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We investigate properties of the states of a Herrnitian spin- 2 field in a Robertson-Walker space-

time constructed by an energy-minimization requirement. It is shown that the singularity structure

of the cotntnutator function ([4(x),V(x')]) for these states is such that current renorrnalization

theory yields an infinite value for the renormalized expectation value of the trace of the stress ten-

sor.

I. INTRODUCTION

The problem of constructing the physical Hilbert space
of states for a free quantum field propagating on a non-
static curved background space-time has been the subject
of much research. ' In the first paper in this series we ex-
amined one such construction for a scalar field theory and
showed that it was unacceptable in that it gave rise to in-
finite values for (P )„,„and ( T"")„„.This construction
was based on the principle that the physical state space on
a Cauchy surface S should be a Fock space whose vacuum
state was such as to minimize the total energy on S.

To investigate the generality of the above result we have
been led to consider the construction of the physical space
of states for a Hermitian spin- —, field. The construction
of the space of states by an energy-minimization condition
has recently been detailed by one of us, " and it is the
states obtained through this construction that we shall in-
vestigate in this paper. Our space-time conventions will
be those of Misner, Thorne, and Wheeler, while our
field-theory conventions will be those of DeWitt.

their curved-space analogs are defined by the equations

yP —L Py& (2.2)

and satisfy the anticommutation relations

[y', y'I =2g" I . (2.3)

y"=S 'y"S . (2.5)

The spinor field 4 is defined to provide a spin representa-
tion of the vierbein group according to the transformation
law

With our metric signature we may choose a representation
of these anticommutation relations in which the yt' are
real (we will use such a representation below). There
then exists a real antisymmetric matrix y such that

(2.4)

Under a proper Lorentz transformation y'"='I 'zy~ the
anticommutation relations (2.3) remain invariant. It fol-
lows that there exists a real matrix S(L) of unit deter-
minant such that

SPINGRS IN CURVED SPACE-TIME

In this section we shall briefly review the topic of spin-
or fields in a general curved space-time before restricting
ourselves later to the case of Robertson-Walker universes.
%'e assume that the space-time is globally hyperbolic and
has vanishing second Stiefel-Whitney class so that there is
no obstruction to the construction of a global spin struc-
ture.

First we introduce a vierbein field Ly(x) (p=0, 1,2,3)
whose components I~& are related to the space-time
metric by the equation

gp ——I I'~I. ~ gpq, (2.1)

where gzz ——diag( —1, 1, 1, 1)zq is the Minkowski metric.
Vierbein indices, which will be denoted by latin letters, are
raised and lowered by means of the Minkowski metric.

If [yyj denotes a set of flat-space Dirac matrices satis-
fying the anticommutation relations Iyy, yqI =2' eI then

The covariant derivative of a spinor field 4' is given by

0'.p
——0' ~+ I p%,

where

I„=—,X~L "L

(2.8)

(2.9)

with Xt'&—:4 [y~,ye], while the covariant derivative of the

adjoint spinor 4 is given by

(2.10)

The action functional for the free Hermltlan sp&n- p

field is

(2.6)

The contragradient representation is obtained by taking

y which transforms according to the law

(2.7)
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S[%']= ,'—i f g'~ d x V(y('%.„+m'p) . (2.11)

Demanding that this action be stationary with respect to
arbitrary variations 5%(x) gives rise to the Dirac equation

y~%.„+m% =0.
The stress tensor for the spin- —,

' field is defined by

5S
Tp ——g Lp

QL

(2.12)

= ~i(% (~y .)4 4y—(~% „)),. (2.13)

D„q ~, =h.&q „+,'X„~. ,y—&y&+, (2.14)

where n" is the unit future-pointing normal to the hyper-
surface, h„=—g„„+n&n is its intrinsic metric and g& is
the second fundamental form on S. The intrinsic Dirac
operator on S is then given by

where we have used the Dirac equation in writing T& in

this form.
To conclude this brief section we define the intrinsic

derivative D„of a spinor restricted to a spacelike hyper-
surface S:

Hilbert space of states. Indeed in nonstatic space-times
one expects on general grounds that there should be a pro-
duction of physical particles by the time-varying gravita-
tional field. This leads one to associate a Hilbert space
with each instant, that is, with each Cauchy surface S.
The prescription for the construction of the space of
states that we shall be investigating in this paper is that of
energy minimization. We review this construction briefly
below; for a fuller description the reader is referred to
Ref. 4.

Let [gk(x), gk(x) J be a complete set of solutions to the
Dirac equation satisfying the orthonormality conditions

f, 0 ky" 6'd&p =5kk (3.2)

f sky"gkdX~ 0. —— (3.3)

These equations are independent of the choice of Cauchy
surface S by virtue of the Dirac equation. Here pk and

a««be identified with positive- and negative-
frequency solutions, respectively. The generalized index k
must include at least one discrete index taking two dis-
tinct values.

The field %(x) can now be expanded in terms of these
solutions:

gq(
~
s=y"hp Dv%'=y"hp"P ~+ 2 Xn,y "4 . (2.15) 'P(»= Q [akim«)+a krak(»l .

k
(3.4)

III. QUANTIZATION AND ENERCx Y MINIMIZATION

The first step in the passage from the classical to the
quantum theory of the spin- —,

' field is the construction of
the operator algebra. This is achieved by replacing %(x)
by an operator-valued distribution %(x) which satisfies
the Dirac equation (2.12) and imposing on it the covariant
anticommutation relation

[%'(x), (P (x') [ =iG(x,x')1, (3.1)

where G is the difference of the advanced and the retard-

ed Green's function of the classical theory.
The remaining step in the passage to the quantum

theory is the construction of the Hilbert space of states.
We shall limit ourselves to cases in which this space is an

antisymmetric Fock space. To construct such a Fock
space one must first identify "positive- and negative-

frequency" solutions to the Dirac equation. The one-

particle Hilbert space H' of the theory is then taken to be
the direct sum H+H where H+ and H are the Hil-

bert spaces of positive- and negative-frequency solutions,
respectively, and H is the dual space to H . The full

Hilbert space of states is then taken to be the antisym-
metric Fock space constructed from H':

S=C(E)H'e(H'e K'), ())

where the subscript a denotes that the antisymmetric ten-

sor product is to be taken.
In static space-times the choice of positive- and

negative-frequency solutions can be made by Fourier
transforming solutions with respect to the preferred time
coordinate. In more general space-times it is necessary to
give a more general prescription for determining the space
of positive-frequency solutions which defines the physical

According to Eqs. (3.1), (3.2), and (3.3) the annihilation
and creation operators ak and a k must satisfy the an-
ticommutation relations

[ak ak]=&kk 1,
[ak, ak ] = ja k, a k J =0 .

(3.5)

(3.6)

To determine the physical Pock space associated with
the Cauchy surface S we consider the total energy of each
possible vacuum state

~

a;vac). To be specific, consider
the formal quantity

E[
~

a;vac)]= f dSn "n'(a;v ca~ Tz~[%] ~
a;vac),

(3.7)

where T&v[%'] denotes the operator obtained on replacing
'l(x) by 0'(x) in Eq. (2.13). Since at this stage we are only
interested in comparing E [ ~

a;vac) ] for different choices
of

~

a;vac) we need not worry about problems of renor-
malization. Inserting the expansion (3 4) into Eq. (3.7) we
obtain

E[
~

a;vac)]= —,'i f dS g—gk(g+m)g» .
k

(3.8)

0 =inlay"( g+ m ) . (3.9)

The energy-minimization ansatz identifies the physical
choice of positive-frequency modes pk with that which
minimizes expression (3.8) subject to the constraints (3.2)
and (3.3).

The solution to this variational problem has recently
been found by one of us. The physical positive-frequency
spinors should be negative-eigenvalue eigenvectors of the

operator 0 defined on S by
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For later convenience we record here that

0 = —P+m (3.10)

Furthermore, this expression can be related to the
Laplace-Beltrami operator b, on the hypersurface by the
Weitzenbock formula

where

and

0 1 0 —i10'2 i 0

g =6+ —, R,
where R is the Ricci scalar of the hypersurface.

(3.1 1) 1 0
~3—

0 —1
L

IV. ENERGY MINIMIZATION IN COSMOLOGY

In this section we apply the energy-minimization ansatz
of the previous section to the construction of the Hilbert
space of states in a cosmological space-time.

For simplicity we shall deal with a spatially flat
Robertson-Walker universe. It is convenient to write the
metric in the manifestly conformally flat form %(t, x)=[2ma(t)] hatt(t)e'"'" . (4.8)

Acting on such a spinor the Dirac equation becomes

are the Pauli spin matrices. We note that all these y ma-
trices are real, giving us a Majorana representation. The
matrix y defined by Eq. (2.4) can and will be chosen equal
to —y .0

Taking advantage of the spatial homogeneity of the
Robertson-Walker universe we seek solutions to the Dirac
equation of the form

ds =a (t)[ dt +(dx —) +(dx ) +(dx ) ], (4.1)
y P, +ik;y'/+map=0. (4.9)

where t E (0, Oo ), x'C ( —ao, oo ). Since the second
Stiefel-Whitney class of this space-time vanishes there is
no obstructio'n to the construction of a spinor structure on
it. The nonzero Ricci tensor components are given by

P «+(k +m a )g may $=—0 .

Writing

(4.10)

If we act on this equation with the operator
(y 8, +ik; y' ma—) we find that g must satisfy

R, '= — (a —aii), R;1= (a +aii)5;Ja4 ' ' a4
u'

and the Ricci scalar by
~ ~

R=6
a

(4.3)

(4.4)

The nonzero components of the second fundamental form
of a hypersurface t=constant with future-pointing nor-
mal n" are given by

Eq. (4.10) requires that u obey the equation

u «+(k +m a )u+imaozu =0. (4.11)

This equation is easily solved by defining U =Su, where
S—:—,(I —io~+ioq+o3) so So2S '=o3. If

Ui

U2

then Eq. (4.11) yields the equations

We can choose a vierbein adapted to the above coordi-
nate system by defining

U& «+(k +m a )U&+imaU, =0,
U2 „+(k +m a ) U2 ima U2 ———0 .

(4.12a)

(4.12b)

L =adt, I '=a dx' . (4.5)

The spin-connection coefficients can be calculated from
Eq. (2.9) as

Finally, using Eq. (4.9) to relate U to u, we find that the
general solution to the Dirac equation can be written as

k)u

I,=0, I;=— y'y
2a

(4.6)

where

io.3u, —k2u +ik3o.2u +imao )u
(4.13)

where y and y' are flat-space Dirac matrices.
We choose the following representation for the Dirac

matrices:
Ui —U2

i (U)+ U2)

—to2 0

0
1—l02

o] 0
2= 3=

0 —o.

0 oi
o.) 0

o3 0
0 o3

(4.7)

with U~ and U2 satisfying Eqs. (4.12a) and (4.12b),
respectively.

We now turn to the determination of the orthonormal
positive-frequency solutions satisfying the energy-
minimization condition on a hypersurface t = to. Accord-
ing to Sec. III we need to solve the eigenvalue problem
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O)I/=A, 1I/. Using Eqs. (3.10) and (3.11) it can be shown
that 0 %=A, V=ap (k 0+m ap )4, where ap=a(tp).
It follows that for positive-frequency solutions we must
solve the equation

0 iOg—: y (k;1' im—ap)g
a0

1 (k+ma )'
a0

(4.14)

(4.16)

After much tedious algebra it can be shown that these
solutions can be expressed through the boundary condi-
tions

g -„(t())=A„

k)(k3+ima() )

—k 1 [q+ ( —1)"a.]
—[k2+ ( —1)'a](k3+ima p )

—[k2+ ( —1)")~][ri+ ( —I )")t]

(4.17)

subject to the constraints (3.2) and (3.3). Denoting the
two independent solutions by 1() and 1)/ - the constraints1k 2k
take on the simple form

(4.15)

with

4)rri[k2+( —1)"z][rt+ ( —1)'v]( —1)"
~
Ar

~

= 1, (4.18)

where

)1
—(k 2+k 2)1/2 and q (k2+m 2a 2)1/2

It is interesting to note that these boundary conditions
take a remarkably simple form when expressed in terms
of the auxiliary functions Ui and U2 of Eq. (4.13). The
boundary conditions on these functions are simply

Ur(tp)= iqU;—(tp), i =1,2 (4.19)

V. ENERGY MINIMIZATION
AND RENORMALIZATION

To study the physical properties of the states construct-
ed in the previous section we now examine the vacuum
commutator function G (x,x') = ( [)Ir(x),ql(x') ] ) . In
terms of the mode decomposition (3.4) we can write

together with appropriate normalization conditions.
Equation (4.19) is also of interest in that it provides a link
between the energy-minimization formalism for spinor
fields and that for scalar fields. 3

G(t, x;t', x')=. .. J d'ke'"'*-" 'g [f (t)g* (t') P' -(t)it)—-(t')].
8~3[a (t)a (t~t)]3/2 r k r k r( —k ) r( —k )

(5.1)

If we restrict x and x to the initial hypersurface t =tp then we can express the energy-minimization commutator func-
tion G (x x') in closed form by inserting Eqs. (4.17) and (4.18) into Eq. (5.1). This yields

1 d k
G ~(t x't x ')= ei k ( x —x ')[ (k2+m2a 2)1/2)f0+k )ri+&ma I]a 0 ' 0

(2 )3 (k2+ 2 2)1/2 0 i 0 a (5.2)

where ap=—a(tp), and for clarity we have displayed the
spinor indices explicitly.

We wish to compare the singularity structure of the
above commutator function with that assumed by stan-
dard renormalization theory. The first step in that theory
is to introduce an auxiliary propagator $(x,x') which is
defined to satisfy the equation

v ~(x,x')= g u„~(x,x')o.",
n=0

(5.6a)

where o(x,x') is one half the square of the geodesic dis-
tance between x and x'. In Eq. (5.5) u, u, and w are as-
sumed to be smooth bispinor functions of x and x' with u

and w possessing expansions of the form

6 (x,x') = i (y)'V„—m) 8 (X—„X') . (5 3)

It then follows from the Dirac equation that 9'(X,X') sat-
isfies the second-order differential equation

(U —~R —m )8=0. (5.4)

SH(xx')= —+v ln
~

o.
~
+w1 Q

4~2
(5.5)

Standard renormalization theory assumes that the
singularity structure of 9' is of the form first discussed by
Hadamard. ' The Hadamard ansatz postulates that, at
least for x sufficiently close to x', $(x,x') can be written
in the form

w~ (x,x )= g w~~ (x,x )0'
n=0

(5.6b)

Imposing Eq. (5.4) determines u ~=6, '/ W ~, where
b(x,x')=g ' (x)det(o.» )g

'/ (x') is the biscalar form
of the VanVleck-Morette determinant, and W~~(x, x') is
the bispinor of parallel transport which is defined by the
equation

o.'"W ~. =0a;p
together with the boundary condition W ~(x,x ) =I~~.

Imposing Eq. (5.4) and equating equal powers of o to
zero yields the differential recursion relations
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(n+1)(n+2)u„+)+(n+1)u„+) „cr'".

—(n+1)u„+,~ '-"~'"„o'~+ ,'-(o —,'R——m').„
=0, (5.7)

(n + 1)(n +2)w„+ &+ (n + 1)w„+~.„o'"
(—n+1)w„+~A, '~ b, '~.&cr'"+ —,'( ——„'R —m )w„

+ 4

r

a a
a a2

I~

«;(y'y )p

a 21 A+ ~

8a'

J p =Ip + r;(y'y')tr
2a

(5.14)

+(2n +3)u~+&+u~+) ~ET' —6 6 po'. u„+]

=0, (5.8)

together with the boundary condition

u . o~+(I —~-'"~'". o'~)u0;p ;p 0

+ —,
'

(C3 —
4 R —m )(6'~ W) =0 . (5.9)

These recursion relations are identical to the equivalent
scalar relations with g= 4, except that here of course the

covariant derivatives are understood to be acting on spi-
nors. As in the scalar case the singular part of 8 is
completely determined by these recursion relations. On
the other hand, m0 is undetermined corresponding to the
freedom to add any nonsingular solution to the homo-
geneous equation.

To obtain the small-distance behavior of 8 (x,x') we

may use Eqs. (5.7) and (5.9) to obtain a Taylor series ex-

pansion for Wp U0 ~ and Wp U~ ~. These expansions are
a a

displayed in the Appendix together with other useful
bispinor expansions.

To compare the singularity structure of 6 (x,x') with
that arising from 9' (x,x') it is convenient to examine the
divergences in the trace of the stress tensor (T&"[4]}.
From Eq. (2.13) it follows that classically

6 ~,,= 3
(imaGI P iB;G—y' P),1

21ra

where

(5.15)

6=—
3d k ik (x —x') —gk

(k2+ 2 2)l/2
' 2k

4m 22" 1=,2+ ' ~ k~(k
mar

2

2ln
2

—2$(k +1)1

+

with P(1):——y and

k

f(k+1)—:g —y (k &1),
m

(5.16)

y being Euler's constant. It follows that

where r; = ( x —x '); and a, a, a are again evaluated at t'.
We can now evaluate Tr(WG ) and

Tr[J (y"V&—m)9' ] for two points x and x' which lie
close to each other on the initial hypersurface, so that
v=0 in Eq (5.14). From Eq. (5.2), for x&x', we have

T„~[%] ,'im=e—e . (5.10)

Formally we can write the expectation value of T&"[4]in
the energy-minimization vacuum state as

T&"(EM)=—,'im lim J—rp 6 ~P(x,x')

GEM
i

(2ma)

4ma 8 ; 2 2 1I+ ry' —2m a ry'
4 I r

+4— y —2ma r;(y'y )
a 1 0 ' 1 i 0

a r2 r2

, im lim T—r(WG ) . (5.11) a 1 ry'+m a lnr I+
a r

Tp"(II)= ——,
'

m lim Tr[Jr(y"V~ —m) S ) . (5.12)

The corresponding expression for the expectation value in
a state with auxiliary propagator 9' is given by Eqs.
(5.11) and (5.3) as

(5.17)

where we have dropped the spinor indices for clarity.
Combining Eq. (5.17) with Eq. (5.14) we find

To compare (5.11) with (5.12) it is necessary to calculate
Jr (x,x') for x close to x'. First we note that

Tr(WG ) ~, —EM Em 4 +m lnr + '
o 2~2 a2r2

(5.18)

o(t, x;t', x'')= ——,'a v + —,'a r ——,'aalu + —,'aarr

+,~ [—(3a +4aa)r

+2(a +2aa)r r +a2r4]+

(5.13)
where r=—(t t'), r—:

~

x —x '
~

and a—, a, a are all
evaluated at t'. Writing the equation o.'&W.

&
——0 as a par-

tial differential equation for the components of W in the
vierbein (4.5), we find

Tr(WS ) = 2
—+2(m +—„R)lno+a 1 4

4+2
(5.19)

Restricting x and x' to the initial hypersurface, it follows
that

where the remaining terms are nonsingular in the limit
X~X .

On the other hand, using the expansions of Wv0 and
Wu& given in the Appendix, it can readily be shown that
Tr(Jry+V&9' ) is nonsingular in the limit x~x while
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( —i)Tr[W(y"Vp —m)9' ] ~,,

+ (m ++R )lnr +
2& Q T

(5.20)

As a check on our calculation we note that Eq. (5.20) can
also be obtained from the results of Christensen. "

Comparison of Eq. (5.18) with Eq. (5.20) reveals that
the divergences in Tp"(EM) are not of the same form as
those in Tpp(H). It follows that standard renormalization
theory cannot yield a finite value for T„"(EM)„„.

rise to two-point functions with the Hadamard form. If
one accepts the renormalization prescription as it is un-

derstood today (which perhaps one should not) then it
seems that a minimal requirement for physical states is
that their corresponding two-point function (the anticom-
mutator function for scalar fields, the auxiliary propaga-
tor for spin- —,

' fields) should have the Hadamard form. In
the next paper in this series we shall examine the con-
straints on the construction of the physical space of states
imposed by this requirement. That these constraints must
be nontrivial has been demonstrated above.

VI. CONCLUSION

In this paper we have extended the results of the first
paper in this series to show that for spin- —, field theories,
as for scalar field theories, the infinities arising in physi-
cal expectation values in states constructed by an energy-
minimization requirement cannot be dealt with by stan-
dard renorrnalization theory. The consequences of this
circumstance were discussed in Ref. 2 and we will not re-

peat the discussion here.
So far in this series of papers we have set ourselves the

task of answering the question of whether particular
schemes for the construction of the space of states give
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APPENDIX

We list here the Taylor series expansions for various
bispinors which were used in the text; other useful expan-
sions can be found in Ref. 11. We shall use the notation
o."=o'"and X"'—:—'[y" y ]

1 2 1 1 p I p;~ p 1 1 1 IC A,

Woo 2 (m + t2 R)I 48 R po I )& Rp o Xpr+ 24 [m Rpv+ ~& RRpv+ 6 R;@v+ 20 (C» R~i +2C pv;ai)

,', g„,(Rp„iR—P'" R„)R" +—CIR)]o"cr'I+,~ RpP' ~"cr Xp, —
96 RP'ip—R ~" ~"o Xp,Xg„+

J ol 8 (m + 6Rm + 144R 60 +R+ 90RprKiR 90RKiR )I+ ]9&R iR Xp X(v+

b, 'r2WWp'" ,
' RpP'rcr"Xp, +—+——(RP,pR" RpP' . )cr"o—Xp,+ , 6

RP pR ~"—"~"crX XsP 3 p p& 12 Kp v p, v

(A2)

(A3)

(A4)
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