PARTICLE MOTION
IN A PLANE ELECTROMAGNETIC FIELD

We show in this section that the symmetries of the Vol-
kov solutions are manifested at the classical level by
reconsidering the problem' ' of a charged particle in a
plane-wave field as governed by the Lorentz force equa-
tion

du" Q=—I'I' u",
d7 Pl

(2.1)

for the covariant velocity and (under certain approxima-
tions) by the Bargman, Michel, and Telegdi' equation for
the four-polarization vector s",

b+ 1 ——ut'u F ~g O' V

l7Z
' 2

0' 7

where r is the particle proper time. For g =2 Eqs. (2.1)

(2.2)

multiparticle diagram. They are therefore relevant to the
general structure of particle interactions in field theory,
an important example being the plane-wave decoupling
theorem for tree graphs given in Ref. 5."'

This paper is devoted to the detailed investigation of
the s & 1 Volkov solutions with particular attention to the
properties of the ULT transformation that serves as their
distinguishing feature. The symmetry apparent in the
motion of a classical charged particle in a plane wave is
reviewed and extended in Sec. II as providing motivation
for the U, L, T transformations introduced in Sec. III in
order to effect a similarity transformation connecting the
covariant and ordinary derivatives. With this transforma-
tion the derivation in Sec. IV of the Volkov solutions is al-
most trivial. This greatly simplifies previous derivations
for s =0, —,

' and provides a new result for s = 1 which em-

phasizes the intimate relationship between these solutions
and gauge-covariant couplings. We also show in Sec. IV
that the action for the coupling to external plane waves is
turned into the free-field action under the ULT transfor-
mation; this action equivalence provides an elegant way of
rephrasing the characteristic transforination properties of
our solutions. Our results are summarized in Sec. V.
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and (2.2) have the same structure with their evolution
governed by the local infinitesimal Lorentz transforma-
tions ( Qlm)F"„dr (Refs. 7 and 20) and it is this case that
is of prime interest to us.

Generally, F&„depe nds on both x"(r) and r but when

where the gauge-invariant quantity

Q(1r, 1 o) = [(n E) 'e—n ]

may be either purely real or purely imaginary and

(2.12)

F„„=F„,(g), (2.3)

where g =n x and n is a constant four-vector, the solution
of (2.1) and (2.2) greatly simplifies provided that

n "F„„=O, (2.4)

corresponding to the propagation condition, B&F&„0——
which leads to

(2.5)

where p(r)—:mu(r) and n.p is now a constant of the
motion. The usual plane-wave situation is realized by
(2.3)—(2.5) when n& is identified with the propagation
vector (n =0); however, we suppose n &0, until a cer-
tain point, as a classical analog of charged-particle in-
teractions with virtual photons.

Given (2.5), F&„ is an explicit function of r and the
solutions of (2.1) and (2.2) can be expressed in terms of the
evolution matrix ' '

7+",(~,ro) =8,"+ (d~')K"i„(r') k,(r', ro), (2.6)
io

where the kernels of (2.6) corresponding to (2.1) and (2.2)
are identical only if g =2. If K" = —K ", then k"„is a
~-dependent Lorentz transformation.

If Fz„s taisfies (2.3) and (2.4), the kernel '

(2.13)[Ai (k) —Ai (ko)ln.p
The transformation (2.10)—(2.13) is relevant to arbitrary
(virtual or real) photon attachments onto charged-particle
lines.

The propagation condition (2.4) implies that a=0 and
therefore (2.8) and (2.11) are equivalent and reduce to

A(r, ro) =I+ [Q(g) —Q(go)]+ —,
'

[Q(g) —Q(go)]

(2.14)

2

Aq„(g) =gp„+ Qp„(g) —
~

A (g)npn
2(n p)

(2.16)

At a proper time ~ the covariant particle velocity is

u "(r)=AI'„(g)u "(—ao ), (2.17)

so that

and

[[Q(g)—Q(go)]'J" =n eie„—ezni'n„, (215)

which vanishes for n +0. Henceforth, we take n =0
Typically go is identified with an asymptotic value for
which A„(go)=0, so then n A(g)=0. Specifically we
choose A„(—00)=0 as part of our choice of gauge. z7

Then (2.14) assumes the exact form of the local Lorentz
transformation employed in Ref. 5:

Q d
[nqA (g) Ap(g)ny]—

m d

generates via (2.6) the Lorentz transformation

(2.7)
p "(r)= (p"—QA")+ Q

p 3
n.p 2 n'p

(2.18)

«r, ~o) =P [exp[Q(g) —Q(go)] I, (2.8)
The particle orbit is obtained as an (indefinite) quadrature
of (2.18):

Q",(g) = [nr'A„(g) A "(g)n„) . —
n p

Clearly A"„ is invariant under the class of gauge transfor-
mations Ap(g) ~Ap(g') +BpX(g).

We note that (2.8) is in general distinct from the unor-
dered Lorentz transformation

(2.9)

[««0)] -1-~=exp[«C) —«ko))
which can be expressed as

(2.10)

where P denotes the (proper) time ordering of the ex-
ponential and xi'(~) = J (dr')[p" —QA "(g')]

m

+(p d —QO)
Il P

where the local displacement vector

di'= J'(dg')A "(g')
Pl P

and the local phase angle in charge space

(2.19)

(2.20)

[««o)] o d d= I + [Q(P—Q(ko)] 8= f (d g')A '( g')2' 'P
(2.21)

[Q(g) —Q(go) ]

(2.11)

are the translation and gauge transformation parameters
that are shown to enter into the spin (1 Volkov solutions
in the next section.

Our principal interest in the particle orbit lies in its cru-
cial role in the expression of the classical action
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I(g') = —f (dr') m+ —A p
m

(2.22)
of V(g) depends on a form of (2.14) appropriate to the

present situation:

which, if we use (2.18) and (2.19), can be placed into the
form

Q 2 2A~„—(e—)„„=gp,+Qq„—,f A—n„n„,
where

(3.4)

I(g)= —p.x —p d+Q8, (2.23) f),„„=ff (dg')F„,(g')=f(n„A„A—„n„), (3.5)

where x, d, and 8 each depend upon f T. he classical ac-
tion appears as the phase of the Volkov solutions that evi-

dently differs from its free values by contributions from a
gauge transformation and a space-time translation.

The Lorentz symmetry aspect of the ULT transforma-
tion is reflected in (2.16)—(2.18), where here the vector
representation is, of course, appropriate, and in the fact
that when g =2, the polarization vector s"(r) evolves ex-
actly as u "(r) does [cf. (2.17)]. We note that generally the
kernel of (2.6) appropriate to (2.2) is

K~2 = F& (g—)+—1 ——u&(g)F,($);
m m 2

(2.24)

however, K~z is not antisymmetric and thus s"(r) is not
generated by a Lorentz transformation unless g =2.
Equations (2.16)—(2.19) continue to hold and closed-form
solutions for s"(r) are still possible if g&2 when, for in-
stance, A&(g)=eg(g) (Refs. 6 and 22) but the Lorentz
symmetry interpretation is lost.

In summary, for a plane-wave external field, both of the
kinematic variables p&(~) and s&(~) of a classical charged
particle with g =2 evolve from their asymptotic values by
the same local Lorentz transformation. In the case of
x"(r), the integral of this Lorentz transformation over the
evolution of the orbit is required. This brings into play
the generators of the local space-time translation and local
gauge transformation that also enter into the classical ac-
tion as well as into the phases of the Volkov solutions.

and

Q
in. B

(3.6)

[n B,G(g)]=0,
[A.a, G(g)]=0,

and consequently

(3.7)

(3.8)

, G(4) =0 . (3.9)

Also

[n B,A B]=0. (3.10)

The inverse operator (n 8) ' is well defined on the space
of plane-wave solutions of the Klein-Gordon equation
(m&0). We expect that ft=f under suitable stipulations
about a scalar product; however, we have no need to de-
fine the adjoint of f in the present section. All differen-
tial operators or their inverses are taken to operate to the
right.

Since

generalizes the role of the radiation factor Q/p n ap-
propriate to photon attachments onto lines with well-

defined particle mom enta. We note that since
(n B)g=(A.B)/=0, if G(g) is any function of g,

AI' n'=n", (3.11)
III. U, I., T AND COVARIANT DERIVATIVES

The wave equations for particles with spins ( 1, charge

Q, mass m, and gauge-covariantly' coupled to an exter-
nal plane wave A& A„(g),g=——n x, n =0, in the Lorentz
gauge n A =0 (cf. Sec. II), are

A„"A„=A„+B(28),

which is consistent with the invariance ' '

(3.12)

A is an element of the (local) little group Eq(g). Also, A
generates a gauge transformation on A&.

(D +m )'P =0 (scalar),

(ig —m)4=0 (Dirac),

(3.1a) A" A"pF ~=F"".
(3.1b) In (3.12) we have

(3.13)

(D +m )%~+2iQF„„%'"=0
with (3.1c)

8:——f (dg')A (g'), (3.14)

D %'=0 (vector) .

The covariant derivative is

Dq ——Bp+ iQAp .

We seek solutions of (3.1) of the form

(3.2)

which generalizes (2.21). A similar generalization of
(2.20),

d"=f f (dg')A "(g'), (3.15)

also enters into the following alternative expression for
the infinitesimal generator of A:

'P(x) = V(g)X(x), (3.3) A„=(B„d„—B,d~) . (3.16)

where g(x) represents solutions of (3.1) for A& ——0 subject,
e.g., to the initial condition 0'(x)~X(x) for g~ —oo [re-
call Az( —Oo ) =0].

The development in Sec. II suggests that the structure

Corresponding to (3.14) and (3.15) we have the gauge
transformation

(3.17)
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and the space-time displacement transformation

—id(i8)T=e (3.18)

IV. VOLKOV SOLUTIONS
AND EQUIVALENT ACTIONS

L -'y~L =a~.y, (3.19)

respectively. U and T are unitary with an appropriate
definition of the operator adjoints.

The Dirac realization of the Lorentz subgroup generat-
ed by A, viz. ,

The identities (3.28), (3.31), and (3.32) imply that the
solutions of (3.1) have the form [cf. (3.3)]

%(x)= ULTX(x), (4.1)

where L is given by (3.23) for each of the three cases. In
this regard, we note that with (3.19) we obtain from (3.28)

is given by (ULD;„,T) '8(ULD;„.T)=re, (4.2)

L =1+a,
where

(3.20) which immediately establishes (4.1) in the Dirac case. In
the vector case one finds using (3.30) and (3.32) that

,' feIs .— (3.21)
(g~„D +2iQF~, )( ULT)"~= UTAp~B (4.3)

Evidently
which again leads to (4.1), where we also see, with the aid
of (3.29), that

L (3.22) Dp%'" = UTOpg" =0 . (4.4)

Thus for the respective representations (scalar; Dirac; vec-
tor); we have

In analogy with (3.31) and (4.2) we can restate (4.3) as a
similarity transformation

L =es=
t 1;I+ a;Aj, (3.23) (ULT)p 'I'(g, D +2iQF„)(ULT)" =g~ r3 . (4.5)

Next we consider the action
S = IO;W;QI . (3.24)

The transformations U, L, and T all commute with
each other but not with 8& or Dz since

[Dq, U] = [Bp, U] = n~ QfA U, — (3.25a)

[D&,T]=[8&,T]=n&Tf(A 8) . (3.25b)

A~ 8„=Dq + [Dp, U]+ [Dq, T], (3.26)

Although [D&,L]=[8&,L]=0 in the scalar and Dirac
cases, we note'that the local Lorentz transformation given
by (3.4) satisfies

d x x (4.6)

where W(x) is the Lagrangian density corresponding to
the equations of motion (3.1). Even though we are work-
ing with classical fields it is convenient to express the real,
quadratic combinations of the complex (charged) fields in
terms of a formal adjoint operation that avoids the nota-
tional complication of explicitly denoting the equivalent
left and right differentiations. Total derivatives are in-
volved either way in the integrations by parts involved in
switching these operations and, as usual, their contribu-
tions to 2 are ignored.

In the scalar case we have

so W„.„,(x) =(Di'% )'(D„e )+m'0'%, (4.7)

[D„,UT]= UT(Ap'8, Dp), —
from which we obtain

( UT) 'D„(UT) =A„"8, .

(3.27)

(3.28)

with rII given by (4.1). Our adjoint convention is such that
if G(iB) is any function of i 8 then

G(iB) =G( iB)*—

Two other useful identities that follow from (3.4) are
O'=X*( UT)'=X*( UT) (4.8)

and

A„.a„A~,=a,

[B,A"~]= —2iQA"gF ~=2iQF"gA ~ .

(3.29)

(3.30)

Clearly rp (x) and rII*(x) differ only by surface terms. It
is simple to show using (3.28) that

(D~e )'(D„e )= (Bl'X)'(B~) (4.9)

From (3.28) and (3.29) we obtain

(UT) 'D UT=8 (3.31)

so

~scalar(+ i+) ~scalar(X ~X) ~ (4.10)

which can be used with (3.30) to prove

( UT) '(g„D + 2'QF„„)(UT) A" =A„B2 . (3.32)

where W,„»,is given by (4.7) with D&~B&,%'~X.
It easily follows from (4.2) that for Dirac fields

~Dirac(+»+) ~Dirac(X~X) r (4.11)

The identities (3.28)—(3.32) are utilized in the next sec-
tion to solve Eqs. (3.1).

where
~Dirac(py p) =i M% m% 0 (4.12)
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and WD;„, is interpreted as before.
The corresponding calculation for the vector Lagrang-

ian

W„„„,(%'„,4„)= —
2 (D„% D—,ql„)t(D"4 D—4")

+(0'pt'P„)iQF""+ m V~tql", (4.13)

is considerably more tedious. Note, e.g. , that

C„t%i'=(A„r UTX, )t(Ai'&UrX~)

p re'
to within surface terms. One finds that

0~„.,(+„,+„)=~„.,(x„,x„)
where

(4.14)

(4.15)

V. REMARKS AND CONCLUSIONS

1. %'e have shown that the problem of a classical spin-
ning charged particle in a plane electromagnetic field re-
flect the symmetry properties of the spin &1 Volkov
solutions to the corresponding single-particle wave .equa-
tions. In particular, the classical action, which is shown
to be a sum of contributions from the generators of local
gauge and space-time translations, appears in the phase of

b, =[(A.B)(n X)] f(n X)+(n X) f(&.B)(n.X) (4.16)

and &„(g}=d&&(g)/dg. Since by our adjoint convention

[(A B)(n X)]t=(n X)t(A.B)t

(n X—} (A 8),
it is easily seen that 6=0.

The preceding formal derivation is independent of
whether or not X(x) satisfies the appropriate free-particle
wave equation. Thus, e.g., given (4.1), the following two
self-interacting scalar Lagrangians have the same action:

w„...,(x,x') =(a~x)'(a„x)+ v(x'x),

W„,i„(%t,%)=(D"4) (Dq%)+ V('P 'P),

where the potential V(X X) is a function of X X. The
solutions of the corresponding inhomogeneous forms of
the wave equations (3.1) are also related by (4.1). What
prevents these (self-} interacting versions of the Volkov
solutions from being valid without further qualifications
is the crucial assumption concerning the existence of the
inverse operator (n 8) '. This inverse is guaranteed to
exist if X(x) corresponds to (a superposition of) free states
(m &0).

The transformation (4.1), which depends upon the
external-field interactions from g= —ao to g=n x, con-
nects the interacting and noninteracting Lagrangians and
therefore functions as an evolution operator. The
equivalences (4.10), (4.11), and (4.15) are precursors of the
decoupling behavior ' of a self-interacting system (in the
tree approximation) with N well-defined external momen-
ta from a background electromagnetic plane-wave field
which has been characterized as radiation symmetry.

the Volkov solutions. The Lorentz transformation, that
for g =2 describes the evolutien of the classical kinematic
variables p& and s" is also the same one that enters into
the Volkov solutions.

2. A new Volkov-type solution is found for charged
spin-unity particles, where the counterpart of classical
minimal coupling with g =2 is the stipulation of a Yang-
Mills coupling to the external electromagnetic field. The
vector Volkov solution requires the full trilinear coupling
corresponding to a magnetic moment parameter ~= 1.

3. The Volkov solutions for spins & 1 are obtained in a
straightforward way by the use of identities connecting
the covariant and ordinary derivatives. These identities
involve the local gauge and Poincare transformations
( U, L, T) as distinctive features both of the Volkov solu-
tions and of the underlying gauge symmetry.

4. The L and T transformations are the respective fi-
nite forms [appropriate to external (multiphoton) fields,
Refs. 5, 12, and 24] of the infinitesimal Lorentz and
space-time translations that characterize single-photon at-
tachments onto charged-particle lines. ' The finite
gauge transformation U, with an 0 (Q ) infinitesimal
generator is relevant to n-photon attachments with n )2.

5. The field Lagrangians for charged spin & 1 particles
minimally coupled to a background electromagnetic
plane-wave field are shown to be equal (to within surface
terms) to their respective free Lagrangians when the in-

teracting and free classical fields are related by the ULT
transformation.

6. The fact that the preceding results seem to have no
immediate higher-spin counterparts supports the observed
correlation between Volkov solutions and renormalizable
electromagnetic couplings. For example, in the spin- —,

'
version of (4.1) the vector-indexed spinor wave function

P& would be expected to have [cf. (3.23)] the Lorentz part
L3/2 —L„„„,LD;„, if the Volkov pattern were extended to
this case. Nonetheless, a wave function with this struc-
ture is not a solution of any of the obvious possibilities for
minimally coupled extensions of the Rarita-Schwinger
equations for the case of a charged spin- —,

' particle in a
plane electromagnetic field. We conjecture that the non-
renormalizability of spin- —, electrodynamics is reflected in

the absence of Volkov solutions for this ease.
7. Higher-spin boson and fermion gauge fields such as

the graviton (spin 2) and the gravitino (spin —,) may gen-

crate their own distinctive versions of the "Volkov solu-
tions" given suitable restrictions on their couplings. Also,
we have recently shown that the theorem for radiation
zeros, which provides a signature for renormalizable pho-
ton couplings also applies, given supersymmetry, to spin-

photino emission and absorption. This suggests the

possibility of supersymmetric analogs of the photon Vol-
kov solutions, only now with an external plane-wave
"photino field. "
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