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Using the techniques of finite-temperature field theory we renorrnalize the electromagnetic and
gravitational couplings of an electron which is immersed in a heat bath with T &&m, . By taking the
nonrelativistic limit, we demonstrate that the inertial and gravitational masses are unequal. The im-

plications for the equivalence principle are discussed.

I. INTRODUCTION

A cornerstone of the theory of general relativity is the
principle of equivalence, which states, in its weak form,
that the gravitational acceleration is identical for all
bodies, or that the inertial and gravitational masses are
equal. This equality has been tested via the Eotvos ex-
periment and its successors and is now verified to the level
of one part in 10' . Since in a quantum theory a portion
of a particles mass (formally infinite) arises from radia-
tive corrections, these must also obey the equivalence
principle and this has been demonstrated via detailed
theoretical calculation. However, in a quantum field
theory at temperature T&0, a fraction of the mass of a
particle arises through the finite-temperature component
of the radiative corrections. We have pointed out previ-
ously that these terms do not satisfy the equivalence prin-
ciple. However, the format was as a brief note, and we
present here a more substantive discussion of this result.

There are two limits to finite-temperature calculations
which are natural to consider, T &&m and T ~~m. In the
former the temperature-dependent effects arise due to in-
teraction with a photon heat bath, with the effect of mas-
sive particles being suppressed by O(exp( —m/T)). The
interpretation of the theory is simplest in this situation, as
one can sensibly consider the case of nonrelativistic
motion, for which our intuition is well developed. At
very high temperatures, T~&m, the interpretation be-
comes considerably more difficult, as there then exists a
background heat bath of particle-antiparticle pairs. Then
not only are the calculations more complex, but in addi-
tion all energy states are filled up to a Fermi energy
E—T, so that the Pauli effect would appear to prevent
the particle being studied from being nonrelativistic. For
these reasons, we shall confine our discussion to the inter-
pretively clearer case of T &&m.

Our program is then as follows. In Sec. II, we outline,
for completeness and in order to define terms, the demon-
stration of the equivalence principle at zero temperature
for the case of an elementary spin- —,

' system. In Sec. III,
we point out the modifications required in order to extend
this result to finite temperature and demonstrate that the
gravitational and inertial masses indeed renormalize dif-
ferently. Section IV outlines the cha~ges which obtain for

the case of a spin. -zero system. Although the calculation
is somewhat different, the same inequality of gravitational
and inertial mass is found. Finally, in Sec. V we discuss
the implications of our results with respect to the validity
of the equivalence principle.

II. RENORMALIZATION AT T=G
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with d representing the number of spacetime dimensions.
The modified Dirac equation becomes

FIG. 1. The electron self-energy diagram.

Before extending our discussion to the relati. vely new
area of finite-temperature field theory, it is important to
understand how the equivalence principle obtains in the
familiar zero-temperature case. The only problem here is
in carefully defining what is meant by gravitational and
inertial mass. We shall do this by placing our test parti-
cle, an electron, in an external electromagnetic and/or
gravitational field and studying its consequent motion in
the nonrelativistic limit, where our intuition is best estab™
lished.

It is well known that conventional or Pauli-Villars re-
normalization does not automatically respect. the gauge
invariance possessed by a fundamental theory, so we shall
instead use dimensional regularization throughout. %'e
begin with a bare spin- —, Lagrangian

~o= tTo(t'y' mo)yo—
As is well known, radiative corrections modify the simple
theory. Thus, calculating the so-called self-energy dia-
gram in Fig. 1, we 6nd
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[p —mp —X(p)]u (p) =0 . (4)

cx 3
5m =X(p) ~&

——— ——4 mp,
4m. e

From this, we can read off the usual mass and wave-
function renormalization constants

gram, Fig. 2(d), yields

Ap(p', p) =—A~(p, p) +Ap'(p', p)

d k 1 1= —ie
(2m. ) k (k2 —2p' k)(k —2p k)

Xy (p' —k+m)y„(p g+—m)y
1 ar

Z2 —1=-
a& I=m

cx 3
4

(6)

The Lagrangian then becomes

W = Z2[17tz (x)(iP —ma )fa (x)+ tT)It (x)5m Pa (x)], (7)

where

Here A&(p,p) can be determined via the Ward identities

u(p')A„(p p)u (p) =u(p') X(p)u (p)
()pP

Pg(x) =Z2 ' Po(x)
= —(Z2 ' —1)u (p')you (p), (12)

~o '= eo4—oy).4o~"..t (10)

must be modified by the usual radiative-correction dia-
grams shown in Fig. 2. Thus the vertex correction dia=

1

is the renormalized field operator and

mg =mo+5m

is the renormalized mass, which represents the observed
mass of the particle.

In order to find the inertial mass, we shall place the
electron in an external electromagnetic field. Then the
bare interaction Lagrangian

while A&(p', p) can be calculated directly, yielding, correct
to terms of O(qlm),

u(p')A„"(p', p)u (p) = u(p')( i o„„—q") u (p),
277 2m'

where q =p —p' is the four-momentum transferred by the
external field. Then, adding the self-energy and mass-
renormalization diagrams to the vertex correction and di-
viding by QZ2 for each electron leg we find

M„=—eou(p')y„u(p) [Fig. 2(a)],
r

M& ———epu(p') y& 5m+5m y&
—2(Zq —1)y& u (p) [Fig. 2(b)],SE — I

p —m p —m

CT 1
M& ——epu(p') y& 5m +5m y„u (p) [Fig. 2(c)],

p —m p —m

(14)

= —epu(p ) y (Z2 —1) i o „q"—V — I —1 . a „1
P

2m "" 2m
u(p) [Fig. 2(d)] .

Then

(M(o) +MsE+McT+M v)1
P Z P IJ P P

2

I ~ u v 1= —epu(p ) y i o,q-
2m " 2m

2

u (p)+0
m

Mtotal Z —lZ —I/2(M(o) +M +M +M +M )p 2 3 9 p P

egu(p ) y —t o —„q u(p),I . (z 1

2m "" 2m~

Finally, we must append the vacuum polarization contri-
bution, Fig. 3, which gives

M~ ———e()u (p ')y„u (p)
37TE'

—:epu(p')y„u (p)(Z3 —1) (16)

so that the full renormalized vertex becomes, including
now a factor Z3 '~ for the external photon,

FIG. 2. The electromagnetic-vertex-renormalization dia-
grams in spinor electrodynamics.
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We can identify the inertial inass by measuring the ac-
celeration of a particle acted upon by an external electric
field E. The corresponding electromagnetic potential may
be chosen as

FIG. 3. The vertex correction due to vacuum polarization.
A=0, E= —VP (22)

where
and we find

CX

R +Z3ep ep
6m.e

(18)
eREa= —[H, [H, F]]=
mR

01 ml =mR (23}

is the renormalized charge and corresponds to the charge
observed experimentally.

This discussion of renormalization of the electromag-
netic vertex is well known, of course, and is described in
many texts. We have included it in detail, since it forms
the outline of our later finite-temperature discussion as
well.

One defines the inertial mass by placing the electron in
an external electromagnetic field, which is described by a
vector potential A". The resultant Dirac equation is

r

1PvCK
p mR —eRQ+—ieR o Q "q u(p}=0.

2m " 2m

and solving for the leading (upper) component, yielding

. 8 p Ap
i u= mR+ —eR +eRP

Bi 2mR mR

1—eR o'8
2mR

1+ u.a
27T

(21)

We can make a nonrelativistic reduction by writing the
wave function in terms of two-component spinors

u
u(p)= (20)

Thus the inertial mass is simply the renormalized mass, as
is well known.

In order to define the gravitational mass, we must ex-
amine the corresponding renormalization of the energy-
momentum tensor T& . In this case the bare vertex is
given by

r

(&—g ~p) =fp (y„V„+—y„V„)
ag

—g&„(iP—mp) gp . (24)

The relevant radiative-correction diagrams are shown in
Fig. 4. Comparing with Fig. 2, we note that there exist
two additional terms Figu.re 4(e) is a contact /PA& term
which arises because of the derivative couplings which are
present in Eq. (24), and Fig. 4(f) accounts for the feature
that the energy-momentum tensor can couple directly to
the photon, unlike the corresponding electromagnetic ver-
tex. The other diagrams, Figs. 4(a)—4(d), are just direct
analogs of our previous calculation.

. For simplicity we perform our calculation at q=O and
find

u(p) ,
'
(p„y,+p„y—„}u(p}=M„',' [Fig. 4(a)],

u(p) —,
' (p„y„+y„p„)u(p) ——+8 =M„„+M„„[Figs.4(b) and 4(c)],

@p} Ti(ppyv+y4'p)
4m 3E'

56 4
9 gPv u(p)=M„', [Fig. 4(d)], (25)

u(p) —,
'

(pzy.„+y~„) ——+.6 + mgz„——7 u (p) =M„„[Fig.4(e)]

u (p) —,
' (p„y„+y~„)

34
9

—mg„„+— u(p)=M „[Fig.4(f)] .
3e 9
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Plg =Ply (33)

Thus we have demonstrated in the context of quantum
field theory the well-known equivalence of inertial and
gravitational mass. In Sec. III, we shall repeat this calcu-
lation for the situation where the electron finds itself im-
mersed in a heat bath at temperature T «mz.

(e)

III. RENORMALIZATION AT 0& T &&mg

The modifications required for perturbation techniques
when T&0 are well known. At T=O the propagation of
particles between spacetime points x&,x2 is described by
the Feynman propagator

DF(x2,x ~ ) = (0
~
T(P(x2)P(x ~ ) )

~
0) . (34)

FIG. 4. The radiative corrections to the spinor energy-
momentum tensor. The double wavy line represents the T„
coupling.

There is no "vacuum polarization" diagram in this- case
since we are treating gravity only to first order. If we
now add the contributions and divide by Z2 we find

P Z2

=u(p) —,
' (y~„+y~„)u (p) . (26)

E =(p +m )'~ (27)

In order to define the gravitational mass we place the elec-
tron in an external gravitational field described by a po-
tential Ps(x). To lowest order then, we can write the
resultant metric as

Thus the energy-momentum tensor is unchanged by re-
normalization. However, here E, p are related using the
renormalized mass

Here if we expand P(x) in terms of free-field creation and
annihilation operators

P(x)= g [a{p)e '~'"+at(p)e'~'"], (35)
P

and require that the vacuum is empty

a (p)a(p) iO)=0,
we obtain the usual propagator in momentum space

DF(p)= J d'x e ' ' DF(x2,x$)

(36)

ne(E) = 1

exp(PE) —1
(39)

is the usual Bose-Einstein distribution function. Calculat-
ing the expectation value for this vacuum yields the
finite-temperature propagator'

(37)
P —PE

2 2

In the case of a theory at T&0, the only difference is
that the T=O vacuum ~0) must be replaced by the finite-
temperature vacuum

~
0)~, which is defined by

a (p)a(p) ~0)p ——n~(E) ~0)p, (38)

where

gpv='gpv+hjMv ~

where in the harmonic gauge

h„„—2gg5„„.

The corresponding Dirac equation

(p m~ ——,
' h„„T&")u(p)=0-

becomes, after nonrelativistic reduction,

t -u = my+ +myles u
. 8 p

ot 277lg

and the resultant acceleration

m„Vys
a = —[H, [H, r]]=—

yields the gravitational mass

(28)

(30)

(3l)

(32)

~D~(p) = +2n5(p —m )ng(E) .
p —m

(40)

This is the only modification required at finite tempera-
ture. The vertices are unchanged by the heat bath.

It is now straightforward to apply these finite-
temperature propagators to the previous diagrams in or-
der to see what modifications are produced. We note that
there is in the finite-temperature propagator a natural
separation into a T=O term, which we have already dis-
cussed, and a temperature-dependent modification. Also,
because of the thermal distribution function all finite-
temperature integrals are ultraviolet convergent. Since the
infrared singular terms cancel in the usual way, all
temperature-dependent modifications to the theory are
finite. The theory can be renormalized at T=O, and then
any additional changes in the parameters of the theory in-
troduced by temperature must be calculable and finite. "

Our restriction to temperatures T «m should be noted
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at this point. When one evaluates a specific perturbation-
theory diagram, there are in general finite-temperature
modifications which arise both from the fermion and
from the photon propagators. However, at low tempera-
tures any temperature-dependent modification due to a—m /T

. fermion line is suppressed by O(e '
) and can be

neglected. Only the T&0 changes in the photon propaga-
tors will be required. Since m, —10' 'K, while even the
hottest star has T (10 'K, this restriction to "low" tem-
peratures is not particularly stringent.

Having made these introductory comments we can now
proceed to calculate the temperature-dependent modifica-
tions to all diagrams discussed in Sec. II. We begin with
the self-energy in order to identify the mass shift and
wave-function renormalization constraints. We find'

Thus there exists a temperature-dependent mass shift

CX& T
3

Eflux

(45)

~Z2 ' —1=— (Ig+2p I.)
4~

This shift presumably represents the additional inertia
generated by the interaction of the electron with the real
photons which make up the heat bath.

Likewise the wave-function renormalization constant
can be determined by requiring that the fields are properly
normalized. The correct prescription has been given else-
where, and we find'

&X(p)= [I„(p m)+I—+E(p' m)+— ],
4m

where
0! IpIz—4~' (46)

I„=8~f n, (k),d
k

(ko, k)
Ip ——2 n~

kp Eko —p k
(42)

1 d k
L.„=——f ns(k)

0

(kp, k)

(Ekp —p k)

E =p +Alp

with

2 2

mp =mtt +2 p'I= mti+2 2 a am T
4 3 P7l g

(43)

(44)

Thus the standard decomposition into a Lorentz-invariant
mass shift and a wave-function renormalization propor-
tional to p —m does not obtain. Instead, because of the
preferred frame associated with the heat bath, noncovari-
ant terms appear in the self-energy. One must then be
very cautious in defining what is meant by "mass. " One
possible definition, which we shall call the "phase-space
mass" is given by the location of the pole in the propaga-
tor. This occurs at

Note that this phase-space mass is not usually included
in a discussion of the different types of mass. Neverthe-
less, it can be given a clear operational definition in terms
of threshold and phase-space behavior for particle reac-
tions. Thus, for example, the decay of a neutral boson
(H ) into an e+e pair cannot take place if the H mass
is below 2m&, even if mHO is greater than 2mii. One can

thus imagine measuring this phase-space mass by looking
for the threshold of various reactions. It could also be
determined by careful study of phase-space distributions
of a specific process. (Both techniques are presently being
utilized in the search for a possible neutrino mass. ) In
principle, the phase-space mass can be distinct from either
the inertial or gravitational masses. However, we shall
show below that at least in the nonrelativistic limit the
phase-space and inertial masses coincide.

In order to define the inertial mass operationally we
need the finite-temperature modifications to the renormal-
ized charge vertex, i.e., Figs. 2(a)—2(d). [Note that we
need not consider T&0 changes to the vacuum polariza-
tion diagram, as these are associated with fermion lines—m T
and hence are O(e ' ).] Using the T-modified photon
propagator, we then find

M„''= et'(upy„u—p uy„u) [F—ig. 2(a)],

Mt = —eiiu(p') r1
1

If(p)+I~ +(p+ m)E(p) + I(p'), +I~ +g (p')(p '+ m) y„u (p) 2 [Fig. 2(b)],
1 a

—PPl —Pl 4n

(47)

t'M„=e„u(p') y„2g(p)+ ig(p'), y„u(p) [Fig 2(c)1"p—m 4m' 41ri p
' —m

2
&M~= ezu(p') —Izy + I (p)+—. I (p')+io „q" I (p) u(p) +O

2m " 2m " " 2m 4~ m
[Fig. 2(d)],

where

d4k
I„„(p)=e f 21rnii(ko)5(k )

4~2 "" (2~)' (k p)2
(48)
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Here the form of the counterterm is dictated by our temperature-dependent Dirac equation, which reads

p —mz — g up(p) =0 .
4~

(49)

Thus, one must use the finite-temperature counterterm

l(p),
4m

(50)

and must employ finite-temperature spinors utt(p) which satisfy the modified Dirac equation and which we choose to
normalize via

u p(p)u p(p) = 1 .

The form which these spinors assume is easily found by defining

a
pp, =pp — Ip

4m

Then

(51)

(52)

up(p)=u(p) . (53)

Note that the leading-order amplitude must be evaluated using finite tempera-ture spinors. This is the origin of the
temperature-dependent modification of the leading term of the form

—e(upy„up —uy„u)

as given in Eq. (47).
Adding all of these contributions, both for T&0 and T=O, we find then

(54)

M = —eRu~(p ) y 1—total CX

P 4 2

1
Ip(p)+ Io(p') + 2 Iz(p)+ I~(p')1, cx 1 1

2' t 4~ 2pl 2'

(55)

Note that if we set q =p —p'=0, the vertex becomes

tt Io(p) a 1M~"' (p =p') = ett u p(p) yp—1 — + 2 Ip(p) u p(p)

Pp oP 1 a
( )

PpI()
4 & E E 4

(56)

which is identical to the result obtained at T=O except that now the energy Ep and momentum p are related via the
phase-space mass mz,

(p
2 + 2

)
I /2 (57)

The time component gives

Mo'™(p=p') = —e~ (58)

so that the charge is unrenormalized by temperature effects when T«m. '

This analysis suggests then that the inertial mass is to be identified with the phase-space mass. That this is required
can be seen by placing the electron in an external electromagnetic field A„. The Dirac equation becomes

a
p — I(p) —eRQ 1—

4~
a I

2
—Io(p) + 2

A "Iq(p)+o„„o; 1 1

4~2 E 4~2 m,
t)"A" + d"A Ig(p) —m„gp(p) =0 .

2m' 4Q

(59)

Using the nonrelativistic reduction u &~( and
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P 3 6 z&2

CX

4m

&T'a
~ ( —g~~+45po5~), p =~

9m

HATT p p =l, +=02'
9m~ m P=O

(60)

we find the effective Schrodinger equation

i u = m~+5m~+. a P
Bt 2mR mg

r

A. p 5m , 5mp
ez 1— +

ezra

—ez o'B 1 ——, +
mg mg 2m@

p A p , 6mp
my+ —eg +eg4 —eR 0''B 1 —

& +
2m' mp 2m' my 2K

(61)

We see that there exist essentially two finite-temperature modifications.
(i) There is a new contribution to the anomalous moment'

, 5mp
5pg = —

g
mg

(62)

(ii) The inertial mass is identical to the phase-space mass since if A=O, E= —VP

eEa= —[H, [H, r]]= or m~=m~ .
mp

(63)

M&„' up(p) ,
'——(p&y, +—p„y&)up(p) u(p) ,' —(p&y„+—p„y„)u(p) [Fig. 4(a)],

Ip~M '+~M~„——— u(p) ,
'
(yap„+y„pp—)u(p) 2I~+2—[Figs.4(b) +4(c)],

Likewise we can define the temperature-dependent gravitational mass by repeating our calculation of the renormaliza-
tion of T&„, but now at finite temperature. The evaluation is straightforward, except for the case of the graviton-photon
coupling diagram, where overlapping singularities require special attention. The evaluation of this diagram, Fig. 4(f), is
indicated in the Appendix. We then find (again calculating at q=O)

3T2
~M&„—

z u(p) ——,' (y„p„+y p&—)I„— [p„I„(p)+p„I&(p)]+4 g„+mI„,(p) u (p) [Fig. 4(d)],
3m

(64)

773T2~M&„u(p) ' [——p&I„(p)+p I&(p)]+4 gz„u (p) [Fig. 4(e)],PV 4 P P V V P 3m

3T2
~M„„=—

z u(p) [p„I (p)+p„I„(p)] mI„,(p)+4 — (g„, 2g„o5~) u(p—) [Fig. 4(f)] .

Including Zz for wave-function renormalization we can now add all terms to find the renormalized energy-
momentum tensor at finite temperature

T2
Mp' '="p(p) ~ (y„p +y pp) 1 — Io(p) —2a 5„o5m+ [ppI (p)+p Ip(p)1

4~ E 3m " 4~ 2m

6K&T
gpv P u p(p)

p~p„2(a~/3)T 5„o5~—
(65)
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Thus a noncovariant temperature-dependent component
appears. %'e can now evaluate the gravitational mass by
performing a nonrelativistic reduction in the presence of
an external gravitational potential, in which case the
Dirac equation

(The bubble diagram vanishes when dimensional regulari-
zation is used. ) This yields the usual mass and wave-

function renormalization constants

2
—am 2

5m = 7
4m e

(71)

p —mz — I(p) ——'h T"" /=0
4H

becomes

i u = mz+ +(m~ 5m@)—gg u .. i3 p
2m'

(66)

(67)

Z ' —1=0

and we see that there is no wave-function renormalization
to order a.

To calculate the gravitational mass we need the
energy-momentum tensor of a charged scalar particle.
Because we will only consider gravitons with q=0 in-

teracting with the scalar field we can use the canonical
energy-momentum tensor'

Computing the acceleration then yields the gravitational
mass =2(B~—eAp)P (8„—eA„)P —g~„Wp, (72)

mg —5m p
Vgs or ms=mz —5m&

m&
(6&)

which is clearly different from the inertial mass.
That this inequality is more general than our simple

spinor electrodynamic calculation can be seen in Sec. IV
where we show that similar results obtain for the case of a
scalar field.

since the improved tensor of Callan, Coleman, and
Jackiw' gives an identical result in this limit. ' [The ten-
sor of Eq. (72) is such that the trace of Tz„gives 2m for
a free scalar particle. ] The relevant radiative-correction
diagrams are shown in Fig. 6. The effects of the graph in
Fig. 6(h) were taken into account for the fermion case by
the use of finite-temperature spinors, but here must be in-
cluded explicitly. We then find

IV. INERTIAL AND GRAVITATIONAL MASS
IN SCALAR ELECTRODYNAMICS (a)

In this section we calculate the radiative corrections to
the inertial and gravitational masses of a charged spin-

' zero particle both at zero and at finite T. Just as in the
case of spinor electrodynamics we find that at T=O the
energy-momentum tensor is unchanged by renormaliza-
tion while at finite T &&m ( m the scalar mass) the inertial
and gravitational masses are shifted in opposite directions
by finite-temperature effects.

We begin with the bare spin-zero Lagrangian

(b)

Wp (d~ eA~ )Pt(dq ——eAp—)P mPtP—, —(69)

(c)
and first calculate the self-energy diagrams of Fig. 5 at
T=O, and find

—am 32

&(p) = 7
4m. e

(70)

FIG. 5. The scalar self-energy diagrams.
/

FIG. 6. The radiative corrections to the scalar energy-
momentum tensor. The double wavy hne represents the T„„
coupling.
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P (p)(2p„p„)P(p) [»g 6(a)],

a t( )
16

4 4 P PPpv 3
J

152 p 4 44
9

+ SpV 3
+

9 P(p) [Fig. 6(b)],

0'(p) p,p. ——8 +~'g,.4m. E

1——+1 P(p) [Fig. 6(c)],

a t( )
28

4
4' p pppv

224 g 16 116+m'g„— + P(p) [»g. 6(d)],

0 (in dimensional regularization) [Fig. 6(e)],
0 (in dimensional regularization) [Fig. 6(f)],
0 (Zz ——1 to order a) [Fig. 6(g)],

P (p) m g„„——7 P(p) [Fig. 6(h)] .

(75)

Adding the contributions 6(a)—6(h) and dividing by Zz(= 1) we find

~„""'=P(p)(2p„p )P(p) (74)

and the energy-momentum tensor is unchanged by renormalization just as in the spin- —, case. Thus, radiative correction
at T=O respects the principle of equivalence for scalars. '

For the finite-temperature case we restrict ourselves to T«I and, as before, consider only finite-temperature modifi-
cations to the photon propagator. We then calculate the temperature-dependent corrections to the diagrams already dis-
cussed in this section. We begin with the self-energy and find

(p rn )Iz-
~X(p) = K+

where

d k ] 2m'TK= J nii(k)= ,'p I=-
ko

This gives the temperature-dependent mass shift and wave-function renormalization

5m =aKln =2am T /3,

uIg
Z2 =1+

4m

and we note that this is the same inertial mass shift as in the spinor-electrodynamics case.
We then repeat the calculation of the renormalization of T&„but now at finite T, to obtain

yt(p)(2p„p„)y(p) [»g. 6(a)],

(p)[pilp„Iq+(P~Iy+p I~)+2m I~ 2gp~K]p(P) [F—ig. 6(b)]
2m2

(76)

(77)

pt(p)[4mzI&„2(p&I +P„I&)+—2g& K]p(p) [Fig. 6(c)],

0 (p»)[2g, K (p„I.+p.I, )N(p»-) [Fig 6(d)l,
J

0 (p)(g K)4(p) [»g «e)]

(78)

Pt(p)(4JI'" gl""I)P(p) [Fig. 6(f)], —
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P (p)(p„p I~)$(p) [Fig. 6(g)J,

yt(p)(gp„&)y(p) [»g.6(h)],

where

d k5(k )n~(k)k~k~

(p k)

J„,= f d k5(k p—)na, ((ko +p )'~ )kqkv
~

~ 0= (gpv —25@05m) .
(79)

Adding the contributions 6(a)—6(h) and multiplying by
Z2 ' ——1 aI~ /4n —we find the energy-momentum tensor

2+X 2am T
2pppv — 5p05m=2 pppv 5po5m

7rZ 3
(80)

which yields the same shift in the gravitational mass as in
the fermion case.

V. CONCLUSION

(81)

We have thus demonstrated that at finite temperature
the gravitational and inertial masses are not the same.
Thus the acceleration in a gravitational field will be dif-
ferent for particles of different mass. This would in prin-
ciple yield a violation of the equivalence principle in an
Eotvos-type experiment, although at accessible tempera-
tures the effect is small. Thus for an electron at 300'K

As far as the validity of the equivalence principle is
concerned, we note that the fundamental ideas which led
to its postulation in the first place include the impossibili-
ty of detection of absolute motion through the vacuum
and the indistinguishability of acceleration and gravity.
However, one can measure absolute velocity and/or ac-
celeration with respect to a heat bath (indeed this has been
done for the motion of the earth through the 3'K mi-
crowave radiation which remains from the early universe).
Thus the conditions under which the equivalence. principle
were formulated are not met at T&0. In principle, such
effects are detectable in an Eotvos-type experiment. How-
ever, the observable consequences at attainable tempera-
tures are negligible.
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yielding a totally undetectable effect.
Though surprising on the surface, this inequality does

not conflict with any of the fundamental tenets of general
relativity. The key here is that the existence of a heat
bath introduces a preferred frame —the one in which the
blackbody radiation is isotropic. This introduces nonco-
variant contributions into the renormalization scheme.
That such noncovariant terms can cause trouble is well
known from work on the energy-momentum trace anoma-
ly where use of a Pauli-Villars or some other noncovariant
coupling scheme also leads to an apparent inequality of
gravitational and inertial masses at T=O. However, this
result is only illusory. The photon-graviton coupling, Fig.
4(f), has a trace proportional to d —4, where d is the
number of space-time dimensions. If d=4 such a dia-
gram appears to vanish, but in dimensional regularization
the d —4 from the trace cancels a similar term in the
denominator, yielding a finite contribution which will be
missed in a noncovariant renormalization scheme. This
additional term is the anomaly and restores the equality
between gravitational and inertial masses at T=O. Thus
it is perhaps not surprising that the existence of a finite-
temperature heat bath —which also breaks the explicit co-
variance of the calculation —gives rise to an asymmetry
between gravitational and inertial masses.

APPENDIX

The calculation of finite-temperature modifications is
generally straightforward. Thus, the self-energy diagram
in Fig. 1,

d'k 1 )'I (P &+m)y"—
x(p) = ie—

(2m. ) k2 k~ 2p.k+p2 —m~—

picks up a T&0 component

(Al)

1
2mi 5(k )n~ (—ko )

~ 2

k +i@
(A3)

with the exception. of the T„coupling to the photon, Fig.
4(f). The problem here is that at q=0 the photon propaga-
tors both carry identical four-momenta k&. Thus, the
finite-temperature integral will contain a piece

~X(p) = —e f 4 2vr5(k )ns(k) z
"

z 2(2m)
' k —2p k+p —m

(A2)

which can be evaluated via standard techniques, yielding
the result given in Eq. (41). Likewise the other diagrams
in Figs. 1—4 can be evaluated by the same substitution
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f d k 2mi5(k )4 1
(A4) kI„„(p)=e 2T g f u(p)ya(2~)' p—

with a delta function 5(k ) divided by a factor of k .
This is a singular integral to say the least, and special care
must be exercised in its evaluation. That such spurious
singularities can arise in this way was already noted by
Dolan and Jackiw, ' who also suggested the solution. The
point is that our calculations are performed in the so-
called "real time" formalism, wherein one writes the prop-
agator in coordinate space in terms of the usual integral
over a three-momentum d k and an energy dko of a
momentum-space propagator

X ypu (p) z T„~(k)
k +lG k +l6'

where

TPP(k) = (5P5—P+5;5')k2 2kB—k.g B

+(k„5~+k,5u~)k +(k„5 +k 5„)k~

+gp. (k2g P—k kP)

(A10)

(A 1 1)

iD~(k) =
2

i 2'—5(k )nF(k)
1 2

k2+ie
(A5)

which has the very convenient feature of naturally
separating into a T&0 and T=O component. Unfor-
tunately, correct analyticity properties are not automati-
cally obtained via this technique and when problems arise
it is necessary to write the corresponding integral in the
so-called imaginary-time representation wherein the
momentum-space propagator retains its familiar form

represents the coupling of the energy-momentum tensor to
the photon. The integral can now be reexpressed in terms
of a single photon propagator by use of a derivative

Iz„(p)= e 2Td
did g2 0

X g f, u(p)y y&u(p)
d k l

iD~(k) = 1

k +i@
(A6)

but where now the "energy" ko takes on only discrete
values

X T„~(k)
k A, +ie— (A12)

ko ——2minT, —oo &n (~ (A7) which can in turn be rewritten in the real-time form

and where the Fourier transform to coordinate space in-
volves the usual integral over d k, but now a sum over the
integers n from —co to + ao. ' Thus the propagator be-
comes

Iq (p)= e2d
dA, g2 O

DF(x)=2T g f (2')3 k +ie
(A8)

d4k
X 4 u(p)y yttu (p)(2~)4 P — —m

which may be evaluated via standard techniques and can
be shown to be identical to the real-time expression X T„„(k) 2 2

—i2m.5(k —A, )
k —A, +lE

Dp(x) = f 4 e '""
2 +2n5(k )nF(k)

(2n) k +ie Xn ((k +A, )' ) (A13)

(A9)

Of course, the separation into T=O and T&0 com-
ponents is lost in the imaginary-time expression.
Nevertheless it is often very useful. Thus the integral cor-
responding to Fig. 4(f) can be written in the imaginary-
time form

The latter integral can now be evaluated in the standard
fashion. Note that the separation into T=O and T&0
components again results and upon performing the re-
quisite differentiation one finds the results quoted in Eqs.
(25) and (64), respectively.
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