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Following the strategy of stochastic quantization, based on variational principles for processes

taking values on a discrete configuration space, we give a detailed and self-contained description of
the stochastic processes associated to a two-level quantum syste' m, of interest for the physical

description of spin- T particles and Fermi fields. In particular we investigate the class of processes

related to unperturbated quantum evolution and those simulating quantum-measurement procedures

leading to mixture formation.

I. INTRODUCTION

In a previous work we considered stochastic variation-
al principles for processes taking values on a discrete con-
figuration space (finite or denumerable). For an appropri-
ate choice of the stochastic action, suggested by the
discrete form of the Hamilton-Jacobi-Madelung equation
for an associated quantum system, we found a class of
processes directly related to quantum states, in the same
way as Nelson's stochastic mechanics associates diffusion
processes to quantum states in the case of a continuous
configuration-space manifold.

For the same stochastic action there exists a different
class of critical processes, whose behavior simulates the
behavior of quantum systems undergoing a measurement
procedure.

The purpose of this paper is to give a detailed and self-
contained description 6f the whole proposed scheme in the
simplest nontrivial case of a two-level quantum system, of
interest for the physical description of spin- —, particles
and Fermi fields (considered as assemblies of Fermi oscil-
lators after a Jordan-Wigner transformation). In fact, the
analysis presented here goes well beyond the general frame
outlined in Ref. 1, because in this simple case all elements
of this procedure acquire a very simple, direct, and expli-
cit formulation.

The material presented in this paper is organized as fol-
laws. In Sec. II we recall the general structure of a two-
level quantum system in various representations. The rep-
resentation most suitable for a stochastic description is
based on the splitting of the complex Schrodinger equa-
tion into two real equations, interpreted as a continuity
equation (conservation of probability) and the Hamilton-
Jacobi-Madelung equation in the discrete form. In Sec.
III we collect all general properties of controlled Markov
random processes on a two-site set, necessary for the fol-
lowing considerations. In Sec. IV we derive a candidate
for the stochastic action from the Hamilton- Jacobi-
Madelung equation and introduce a basic additional prop-
erty on the controlled process specifying the behavior of
the osmotic part of the transition probability per unit

time. In Sec. V we take as the basic assumption of the
theory the stochastic action considered in Sec. IV as a
candidate, and we show, by direct application of the sto-
chastic variational principle, that the Hamilton-Jacobi-
Madelung equation can be. derived as a programming
equation for the controlled problem. Then we analyze the
properties of the associated processes. Section VI deals
with the additional class of critical processes arising from
the proposed stochastic action. We clarify the analogy be-

tween the behavior of these processes and the behavior of
quantum systems under measurement procedures. It is
rather surprising that a unique stochastic variational prin-
ciple gives rise to two completely different classes of pro-
cesses, associated with bifurcations of orbits in phase
space. Section VII contains some concluding remarks and
outlook for further developments.

II. THE QUANTUM CANONICAL STRUCTURE

From a physical point we understand x as twice the com-
ponent of the spin along the axis x, . We consider the
Hamiltonian defined by

(Hg)(x) = —,
' [P(x)—g( —x)] (2)

with eigenstates

ttp(x) = I/2'~, Pi(x) =x/2'~

Hko=O, Hgi Pi . ——
(3)

The Hamiltonian corresponds to a magnetic field directed
along the axis xs. The Schrodinger equation (for fr= 1) is

i (B,f)(x, t) = (Hf)(x, t) = —,
' [P(x,t) —P( x, t)] . —(4)

In a canonical setting (see, for example, Ref. 3), for func-

For this very simple quantum system wave functions
and norms are given by

( —1,1)=Z2 Ex~/(x) C C,

@&I (Zz),
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tions F,G of the basic variables (g( ),f (.)) we can intro-
duce the Poisson brackets

{F,G j = —i+{[OF/Bg(x)][BG/Bf (x)]

—[aG/ay(x)][5F/ay*(x)] j, (5)

{g(x), P (x') j = —i5~

i (1—+xx')/2 .

A (p,S)=A (p,S+X),
(S+X)(x)=S(x)+X, X&u (1),

we have the conservation of probability

p(1)+p( —1)=0

p(1)+p( —1)=1 (at all times) .

Therefore, we can reduce the number of variables by de-
fining

If we define the canonical Hamiltonian A on the sym-
plectic phase space described by (g( ),f'(. ) ),

a=S(1)—S(—1)E U(1),

M =exp(x) =p(1)—p( —1),
(17a)

(7) p(x) =(1+Mx)/2, —1 &M & 1 . (17b)

then the Schrodinger equation (4) can be understood as a
canonical Hamilton equation

B,/={it,A j . (8)

implies that Poisson brackets (5) can be written also as

{F,G j =g {[BF/Bp(x)][BG/BS(x)]

In analogy with the continuous case it is convenient to
work in a different representation, where the density is
one of the basic variables. We perform the canonical
transformation

P(x) =p'~2exp[iS(x)] .

Then the relation for the one-forms

gp(x)5S(x) =i+—,
' [g(x)5$ (x)—g*(x)5$(x)] (10)

Then (12), (13), and (14) become

A = —,[1—(1—M )'~ cosa] (0&~&1),

M=8(2A )/Ba=(1 —M )'~ sina,

a= —B(2% )/BM = —M(1 —M~)'~ cosa .

(18)

(19a)

(19b)

The factor 2 in (19) appears because, according to (11),the
normalized canonical variables are (M, a/2). It is very
well known that for this reduced system of variables the
canonical phase space (equivalent to the quantum state
space ) is Sz, the two-dimensional spherical surface. In
fact, let us define n i ——M and consider the plane xi ni-—
in R, intersecting the unit sphere S2 along a circle of
radius (1—M )'~ . Define n2 ——(1—M )'~ sina and
n3 ——(1 M)' —cosa so that n:—(ni, n2, n3) is on Sz. The
natural symplectic structure on S2 is given by the Poisson
brackets—[BG/BS(x))[BF!Bp(x)]j .

{ni, nz j =n3, etc. , cyclically . (20)
Therefore, Eq. (7) becomes

~= —,
' [p(1)+p( —1)]

—[p(1)p( —1)]' 'cos[S(1)—S(—1)] (12)

p(x)= {p(x),A j =8~/BS(x)

and the canonical equation (8) [equivalent to (4)] splits in
the continuity equation

Then one can immediately verify that this natural sym-
plectic structure agrees with (11) reduced on $2, while
A =—,

' (1—n3). Any quantum-mechanical observable A is
associated to a phase-space observable M= a n, accord-
ing to the general analysis of Ref. 3, so that

(21)

while the time evolution can be represented in the
equivalent unitary and canonical forms

=x {[p(1)p( —1)]'~ sin[S(1) —S(—1)]j (13) A=i[H, A], M={M,A j . (22)

and the Hamilton-Jacobi equation

S(x)= {S(x),A j = —BA /Bp(x) = —H(x),
(14)

H(x)={1—[p( —x)/p(x)] cos[S(1)—S( —1)]j/2,
so that

(15)

Notice that (21) and (22) represent all essential quantum
physical content of the theory of this model.

Since the canonical phase space is compact we can in-
troduce a Lagrangian theory only locally. In fact, take M
as a configuration variable, —1&M&1, and introduce
a=a(M, M) implicitly defined by (19a). Then the La-
grangian is

Notice that p and S in (13) and (14) depend also on time r

(notationally suppressed). As a consequence of the phase
in variance

W(M, M )=(a sina+ cosa)(1 —M2)'~z

and the Euler-Lagrange equation is

M+M=0,

(23)

(24)
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which could have also been found as an easy consequence
of (19). Therefore, for this system M (t) oscillates periodi-
cally in time while a(t) moves accordingly to (19b). The
point n on the sphere moves at uniform speed along paral-
lels n3 ——1 —2A, 0&% &1, A =constant, as is also clear
from the canonical equations arising from (20},

and find, in analogy with the result in Refs. 1 —3,

(D(+)F)(x,t) =(B,F)(x,t)

+[F( x—, t) —F(x,t)]a+—

a+ = —,
' (b —ax),

(35)

n(t)=In(t), A J, A = —,'(1—n3) . (25) a „„=—a~+ „p(—x)/p(x)= 2 t2aM b(—1+M )

Our objective is to introduce stochastic variational prin-
ciples for random processes taking values on Z2 such that
(19) are the corresponding continuity and programming
equations.

III. MARKOV PROCESSES ON Zp

The occupation probability p(x, t) and transition proba-
bilities p(x, t;x', t'), t &t', of a Markov process q(t) on
Zz, satisfy the equations

gp(x, t) =1, p(x, t) = gp(x, t;x', t')p(x', t'), t & t'

(26)

+ [2bM a(—1+M') ] I /(1 —M') .

Let us also introduce

+
az, z 2 (ax,x +ax,x } t

0 1( +a, „=—,
' (a„„—a„„)

and notice

B,p(x, t) =2a „p(—x,t),
a „„=(a—bM)(M —x)/2(1 —M ),
a „„=(b—aM)(1 —Mx)/2(1 —M ),

+ +z~ ~z =~~,

(36)

(37)

(38)

(39)

(40)

(41)

B,p(x, t;x', t') =gax+x-(t)p(x", t;x', t'),

d,p(x, t) =pa„+„(t)p(x',t),

(27a)

(27b)

0 0=&x,—x& —x,x++x, —x+ —x,x

(b2 a 2) (42)

a+„.(t)= lim (bt) [p)( xt+At;x', t) 5], —(28)
St~o+

ga„+„(t)=0, a„+„(t)&0, x&x' . (29)

0& ~a(t)
~
&b(t},

a„+„(t)= —,'x[a (t) b(t)x'] . —

By exploiting (17b), formula (27b) reduces to

(30)

In our strategy we assume a given initial p(. ,to} and let
the process evolve, according to (27), under the control of
some given arbitrary a (t) in a time interval to&t &t).
According to (29) we can introduce functions a(t), b(t)

. such that

IV. A CANDIDATE
FOR THE STOCHASTIC ACTION

In order to build up the machinery of stochastic varia-
tional principles in this particular case we need a candi-
date for the stochastic action, as starting point for the
strategy presented in Refs. 5 and 1.

In the continuous case we have strong hints coming
from the semiclassical limit. Here we are obliged to
work along different lines, by exploiting the method fol-
lowed in Ref. l.

Therefore, let us consider the forward derivative
D(+)S„of the phase function defined in (9). By exploit-
ing (35), (14), (17), and (30) we find

W„'+'=D(+)S„=—,
' a(a xb)—

M(t)=a(t) —b(t)M(t) . (31) + —,
' (1—Mx)(1 —M )

'~ cosa ——,
' (43)

p( x, t) = —,
' [1+xM (t)],

t
M(t) = M(to)+ f dt'a (t')exp f, b (t")dt"

x exp —f b (t')dt'
to

(33)

where M(xo, t) has the same expression as M(t) in (33),
with the substitution of M(to) with xo in (33). We define

(D(+)F)(x,t)=+ lim E(F(q(t+bt), t+bt)

We assume a(t), b(t) as basic controlling parameters;
then (27) can be explicitly solved in the form

p(x, t;xo, to)= —,
' [1+xM(xo,t)],

(32)

a„„=—,'x[p(x)/p( —x)]'~ sina .

On the other hand, on the basis of (29), we must have

+
x —x x —x++x —x &

(44)

In the continuous case the osmotic part depends only on
the density, ' therefore a natural assumption is'

a„„=—,[p(x)/p( —x)]'~

If W(+) must be assumed as a stochastic Lagrangian,
then it must be only a function of a+ or equivalently of a
and b. So we must try to express a and M in (43) as func-
tions of a and b. This will need some basic assumption
about the osmotic part a, as in Refs. 1 and 7.

In fact if we compare (39) with (13) we find

F(q(t), t)
~

q(t)=x) — (34) Straightforward consequences of (44), (46), (40), and (41)
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are the following:

b —a =cos a,2 2= 2

M =(a b—sina)/(b —a sina) .

(47)

(48)

5W„+ =(5b x5a)[(cosa) ' —x(a —tana)]/2

+(b —ax)(1+x sina)(a5a b—5b )/2(cosa) .

(54)

a5a b5b =s—ina cosa5a . (50)

Then we have accomplished the objective of expressing
W+ as a function of a and b only. In fact, Eq. (47) can
be assumed as defining a as a function of a, b, while (48)
allows us the rewrite (43) in the form

W„'+'= —,
' +(b——ax) —,

' [(cosa) ' —x(a —tana)] .
(49)

Let us notice explicitly, that, even though (47) does not
define a uniquely, nevertheless (49) and (47) are sufficient
as a starting point for a variational principle. In fact, a
can be considered as an additional controlling parameter,
on which W'+' depends, such that the variations 5a, 5b,
5a are constrained by (47) in the form

c =[(b —a sina)+M(b sina —a)](cosa) (56)

It is immediately found that Eqs. (55) have two solutions.
The first, which we call standard, is given by

M = (a bsina —) /(b —a sina),

a=S(1)—S(—1) .

(57a)

(57b)

Now we take the average and consider that (53) must hold
for any 5a, 5b, then we get the two equations

(cosa) '+M[S(1)—S(—1)—a+tana] bc—=0,
(55)

a—tana —S(1)+S(—1)—M(cosa) '+ac =0,
where

Notice that the action corresponding to (49) is
t)

A = E(W'+')dt = ——,
' (t, —t, )

tp

b —aM cosa

The second, called nonstandard, is

M =a/b,
a —tana=S(1) —S(—1) .

(58a)

(58b)

+(a —bM)(a —tana)]dt . (51)

V. THE STOCHASTIC VARIATIONAL PRINCIPLE
AND THE ASSOCIATED CRITICAL PROCESSES

Let us now explicitly state the basic assumptions. We
consider Markov processes on Z2 with kinematical prop-
erties described in Sec. III, in terms of the controlling pa-
rameters a+, or a and b. For these processes we intro-
duce the stochastic Lagrangian defined by (49), (47), and
the associated action (51). Notice that the discussion in
Sec. IV must be considered only as a motivation for the
choices (47), (49), and (51). As a matter of fact, these
three equations are the basic assumptions of the stochastic
theory. We will show that they allow us to derive all
peculiar properties of the, associated quantum system, giv-
ing also a stochastic model for the quantum measurement
process.

In fact, by following the same methods as in Refs. 5
and 1, we can state our first result. If the controlled pro-
cess is such that the action (51) is stationary under small
variations of the control a+, subject to the condition that
the occupation probability is kept fixed at times tp ri,
then there must necessarily be a function S(x,t) such that

M(t) =Mpcos(t tp), —1 &—Mp & 1,

M(t)= —Mpsin(t —tp) .

Therefore, (19a) gives

(59)

The quite unexpected fact that the stochastic action (51)
has two families of critical processes, ruled by (57) and
(58), respectively, is a general feature of this general
scheme and is confirmed by the analysis made in Ref. 1.

The rest of this section is devoted to the analysis of
standard solutions (57). The others, given by (58), are
analyzed in Sec. VI.

If we take (57a) and substitute in (40), we find, as a
consequence of the variational principle, the expressions
(44) and (46) for a„„and a„„.Moreover, substitution
of (57b) in the transport equation (52) gives immediately,
after a simple calculation, the Hamilton-Jacobi equation
(14). On the other hand, (13) also is satisfied. Therefore,
we can conclude that the stochastic variational principle,
based on (51), reproduces completely the quantum-
mechanical content given by (13) and (14). Moreover, the
stochastic process associated to each state is completely
specified by (44) and (46).

For this simple system the time dependence of all vari-
ables can easily be expressed in explicit form. In fact,
from (24) we have

(D~S)„=W„'+',

and moreover,

E(5W'+')+ —,
' (M5b —5a)[S(l,t) —S(—l, t)]=0

(52)
sina(t) = —[Mpsin(t —tp)]/[1 —Mpcos (t tp)]'—

for any 5a, 5b. The proof is straightforward and employs
the same technique as in Refs. 1 and 5.

Now we calculate 5W'+'. Starting from (49) and tak-
ing into account (50), we find

a (t)=(M +sina) /(1 —M )'~

b (t) =(1+Msina)/(1 —M )'~
(61)

so that all the properties of the process are explicitly
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known. It is amusing to see what happens in the extreme
case of equatorial states. Take, for example, to ——0,
Mo ——1, so that M(t) =cost, sinu(t) = —sign(sint). Clear-
ly this is a case where the chart on S2 given by (M, a) be-
comes singular (recall the meaning of M, a given in Sec.
II). For the transition probabilities per unit time we have

deeper understanding of the physical meaning of the pa-
rameter a of (47) is really necessary

VI. CRITICAL PROCESSES
LEADING TQ MIXTURES

Let us now consider the process associated to the non-
standard solution (58). First of all, let us notice that (58a),
together with the purely kinematical (31), implies
M(t) =MD ——constant. Therefore, the occupation proba-
bilities do not change and the phase-space representative-
moves along circles perpendicular to the xi axis (recall
Sec. II). I.et us now exploit (52), together with (58) and
(49). A simple computation leads to

a i+ i ——0 for sint &0,
a i+ i

——(1+cost)/
~

sint
~

for sint &0,

a+i i
——(1 co—st)/~ sint

~

for sint &0,
a+i i

——0 for sint &0 .

(62)

S(x)=—,
' [g(1—Mx)(1 —M )

'i2 —1],
where g is the sign of cosa. Therefore, we have

S(1)—S(—1)=—gM/(1 —M )'i

(64)

(65)

Consider time intervals where a does not cross +m/2,
where cosa changes sign, so that g stays constant. Then
(65) is easily integrated and (58b) gives

a(t) —tana(t) = —gM(1 —M') '~'(t to)—
+a,—tan+, , (66)

where we assume
~

M
~

&1. A simple look at the graph
of a-tana shows that a(t) evolves in time, according to
(66), so that the previous points are never crossed. but are
asymptotic limits as t~+ oo provided M&0. Therefore
as t~ 00, for M&0 we have a(t)~+m/2 and cosa~0.
Therefore a(t)~0, b(t)~0, while the ratio M =a(t)/
b(t) stays constant, as (47) and (58a) show. Therefore, in
the asymptotic time limit the diffusion disappears and the
process becomes a mixture of sticky processes at + 1 or
—1, with the given occupation probabilities (1+M )/2.

This behavior strongly resembles the behavior of a
quantum system subject to a measurement. Here the mea-
sured quantity is the spin component along the xi axis.
In the time-asymptotic region the process, evolving along
the nonstandard solution, reduces to a mixture corre-
sponding to the two pure states with spin along the two
directions of xi. Notice that the relaxation given by (66)
has a speed ruled by M. In the case M =0 corresponding
to the maximum uncertainty, no relaxation appears and
a(t) stays constant. If ~M

~

increases, then the speed in-
creases, and in fact becomes infinite as

~

M
~

~1. The
points M=+1 are to be considered singular points, in
fact a is not defined there. In the generic case a(t) moves
to reach the points +m/2 as t~+ oo. Therefore the or-
bits on S2 are portions of circles lying on the plane
x~ ——M. It is immediately seen that standard and non-
standard orbits have a locus of bifurcation along the max-
imum circle on the plane X2 ——0, which contains the xi
and x3 axis.

It is surely remarkable that a single variational princi-
ple gives rise to two completely different qualitative
behaviors, in particular to a bifurcation for the orbits. On
the other hand, this mechanism can be proposed as a
model for quantum m.easurement only after some addi-
tional investigation. In fact, here the relaxation to mix-

p(x, t;xp tp)= 2 Il+xxpexp[ (t —tp)]I— (63)

which corresponds to a time-homogeneous Markov pro-
cess on Z2.

For a general state we have a situation intermediate be-
tween the equatorial an.d polar ones. Also here the transi-
tion probability can be easily found starting from (32),
(33), and the explicit expressions (59), (60), and (61). In
the general case the process is not time homogeneous, be-
cause it must cope with the variability of M(t) given by
(59). Equatorial states, as we have shown before, corre-
spond to alternate drastic depletions of the two sites
+1,—l.

It must also be observed that two quantum states, ob-
tained by reflection with respect to the equatorial plane,
give rise to the same process (but a is different in general).
This degeneracy can be easily understood. In fact, in our
model we have taken a fixed magnetic field along the
third axis, while we have taken a representation where the
spin component along the first axis has been diagonalized
(compare with the discussion in Sec. II). Clearly the de-
generacy is removed if we consider the process corre-
sponding to a representation where the component of the
spin along a generic axis in space has been diagonalized.
Alternatively, we can consider magnetic fields in generic
directions by changing the Hamiltonian of Sec. II. Then
the general method, explained in Ref. 1, allows us to build
the complete stochastic frame also For these more general
cases.

On the other hand, the degeneracy is also removed by
looking at the sign of cosa. This makes it clear that a

Therefore, the process is completely concentrated at +1
at time t =0. During the tixne interval 0(t (m, there is a
continuous transition toward —1, while no transition back
to + 1 is possible. The transition probability per unit
time a+i i from + 1 to —1 becomes infinite as t~m.
(

~
sint

~

~0), so that the site + 1 is completely void at
time t =~ and the process is completely concentrated at
the site —1. Then, as time progresses, the same situation
is met with + 1,—1 exchanged. On the other hand, for
the south-pole process (ground-state process), . we have
Mo ——0, sinu=0, a=m, therefore M(t)=0, while
a„+ „=—,

' . Therefore, on the average the two sites
+-1,—1 have the same occupation probability —,

' and the
transition probability per unit time is constant. Since now
a(t)=0, b(t)=1, we can derive from (32), and (33) the
explicit expression of the transition probability
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ture formation is a time-asymptotic phenomenon, while in
the standard quantum-measurement theory it is assumed
as instantaneous (even though opinions differ on this
point).

VII. CONCLUSIONS AND OUTLOOK

For the simple case of a two-level quantum system, ade-
quate for the description of the rotational degrees of free-
dom of a spin- —, particle in a magnetic field, we have
shown that a suitable form of stochastic variational prin-
ciple allows us to derive all properties of stochastic pro-
cesses, associated to quantum states, along the general
strategy of stochastic mechanics. A by-product of this
construction is the emergence of bifurcations leading to
random processes, which simulate some typical behavior
of quantum-measurement theory. We have explicitly

described all essential features of the two classes of pro-
cesses.

The analysis is in agreement with the general one, about
discrete quantum systems, presented elsewhere. '

A natural frame of application of the ideas presented
here could be provided by the study of quantum thermal
mixture, exploiting methods of stochastic mechanics, ac-
cording to the general frame presented, for example, in
Ref. 8.

Other possible applications refer to the study of Fermi
quantum fields, for which a satisfactory stochastic theory
is still lacking.
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