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Soliton classical dynamics in the sine-Gordon equation in terms
of the massive Thirring model

L. Martinez Alonso

{Received 19 July 1984}

The relationship between the soliton dynamics provided by the classical sine-Gordon and massive
Thirring models is exhibited. Solitons are characterized as classical relativistic particles through the
consideration of their associated canonical realizations of the Poincare group. It is shown that the
soliton in the massive Thirring model determines two different kinds of relativistic particles from
which sine-Gordon kinks and breathers may be reproduced. In particular, sine-Gordon breathers
are characterized as composite systems of two solitons of the massive Thirring model. Soliton
scattering in the sine-Gordon equation is described in terms of soliton scattering in the massive
Thirring model.

I. INTRODUCTION

The development of the inverse scattering method
(ISM) in the last few years has revealed the existence of a
large class of two-dimensional relativistic field theories
which can be solved with the help of an associated spec-
tral problem. It has become clear that most of the in-
teresting properties satisfied by the quantum versions of
these models are a consequence of their classical integra-
bility. On the other hand, integrable classical fields, when
formulated in the scattering-data language, assume a
series of common characteristics inherited from the pecu-
liar structure of the ISM. Thus, they can be understood
in terms of two basic components, namely, solitons and
radiation, associated with the discrete and continuous
scattering data, respectively. The radiation part describes
the oscillatory dispersing degrees of freedom, so that soli-
tons are the dominant components in the long time evolu-
tion of the field. Since the kinds of solitons as well as the
formulas describing their collisions characterize the
models solvable by the ISM, one important question is ta
see to what extent one can establish correspondences
among the different integrable relativistic models through
their underlying soliton dynamics.

In this paper we shall prove that from the point of view
of soliton dynamics there is a close relation between the
classical massive Thirring model

(&r"~i ~)P g'(iTr'4)r—i 4=o

y =oi, y'= ioz, (1.1)—.

sine-Gordon model is equivalent to the charge-zero sector
of the quantum massive Thirring model. This important
work provided additional incentive for studying these rel-
ativistic fields. In particular, a classical version of
Coleinan's correspondence was proposed by Orfanidis and
Wang before the application of the ISM to the massive
Thirring model. ' However, as was discussed by Kaup
and Newell, this correspondence applies only to single-
kink solutions of the sine-Gordon equation and therefore
it does not establish any relevant connection between (1.1)
and (1.2). In the present paper we consider the soliton
dynamics associated with (1.1) and (1.2) as classical pure
S-matrix theories. Therefore, we are mainly concerned
with two aspects: the characterization of solitons as clas-
sical relativistic particles and the description of the classi-
cal S matrices for soliton scattering. A convenient way to
study the particle properties of classical dynamical sys-
tems is the use of canonical realizations (CR s) of invari-
an.ce groups. In a previous work we have analyzed the
CR of the Poincare group associated with the sine-
Gordon equation with the help of the ISM. As a conse-
quence we characterized the two kinds of solitons arising
in the model (kinks and breathers) in terms of simple
CR's. In Sec. II of the present paper we perform the
analysis of the CR of the Poincare group associated with
the invariance of the massive Thirring model under rela-
tivistic transformations

p'(t', x')= S(p)p(t, x),
where

and the classical sine-Gordon model S(P)=cosh —+y'sinh —,y =y y'=o3.
2 2' (1.S)

(1.2)

m'=m, g'=4m g (1.3)

As is well known, Coleman proved that the quantum

if the following identifications between the parameters in
(1.1) and (1.2) are assumed:

The use af the action-angle variables corresponding to the
coinpletely integrable Hamiltonian structure of (1.1)
makes it possible to express the Poincare CR as a direct
product of simple CR's. Section III is devoted to the
study of the CR associated with the soliton of the massive
Thirring model. It is found that the soliton phase space
admits lower-dimensional symplectic submanifolds which
are invariant under the action of the Poincare group.
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Thus, it follows that the soliton gives rise to two different
kinds of relativistic systems: elementary solitons and soli-
tans with a pulsating internal degree of freedom. Section
IV deals with the connection between (1.1) and (1.2). Tak-
ing into account that two classical relativistic systems can
be identified if their respective CR's of the Poincare group
are canonically equivalent, our main results may be surn-
marized as follows.

(1) Sine-Gordon kinks are identified with the elementa-
ry solitans of the massive Thirring model.

(2) Sine-Gordon breathers are identified with special
configurations of composite systems of two pulsating soli-
tons of the massive Thirring model.

(3) In terms of the correspondence defined by (1) and
(2), the classical S matrices for soliton scattering in the
sine-Gordon and massive Thirring models coincide.

What these results mean is that the classical S-matrix
theory provided by the soliton dynamics of the sine-
Gordon model can be expressed in terms of the corre-
sponding theory in the massive Thirring model. Since our
approach to the relationship between (1.1) and (1.2) is
based on the ISM and the Hamiltonian formulation of rel-
ativistic invariance, the methods used in this paper may
be useful to analyze other integrable relativistic fields.

II. THE MASSIVE THIRRING MODEL AS
A RELATIVISTIC DYNAMICAL SYSTEM

The invariance of the massive Thirring model under
relativistic transformations determines a realization R of
the Paincare group acting on the space of initial data.
This realization becaInes a canonical one with respect to
the symplectic structure generated by the Poisson bracket
relations

{g (x),gati(y)I = If*(x),gp(y)I =0,

If (x),hatt(y) J
= —i5~p5(x —y) .

The corresponding generators of R are the functionals

P = f" ( —t'yy'a„g)dx,

(2.1)

H = J h (f,P)dx, (2,2)

—xh(1b, g)+ fy'—p dx,

where

'h(e 0)= tiTr'—d 0+me'+ (e1'"e)(A'I e) .

They satisfy the Poisson bracket relations

IP HI =0, IK HI = P, IK—PI = H—
(2.3)

(2.4)

which reproduce the Lie-algebra structure of the Poincare
group. It is convenient to use the rescaled field

1 /2
2

(b( t,x)=
'fn

2 2
gg t, —x-

m 'm (2.5)

[XO,Xi ]=0 (2.6)

where X& X„(B„,A, Q—(—t,x)) are the operators introduced
by Mikhailov,

which satisfies Eq. (1.1) with m=2 and g = l. In terms
of P the massive Thirring model is equivalent to the com-
mutation equation

kg*, +e„x 'y*,
—(A, +e'~A, )ys, (2.7)

g+(A.,x) — exp —(A, —A, ~)x
Z~+ oo 2

(2.8)

g (A, ,x) — exp ——(A, —A, )x
Z~ —eo 2 p

where (eo, ei) =(1,—1), The equation Xig=0 provides a
suitable spectral problem for solving (1.1) through the
ISM. In order to introduce the relevant notation about
the scattering data, let us consider the Jost solutions
g+(A, ,x) with asymptotic behavior:

ed a complex number c„satisfying

g (A,„,x)=c„g+(A,„,x) . (2.10)

The analysis of the spectral transform for the operator
Xi ——X, (8 i, A, ,p(x) ) shows ' that P(x) is uniquely deter-
mined by the set I A,„,c„,b (A )/a (A ),b (i A )/a (t'A) I

( n = I, . . . , N;0 (A, «x& ) of scattering data. It provides
an alternative description of the phase space of (1.1).

From the set of scattering data Kuznetsov and
Mikhailov have found the action-angle variables of the
massive Thirring model; they are given by

q„=g ~ln
/
c„ i, p„=—41n

f
1,„/ (2.1 1)

and the functions a (A, ),b (A, ) verifying

g (A, ,x)=a(A, )g+(k,x)+b(k)g+(A, ,x), Imk. =0, (2.9)

where g+ (A,,x)=y&g+ (k*,x). The function a (A. ) may be
analytically continued to the first and third quadrants of
the A, plane and its zeros are distributed symmetrically
with respect to the origin. We will denote by I A,„I „ i the
zeros of a (A, ) in the first quadrant. Each A,„has associat-

Hi(k)=argb(k'~ ),
pi(k) = —(ng k) 'ln

~

a (k'~ )
~

Hz(k)=argb(ik'~ ),
p2(k)=(~g k) 'ln

~

a (ik'~ ) ~, k )0,

(2.13)

(2.14)

y„=argc„, ir„=4g argA, „, n = 1, . . . , N, (2.12)
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and the nonzero Poisson bracket relations between them
are

I 0;(k),pj(k') j =5(J5(k k'—) .
(2, 15)

It must be noticed that according to (2.1) and (2.5) our
Poisson bracket definition differs from the one used in
Ref. 8 by a factor —g . Through the standard method
based on the trace identities for Ina(A, ) Kuznetsov and
Mikhailov derived the following expressions for the Poin-
care generators P and H in terms of scattering data:

P= gP„+ f —„—k [pi(k) —pq(k)]dk, (2.16)
n

H = g(P„'+M„')'"

Xp =Xpcosll/3 —Xi sinhf3,

Xi ———XpsinhP+X, coshP,

where X~ =X„(d„',A, ',P'(t', x')) and

A,
' =exp( —P/2) A, ,

P'(t', x')=S(P)P(t, x) .

(2.20)

(2.21)

Let us consider the Jost solutions g (A, , t,x) and

g (A, , t,x)=yig* (A,*,t,x). They satisfy

Our derivation of (2.19) is based on the transformation
law of the operators (2.7) under pure Lorentz transforma-
tions t' =coshP+xsinhP, x' =tsinhP+xcoshP .It is easy
to deduce that

1+f ——k +m
1/2

[pi(k) —pp(k) ]dk,
(2.17)

Xpg = —(A, +A, )g, Xig =0,

Xpg =(A, +A. )g, Xig =0,

(2.22)

(2.23)

where

P„=M„sinh(p„/2), M„=2mg sin(g n.„/2) . (2.18)
and form a complete set of solutions of X&g=O. From
(2.20) and (2.22) we have

We are going to prove that the generator K of pure
Lorentz transformations may also be expressed in terms
of scattering data as follows:

K= —2+q„

d8i(k) d8i(k)
kpi(k) +kpi(k) dk . (2.19)

dk

Xpg = —coshP(A~+ A, ~)g

Xig =sinhP(A, +A, )g
(2.24)

These equations together with Eqs. (2.22) and (2.23) imply
that the Jost function g' of the operator Xi must be of
the form

g' (A, ', t', x')=c(A, ,P)exp —.sinh[(A~ —A, 2)t' —(A~+A, 2)x'] g (g, t,x) .1

l
(2.25)

Hence, taking into account that '

fa(A), Hj =0, [b(A),H j=i(A+A, )b(A), , (227)

by letting x~00 in (2.22), we get

t a (A, ),K j = —,
'

ABia (A, ),

[b (A, ),K j = —,
'

%Bib (A,),
and this implies

IA,„,Kj= —A,„/2, Ic„,Kj=0.

(2.28)

(2.29)

Since P=O corresponds to the identity transformation, the
coefficient c(A, ,P) in (2.25) verifies c(A, ,O)=1. Therefore,
due to the fact that g' (A, ,O,x)=exp(PK)g (A, ,O,x) and

g (A, , t,x)=exp(tH)g (A, ,O,x), Eq. (2.25) iinplies the fol-
lowing Poisson bracket relation:

Ig (A,,x),K j +x [g (A, ,x),H j

= —,
'

A3ig (A,,x)+—(X +A, )xg (A,,x) . (2.26)

R =(gR„)gR, , (2.32)

where each factor R„ is associated with the variables
(q„,P„,g„,ir„) and R, is associated with the continuous
part of the scattering data. In order to get a simple inter-
pretation of R„, it is convenient to introduce three new

Thus, the functional K satisfies the following Poisson
bracket relations with the action-angle variables
(2.11)—(2.14):

I q„,K j = I @„,K j = [n„,K j =0, [p„-,K j =2, (2.30)

{0;(k),Kj =kBkO;(k),
(2.31)

Ip;(k), K j =8 [kp;(k)],
which lead at once to (2.19).

Identities (2.16), (2.17), and (2.19) exhibit the decou-
pling of the contributions of the different pairs of action-
angle variables to the Poincare generators. As a conse-
quence, the CR of the Poincare group can be represented
as a direct product of CR's:



2598 L. MARTINEZ ALONSO 30

discrete scattering data variables:

Q„=2q„[Mn cosh(p„ /2) ]

2 QnPn
On=g ~ /2 Pn= pgn

g tan 8„

(2.33)

It is easy to prove that (Q„,P„) and (pn, 0„) are pairs of
canonically conjugate variables. In terms of them, each
CR Rn in (2.32) is canonically equivalent to the CR 8, of
the Paincare group whose phase space V, consists of
points ( Q, p,p, O) such that

2m
P =P

2
QsinhP+b

H' (3.2)

where

of the Poincare group acting on a phase space with two
pairs of canonically conjugate coordinates. Given an ele-
ment (b, a,p) of the Poincare group, from the form (2.36)
of [P„H„K,] it follows that the points of the phase
space transform under (b,a,p) according to

Q'=(QH bP—')H' '+a, P'=Hsinhp+Pcoshp, (3.1)

Q,PER, p&)R(mod&. /g ), 0 &0&~ (2.34) H =[P +M(B) ]' H'=[P' +M(0)]' (3 3)

and whose generators are

P, =P, H, =[p'+M(0)']'~', K, = QH, — (2.35)

On the other hand, the evolution law is given by

Q(t) =Q(0)+tP!H, P(t) =P(0),
2

(3.4)

M (0)= sin0 . (2.36)

The factorization (2.32) shows the presence of two
kinds of components in the Thirring field. Since discrete
scattering data describe soliton degrees of freedom, we
have that R, characterizes the soliton as a relativistic
dynamical system. On the other hand, as R, is generated
by the integral terms in the expressions (2.16) and (2.19), it
describes the radiation component of the Thirring fieM. .
It is easy to prove that R, is canonically equivalent to the
CR of the Poincare group associated with a free Dirac
field of mass m.

III. THE SOLITONS OF
TIIE MASSIVE THIRRING MODEL AS

RELATIVISTIC PARTICLES

In the above section we have found that the soliton of
the massive Thirring model is characterized by a CR R,

p( t) =p(o)+—1 2m sin28
t, 0(t)=0(0) .

2 g H
(3.5)

t' = t cosh p+ Q ( t)sinhp+ b . (3.7)

It is clear that the variables (Q,P) represent the position
and the momentum of a classical particle. The remaining
variables (p, O) characterize a pulsating internal degree of
freedom whose period in the center-of-mass frame is given
by 2'/m cos0. The best form of illustrating this dynami-
cal system is provided by the field description of the soli-
ton solution which may be written as

Combining the action of R, with the evolution law, we
deduce that the trajectories satisfy the following sample
covariant properties:

Q'(t') =Q (t)coshP+ t sinhP+a,
(3.6)

p'(t') =p(t),
where t' is defined by

fiji'2(t, x) =+ y(1+v)
2g

' 3/2
exp[imy cos0(t vx)+ig]—

sin&
cosh[m y sin0(x —Q vt) +i 0/2—]

(3.8)

where

(1 2)—1/2 g + QOP
2 tanO

(3.9)

The components of g"' are plane waves modulated by lo-
calized bumps whose centers at every instant I, are given
by Q(t). Observe that the internal variable p is related
with the motion of the plane wave. The meaning of the
variable 0 is particularly interesting, From (2.36), it
characterizes the soliton mass, but taking into account the
identity

f g Pdx = g 2g 0„+f [p~(k)+p2(k)]dk,

From the explicit form (3.8) of the soliton solution one
realizes that the value 8=~/2 plays an especially interest-
ing role. Indeed, for this value the internal motion disap-
pears and the soliton behaves as an elementary particle.
This fact may be analyzed from the group-theoretical
viewpoint as follows. Let us consider the action of the
Poincare group on the soliton states. Given an arbitrary
real number pv, Eqs. (3.1) and (3.2) imply that the set of
points (Q,p,p, O)E V, such that p=po and 0=sr/2 is in-
variant under R, . These sets are symplectic submanifolds
of V, and the corresponding restrictions of R, are canoni-
cally equivalent to the elementary CR R, of the Poincare
group with phase space V, = I ( Q, P) H R ] and generators

we have that 8 is also related to the saliton charge.

(3.10) P, =P, H, =(P'+M, ')'", K, = QH, , —

where

(3.11)
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M. =', (3.12)

Thus we have a relativistically invariant characterization
of the soliton states with O=m. /2 in terms of elementary
particle states.

After picking up the sector O=m/2 from the soliton
phase space, the remaining soliton states appear distribut-
ed into two subsets V+ and V according to the condi-
tions 0&0&m/2 and n/2&0&m, respectively. Clearly

V+ and V are connected symplectic manifolds which
are also invariant under R, . The corresponding restric-
tions of R, over V+, which characterize the transforma-
tion properties of the pulsating soliton states, will be
denoted by RP. Their generators have the same form as
those of R, given in (2.35). Furthermore, by using the
canonical map

V+ ~V, (Q,P,p, 0)~(Q,P, p, m 0—), — (3.13)

it follows that Rz is canonically equivalent to Rp .
In this way, we conclude that the CR R, admits a

reduction which gives rise to two different CR's of the
Poincare. group R, and Rp describing elementary and
pulsating relativistic particles, respectively.

We now turn to the description of the soliton scattering
process. As in all wave equations solvable by the ISM,
the solitons of the massive Thirring field interact pair-

wise, so that the whole process may be interpreted as a
succession of paired collisions in which every soliton col-

lides with all others. When two solitons collide their ac-
tion variables remain constant and their angle variables

change according to

of these solitons, considered as relativistic dynamical sys-
tems, was performed in Ref. 7. It was found that the kink
solution

4P'"'( t,x ) = tan '
I exp[+ m 'y(x —Q u—t) ]I, (4.1)

i)1/2

is characterized by a CR R,' of the Poincare group
describing an elementary relativistic particle with mass

/

Sm'
e (4.2)

This CR is of the same kind as the CR R, arising in the
O=m/2 soliton sector of the massive Thirring model. In
fact, with the identification

4m' m
2 '

g
(4.3)

we have that M,' =M„and therefore R,' and R, are
canonically equivalent; that is to say, they describe the
same relativistic particle. The breather solution of the
sine-Gordon equation

(4.4)

is characterized by a CR Rb of the Poincare group which
acts on a phase space Vb with two pairs of canonically
conjugate variables ( Q,P,p, 0) such that

Q,PCR, p&E mod, , 0&0&m/2 .327TPl (4.5)

4m'
~

sin[m'y cos0(t —ux)+y]
t,x = tan tan0g'~ cosh[ m 'y sin0(x —Q ut)]—

b, Q; = —e(P; Pz )2(m sin0—;coshP; )

Xln ~S(P; —Pq, 0;,OJ)
~

(3.14)
The generators of Rb have the form

Pb P, Hb ——[P——+M'(8) ], Kb —— QHb, —(4.6)

bye; =e(p; —pj )2[OJ —argS(I3; —13J,O;, OJ )], ij =1,2

where

1 —exp[P —i (0)—02)]S (p, Oi, 02) =
1 —exp[P —i(0, +02)]

(3.15)

(3.16)

and where the symbols P; denote the rapidities of the soli-
tons

P, =tanh-' = —21n
~
Ai~,

H;
(3.17)

and e(P; —P~) is the sign of the relative rapidity. Al-
though we are mainly using the angle variables p;, Eq.
(3.15) refers to the alternative variables q&; introduced in
(2.12) [see also (2.33) and (3.9)]. Equations (3.14) and
(3.15) together with the conservation laws bP; =60;=0
specify the classical S matrix for soliton scattering.

IV. THE CONNECTION WITH
THE SINE-GORDON EQUATION

The sine-Gordon model (1.2) has two classes of soliton
solutions, namely, structureless solitons (kinks) and pul-
sating solitons (breathers). The group-theoretical analysis

where the mass function M'(0) is

16m'
M'(0)=, sin0 . (4.7)

In spite of the similarities between Rb and the CR R, as-
sociated with the soliton of the massive Thirring model, it
must be observed that due to the inequality (4.5) for 0 the
internal motion is always present in the breather solution.
Therefore, we will look for a correspondence between Rb
and the CR's associated with the pulsating soliton states
of the massive Thirring model. These latter have a mass
M(0)=M, sin0, which under the assumption (4.3) be-
comes half of the breather mass M'(0). This seems to
suggest a description of the sine-Gordon breather as a
composite system of two pulsating solitons of the massive
Thirring model. Therefore, let us consider the direct
product Rz+ Rp acting on the phase space
V+ X V =I(Q;,P;, p;, 0;), i=1,2; Q;,P; HR,

p; E8(mod4nlg ), 0&0~ &m/2, m/2&0z&m], and let Vo
be the submanifold of V+ && V determined by the con-
straints

Qi =Q2 Pi =P2 pi+pal=0 Oi+02=w . (4.8)

It is clear that the restriction of the symplectic structure
of V+ & V to Vo is nondegenerate and therefore it de-
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fines a symplectic structure on Vo. %'e may characterize
the points of Vo by means of two pairs of canonically

conjugate variables (Q,P,p, 0) defined as

Assumptions (4.3) and (4.10) are equivalent to

m'=m, g'=4m g (4.11)

Q= —'(Qi+Q2» P=Pi+P2

0=Pi —P2

(4.9)

4m'

g
(4.10)

From (3.1) and (4.8) it is elementary to check that Vo 1s

invariant under Rz Rp. The generators of the restric-
tion Ro of Rp+Rp over Vo have the same form (4.5) as
those of Rb with M'(0) replaced by 2M(0). Since (4.3)
implies M'(0) =2M(0), the canonical equivalence be-
tween Rb and Ro will follow if we identify their respec-
tive phase spaces. Notice that they differ only in the
ranges of variation of the variables p and p. However, we
can &nake both coincide by setting

and what we have just proved is that they imply that Rb
and Ro are canonically equivalent.

In this way, under the identification (4.11), the CR's
describing kinks and breathers in the sine-Gordon model
may be formulated in terms of CR's describing solitons in
the massive Thirring model. Thus, as relativistic invari-
ant systems, kinks correspond to O=n/2 soliton states
and breathers correspond to the special configurations
(4.8) of clusters consisting of two pulsating solitons.
These results have not only a purely kinematical meaning
since, as we are going to show, they derive as well from
the analysis of the classical S matrices of both models.
Let us consider the scattering of two kinks; it is proved in
the Appendix that the positions of the interacting kinks
become shifted after the interaction according to the for-
mula

AQ;= —e(P; P)J(2—mc sohP;) 'ln S P; PJ, —,—— (4.12)

This is exactly the same expression as the one provided by (3.14) for the scattering of two soliton states with O=m. /2 in
the Thirring model. . Furthermore, as is also proved in the Appendix, the changes of the angle variables in the collision of
two breathers are

EQ;= —e(/3; —PJ)2(m'sinO;coshP;) '[ln ~S(P; P~, O;, 0~—)
i
+In

~
S(P; PJ, O;,—n0))

~

].—,
by; = —e(P; —Pl)4[argS(P; Pq ,0;,Oq—)+a. rgS(P; PJ. ,O;—, m OJ)],—

(4.13)

(4.14)

From the correspondence established above, the breather
variables (Q,P,y, O) (see the Appendix) are identified with

those (Q,P,y, 8) of a two-soliton cluster satisfying (4.8) in
the Thirring model, where

(JB,+A+A. '8 —k)f =0,
0 —1; 0 w(x)
1 0 ' 4 m(x) 0

(A 1)

(A2)

(4.15) exp[iu (x)]
o

0
exp[ iu (x)]—

Now, using (3.14) and (3.15) it is elementary to check that
(4.13) and (4.15) coincide with the changes bQ; and Ay;
arising in the scattering process of two clusters satisfying
(4.8), provided the solitons of each cluster are assumed to
interact only with the two solitons of the remaining clus-
ter. This confirms the composite structure of the sine-
Gordon breather revealed by the above group-theoretical
analysis. Similarly, one may prove that this interpretation
is also in accordance with the shift formulas for kink-
breather scattering.
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APPENDIX

The ISM for the sine-Gordon equation is based on the
spectral prob1em

where u~O and u~0 (mod2~) as
~

x ~ ao. Jost solu-
tions are defined through the asymptotic conditions

(A3)

where

e+(A, ,x) =exp[+i(A 16K, ')x—] +. (A4)

f+(A,„,x)=b„f (A,„,x) . (A6)

We introduce two functions a(k), b(A. ) by means of the
asymptotic relation

f+(A, ,x) — a(A)e+(A, x)+b.(A, )e ,(A, ,x), A, HR .
(A5)

The function a(A, ) may be analytically continued to the
half-plane Im A, &0. For each zero A,„of a(A, ) a complex
number b„exists verifying
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The zeros of a(A. ) are distributed symmetrically with

respect to the imaginary axis. Purely imaginary zeros cor-
respond to the presence of kinks in the sine-Gordon field
and determine the kink variables in the form

written as

g' Qn J'.
P + (A16)

'+16
I ~. I ) '» lb. Im'

l3I'„=, (IA,„I ' —16IA,„I).
Observe that in terms of the rapidities P„of the kinks

(A7)

A,„=—„' exp —P„+i (A8)

Q„=—(m 'coshP„) 'ln
I
b„

I
(A9)

, fsinO„(
I

A,„ I
'+16

I
A,„ I )] 'ln

I
b„

Pl
t3

sinO„(
I
k„

I

' —16
I

A,„ I ),
16m' . Q.~.

arg( ib„)——, 0„=arg A,„.g' " tan8„'

(A 10)

(A 1 1)

(A12)

Using the rapidities P„of the breathers, these relations

imply

Analogously, the remaining zeros of a(A, ) are related to
the breather variables as follows:

(A17)

A —A

a;(A, ) =

while, for breathers

A, +A,;
a;(A, ) =

A, +A, ;

(A18)

(A19)

From these expressions and using Eqs. (3.16), (A8), and
(A13) one deduces for kink-kink scattering

The sine-Gordon field is completely determined by the
set ( I A,„I„„I b„j„ t, a (A ),b (A )) of scattering data.
Pure soliton solutions are defined by the condition
b(A, ) =0.

Let us consider the collision of two single-soliton solu-
tions (kinks or breathers) and let IA, „bi,ai()t, )) and

IAz, bz, az(A, )I be their scattering data as t~+ oo. Fol-
lowing the procedure due to Manakov' (see also Ref. 8),
one finds at once

b+, b+

bl bp
=az(At), =at(Az)

provided Pt & Pz. The form of the functions
a;(A)(i =, 1,2) depend on the kind of solitons under con-
sideration. Thus, for kinks

A,„=—,
'

exp( —P„+i0„) (A13) a;(AJ)=S Pq
—P;, —,—7T 7T

while, for breather-breather scattering

(A20)

Q„=—(m'sinO„coshP„) 'ln
I b„ I

We define the breather variables y„as

p„=—2 arg( ib„)—
(A14)

(A15)

which, under the assumptions (4.11) and (A12), may be

a;(A,J ) =S(pj —p;, OJ. , O; )S(pj p;, Oj, vr —0; ) . (A—21)

It is now straightforward to derive from (A9), (A14),
(AIS), and (A17) the formulas (4.12), (4.13), and (4.14)
which describe the soliton shifts for the sine-cordon
equation.
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