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The performance of phase-sensing interferometers employing squeezed states and homodyne
detection is analyzed and compared to the performance of systems employing direct detection.
Standard differenced direct-detection Michelson and Mach-Zehnder interferometers are shown to be
suboptimal in the sense that an observation/measurement-noise coupling occurs, which can degrade
performance. Homodyne-detection interferometers in which the phase shift in one arm is the conju-
gate of that in the other arm do not suffer from the preceding drawback. Overall, however, the per-
formance of differenced direct-detection and homodyne-detection interferometers is similar in
single-frequency operation. In particular, both detection schemes reach the standard quantum limit
on position-measurement sensitivity in single-frequency interferometric gravity-wave detectors at
roughly the same average photon number. This limit arises from back action in the form of radia-
tion pressure fluctuations entering through the energy-phase uncertainty principle. Multifrequency
devices can circumvent this uncertainty principle, as illustrated by the conceptual design given for a
two-frequency interferometer which can greatly surpass the standard quantum limit on position
sensing. This configuration assumes that ideal photodetectors respond to photon flux rather than
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energy flux.

I. INTRODUCTION

The use of squeezed states in a single-frequency Michel-
son interferometer gravity-wave detector was considered
by Caves,! who showed that a squeezed-state interferome-
ter requires substantially fewer photons than does a con-
ventional coherent-state interferometer to reach the stan-
dard quantum limit (SQL) on position-measurement accu-
racy. Caves’s analysis dealt in detail only with direct-
detection (photon counting) methods, whereas it is known
that optical homodyne detection of squeezed states gen-
erally provides a higher signal-to-noise ratio (SNR) than
does direct detection. Moreover, a minimum-uncertainty
squeezed state is the optimum state to use with homodyne
detection, as it yields the highest SNR of any state for this
detection format.? The present study began as a search
for the further reduction in the number of photons re-
quired to achieve the SQL that might be realized with the
use of homodyne detection in a squeezed-state interferom-
eter. As will be described, a number of surprises ensued
in this quest. In particular, it will be shown that homo-
dyne detection offers no significant advantage in a single-
frequency squeezed-state interferometer, but heterodyne
detection in a multifrequency squeezed-state interferome-
ter permits the SQL to be surpassed by a large margin.

The paper is organized as follows. Section II briefly re-
views some now well-known results from quantum optics
concerning single-mode squeezed states and various means
for detecting them. This section will establish notation
and exhibit the large SNR advantage that homodyne
detection has over direct detection with single-mode
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squeezed states. In Sec. III, single-frequency phase-
sensing interferometers will be considered with respect to
their quantum-state input/output relations. It will be
shown that there is an optimum interferometer design
which results in minimum-uncertainty squeezed states be-
ing produced at the output ports when they are present at
the input ports of the system. The standard Michelson
and Mach-Zehnder configurations do not fall into this
category. What is needed is a phase-conjugate interferom-
eter in which the phase shift incurred in one arm is the
conjugate of that incurred in the other arm.

Section IV applies the results of Sec. III to single-
frequency gravitational-wave detectors. Here it will be
shown that a single-frequency squeezed-state homodyne-
detection interferometer achieves SQL position-sensing
performance with basically the same photon-number re-
quirement as Caves’s direct-detection interferometer.

~ This equivalence in performance is reconciled with the

homodyne advantage found in Sec. II by arguing that
Caves’s interferometer is exploiting nonclassical correla-
tions between the fields in the two output ports through
his differenced-detector arrangement.

The results of Sec. IV are consistent with the previously
held view! that back action, in the form of radiation pres-
sure fluctuations, balances with phase-sensing error in in-
terferometric gravity-wave detectors to prevent position-
measurement accuracy from surpassing the SQL. In Sec.
V we first show that this balance occurs in single-
frequency interferometers because of the energy-phase un-
certainty principle. Next, making use of recent work on
phase and amplitude uncertainties in heterodyne detec-
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tion,> we show that the energy-phase uncertainty principle
can be circumvented in a two-frequency squeezed-state in-
terferometer. Here we find that position-sensing accuracy
far better than the SQL is predicted at photon numbers
substantially larger than those for a coherent-state single-
frequency interferometer running at the SQL. This per-
formance analysis complements the work of Yuen,* who
has questioned the validity of the SQL on fundamental
grounds. Our analysis assumes that ideal photodetectors
respond to photon flux rather than energy flux. This
question is not yet fully resolved.

II. SQUEEZED STATES,
DIRECT AND HOMODYNE DETECTION

The properties of squeezed states, also called two-
photon coherent states, have been treated extensively by
Yuen.’ Using his notation, the single-mode squeezed state
| B;u,v) is parametrized by three complex numbers S, u,
and v with |u|%2— |v|2=1. If a denotes the photon an-
nihilation operator for the electromagnetic field mode in
question, then the state |B;u,v) is defined to be the
eigenstate of the operator

b=pa +va't (1)

with eigenvalue 3. :

The statistics of direct, homodyne, and heterodyne
detection of multimode quantized fields are conveniently
calculated from the results of Yuen and Shapiro.® Direct
detection, with a unity quantum efficiency detector, of the
single mode with annihilation operator a measures the
photon-number operator N =a'a. When the state of the
mode is | B;u,v) the N measurement has the mean value

(NY=|B|*+|v|? 2)
and variance

(AN?Y= |pB—vB* |*+2|pv|?, 3
where

(a)=p*B—vp* =3. 4)

For B,u,v positive real valued, Eq. (3) reduces to
(AN?)=((N) =) [(1 )2~y P+ 20414+
~((N) =) /8 42041447, (5)

where the approximation is valid for (N)>v*>>1.
Minimizing the right member of (5) with respect to v* at
constant (N ) yields

(AN?) pin= (N ) (6)
at
(N)=16v5>>1. 7)

Thus, the maximum direct-detection SNR one may
achieve using a single-mode squeezed state is

SNRmax=<N)2/<AN2>min
={(N)*3, for (N)>1, ®)
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which is far superior to the coherent-state (CS) result

for direct detection at the same average photon number.

Optical homodyne detection, with a unity quantum ef-
ficiency detector, of the single mode with annihilation
operator & measures the field quadrature operator
(ae’?+a'e—i%)/2, where ¢ is the phase difference be-
tween the mode being measured and the local-oscillator
field. When ¥=0 and the state of the @ mode is | B;u;v),
this becomes a measurement of

ay=(a+a"/2, (10)
with mean value

(a;)=Re(B) (11)
and variance

(Aa\?)=|p—v|%/4. (12)

For a fixed average photon number (N ), Egs. (11) and
(12) imply the following maximum homodyne-detection
signal-to-noise ratio:?

SNRmax=( (al >2/( Aa12> )max

=4(N)(N)+1), (13)

which is achieved with B,u,v real valued and
p=(N)+1)/Q2(N)+1D'?, (14)
v=(N)/(2(N)+1D'?. (15)

When (N ) >>1, (13) represents a significant improvement
over both the optimized coherent-state homodyne detec-
tion performance

SNRs=4(N) , (16)

and the optimized squeezed-state direct detection perfor-
mance (8).

Physically, the preceding SNR,,, advantage of homo-
dyne detection over direct detection can be justified. The
squeezed state | B;u,v) with u,v positive real valued, is a
minimum-uncertainty state for the Heisenberg inequality

(Aa,?)(Aay?) >+, (17)

where a,=(a —aT)/Zj is the conjugate observable to a;
and

(Aa2)=[(1+P)2—v]?/4
~1/16v%, for v*>>1. (18)

The right member of (18) is far superior to the coherent-
state value (Aa;?)cs=+, hence the advantage of (13)
over (16). On the other hand, for the photon-number
operator we have

N=a'a=a2+a2— . (19)

Thus, direct detection of the squeezed state | B;u,v) with
W,V positive real valued is sensitive to both the low-noise
quadrature component (18), and the high-noise quadrature
component '
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(Aa?)y =[(1+)'"2 4] /4
~v?, for v*>>1, (20)

hence the advantage of (13) over (8).

III. SINGLE-FREQUENCY
INTERFEROMETER ANALYSIS

Figure 1 shows an archetypal single-frequency inter-
ferometer whose behavior we shall analyze quantum
mechanically. The boxes e/? and e/ represent the excess
phase shifts (beyond some reference value) incurred by the
monochromatic light beams as they propagate through
the signal and reference arms of the system, respectively.
The annihilation operators, a®® and 5°", for the single-
mode output fields are related to the relevant single-mode
input-field annihilation operators, @' and b'", via the uni-
tary transformation

fao _|jsin(8) cos(8) | [a™®

pou | =¢" | cos®) jsin(s) | |pin | > @D
where

D=(0+4)/2, (22)
and

5=(60—¢)/2. (23)

A knowledge of the states of the ¢™® and 5™ modes in
conjunction with the transformation (21) is sufficient to
completely characterize the quantum states of the output
modes.

It should be noted that although Fig. 1 is in the form of
a Mach-Zehnder (MZ) interferometer, the unitary
transformation (21) also applies to a Michelson inter-

ferometer. In either case, information concerning the sig-

nal arm phase shift 6 may be extracted from either ¢ or
8, depending on the optical detection scheme employed.
We should also note that the temporal coherence that is
implicit in our single-frequency formulation permits us to
dispense with the input beamsplitter, and consider the
modes associated with the annihilation operators @ and b
of Fig. 1 to be the inputs. This approach will be of use in
Sec. V. Our interest in the present section is to determine
the best operating point for a homodyne-detection
squeezed-state interferometer.

Without significant loss of generality, we shall assume
that the a™ and b™ modes are in the minimum-
uncertainty squeezed states |Bpuq,vi) and | Bana,va),
respectively, where {u;,v;;i=1,2} are real valued. We
shall also assume that homodyne detection is used to mea-
sure a9 =(a°"+a°"") /2, and we will use y to denote the
classical random-variable outcome of this measurement.
We want to choose the interferometer’s operating point,
i.e., the state parameters {f3;,u;,v;} and the reference-arm
phase shift ¢, to optimize the estimate of the signal-arm
phase shift 0 that can be obtained from the data y. This
optimization involves three performance criteria: (1) the
average measurement outcome (y) should be a linear
function of @ for | 6| <<1; (2) the variance of the mea-
surement outcome {Ay?) should be minimized at con-

ROY S. BONDURANT AND JEFFREY H. SHAPIRO 30

o
» = = =
:f) ; 0

INPUT
FIELDS

pin

FIG. 1. Basic interferometric precision-measurement device.

stant (y ); and (3) the measurement noise should not de-
pend on the signal phase shift, i.e., (Ap?) should be 6 in-
dependent. The first criterion permits straightforward
linear data processing to be employed. The second cri-
terion amounts to seeking a maximum SNR operating
point. The third criterion is a subtlety whose importance
will be made clear later.

. In pursuing the foregoing optimization, the method of
antinormally ordered characteristic functions>’ is particu-
larly germane. A single-mode field with annihilation
operator a in a state described by a density operator p has
antinormally ordered characteristic function

X 4(1 g)=tr{pexp[ —(ma; +m1a;)—j(ma; —mn.a,)]

Xexp[(ma+m2a2)—j(ma;—mnal} ,
24)
where
21,
—2m,

and a; and a, are the quadrature components of a [see
Egs. (10), (17)]. For the squeezed state | B;u,v) we have’

XA(y_q)=exp[jﬂngq——2"lﬂqT(As+I/4)7_7q] , (26)

, with 7,,m, real valued , (25)

Ng=

where
| B+B*22 on
L= B-BH2j]” -
lu—v|? 2Im(uv*)
a1
As_4 ZIm(‘U.'V*) |#+Vl2 ’ (28)

T denotes transpose, and I is the 2X2 identity matrix.
Equation (26) is especially convenient for our purposes, in
that homodyne detection of a; for a mode whose charac-
teristic function takes this form yields a classical outcome
y that is Gaussian distributed with (y)=e 1Tg ¢ and
(Ay?)=e{Ase, where e { =[1,0].

From (21), (24) and the assumed input states to the in-
terferometer it is now straightforward to show that the
characteristic function for the density operator of the a®*
mode is given by (26) with

Re[(e/0—e/9)B, +(e/0+e/%)B, ]

Im[(e/9— /), +(e/0+ei%)B,] k (29)

—n—1
@g=2

and
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e TA e, =c15(cosO+cosh)?+cyy (sinf+sing )

+¢11(cos@—cosg)?+cyy (sinf—sing)?,  (30a)
efAe,=ejAe,
= —(cy1 —C11 +Cp —C12 )(sin20+5in2¢) /2
+(ca—cy—cn+cplsin(6+¢) , (30b)
e TA e =0c1,(cosO+cosd)?+c 1, (sinf+sing )
+¢1;(sinf—sing)?+cy;(cos@—cosp)? ,  (30c)
where
e;=[01],
. (31)
Bi=wpBi—viB;i, for i=12,
and
cij={[p;+(=1D;1/4}?%, for i,j=1,2. 32)

As an illustration of the use of Egs. (26) and (29)—(32),
let us consider the MZ interferometer. We shall assume
that the excess phase shifts 6 and ¢ obey |0 << 1, $=0,
i.e., the signal arm incurs a very small shift from the
reference-arm phase. We have that our homodyne obser-

vation of a$" yields a Gaussian random variable y with
mean value
(»)=Relj0(B1+B,)+2B,1/2 (33)

to lowest order in 8. We can enforce our first perfor-
mance criterion, namely, making (y) « 6 for |0| << 1, by
choosing B,= —jB for B real and B;=0 so that Egs. (31)
and (33) yield

(y)=6(uy+v,)B/2 . (34)

To maximize the strength of the mean we will take

p2=p >0 and v,=v>0, hence determining the state of

the b™ mode to be | —jB;u,v). Turning to the variance
- of y we find

(Ap2) =(u—v)2/4+ 07 [4uv+(u 4+ — (u—v)?1/16
(35)

to second order in 6. We shall assume p,=p,vi=—v
(making the state of the a™ mode |O;u,—v)) to reduce
(35) to

(Ap?) =(u—v)*/4+6%uv/4 . (36)

We now have the following results. The estimate of 6
based on y

=2y /B(u+v) , 37)
is unbiased
(6)=6 (38)

with a mean-square error
E=((0—07)=(u—v7/Bu+v)? (39)

when | 6| << 1. Using the fact that

NTE(ai“Tai“)+(bi“Tb‘“)=BZ(p+v)2+2v2 (40)

is the average number of photons entering the interferom-
eter, it is easily shown that

E~1/4v4Np—24) 41)

for v*>>1. Equation (41) can be minimized with respect
to +* at fixed N to give

gmin=2/NT2s for Nr>>1, (42)
as compared to the coherent-state performance ‘
§cs=1/Nr . (43)

Although we have not been particularly careful to show
that our {u;,v;} choices are the best, it can be demonstrat-
ed that £,;,<Ny~2 is the optimum mean-square error
behavior of the homodyne-detection squeezed-state MZ
interferometer. At this juncture, however, we can point
out the significance of our third performance criterion.
For the MZ interferometer with a mean-square error
given by (42) we cannot measure @ accurately for
|6 <2'2/N7=0pi,. Assuming that |6|=0p,, we
find that the 6? term on the right-hand side in (36) is of

‘the same order of magnitude as the zeroth-order term in

this expression. The analysis leading from (36) to (42) as-
sumed this 6% term to be negligible, but such is not the
case for | 0| >0 This 6 dependence of (Ay?) comes
about because the state of the a°* mode (or for that
matter the 5°* mode) is not a minimum-uncertainty

. squeezed state when the MZ interferometer input modes

are |O;u, —v) and | —jB;u,v) and 0540,v£0.

The problem of 6 dependence in (Ay?) recurs if we
pursue a similar analysis for the Michelson interferome-
ter. To truly optimize interferometer design, we want a
system whose output states will be minimum-uncertainty
squeezed states when its input states are minimum-
uncertainty squeezed states. This property is held by
what we call phase-conjugate interferometers, i.e., systems
for which the reference-arm phase shift equals the conju-
gate of the signal-arm phase shift (¢ =—6). With input
states | —jB;u,—v) and |O;u,v) for the a™ and b™
modes, respectively, (30) reduces to

A, =diag[(u—v)*/4,(u+v)*/4] , (44)

for the phase-conjugate interferometer regardless of the
value of 6. Moreover, (29) yields

(y)=0(u—v)B, for |0| «1, . (45)
from which it can be shown that

0=y /Blu—v) (46)
is unbiased with mean-square error

E=1/4B"=(u—v)* /4Ny —20%) , ‘ (47)

where N is the average number of photons entering the
interferometer. Equation (47) leads us to &nin=1/2N7?,
essentially the same as that found for the MZ system,
only here there is no unwarranted assumption of neglect-
ing 6 dependence in (Ay?).
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IV. SINGLE-FREQUENCY INTERFEROMETRIC
GRAVITY-WAVE DETECTION

Figure 2 shows a single-frequency phase-conjugate in-
terferometer for gravity-wave detection. As a gravity
wave displaces the mass M, the phase shift in one arm of
the system increases while the phase shift in the other arm
decreases by the same amount. The light in each arm of
the interferometer makes b round trips between its end
mirror and the mass M before exiting the system, and so
the time spent within each arm’is

T7=2bl/c , (48)

where ¢ is the speed of light. To apply the analysis of
Sec. III to Fig. 2 we identify 6 as 2b8lw /c, where 81 is the
differential displacement of M induced by the gravity
wave, and o is the radian frequency of the light. We want
to estimate 8/ in the regime |2b8lw/c| <<1 using
squeezed states and homodyne detection of a{", and com-
pare the resulting performance with that obtained by
Caves! for squeezed states and direct detection.

According to Caves, there are three sources of error
that limit our ability to measure 8/. The first is the intrin-
sic quantum-mechanical uncertainty, called the standard
quantum limit (SQL), in determining the position of a free
mass that arises from the ApAq > #i/2 Heisenberg inequal-
ity; Caves et al.® have shown the SQL restricts 8/ mea-
surement accuracy to about *(#%r/M)'/2. The second
source of error is just the noise associated with the detec-
tion process, and the third source of error is the so-called
back action of the interferometer in the form of radiation
pressure fluctuations on the mirrors attached to M. Ac-
cording to Caves,! the intrinsic uncertainty need not be
considered explicitly, because it represents a lower limit
which may be approached, but never surpassed, with
proper control of the other error sources. Furthermore,
the detection and radiation-pressure errors, when properly
balanced, must enforce the SQL.!°

Following the preceding error-analysis prescription we
assume that the total mean-square error, £, in the position
estimate 8/ can be decomposed into detection noise and
radiation pressure components, Viz.,

E=8aett+6rp - 49)

For homodyne detection of a$™ in Fig. 2, with input

states | —jB;u, —v) and |O;u,v) for @™ and b™, respec-
tively, and 8/ =c8/2bw with 6 from (46), we have that

Equ=(c/8bwPv)?, for v>>1, (50)

where 3=B(p~—v). The error due to radiation pressure
fluctuations is proportional to the difference in the num-
ber of photons impinging on the two sides of M. Defin-
ing a differential momentum-transfer operator

Ap =2bti(@‘a—b"0)/c , (51)
we find that (Ap ) =0 and
Erp=(7/M)* Ap?) = (4bFirevB/Mc)* . (52)

Combining (49), (50), and (52), and minimizing § with
respect to 2 and B2, we obtain
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FIG. 2. Phase-conjugate interferometer for gravity-wave
detection.
Emin="%T/M =SQL . (53)

The minimum average number of input photons required
to achieve this performance turns out to be

Nrmin=Ncs'?, (54)
where
Ncs=Mc?/8%w*b*r (55)

is the average photon number required to run a coherent-
state interferometer at the SQL. Because Ncg>>1 for
realistic interferometer parameters, (54) is a substantial
improvement over (55).

The preceding single-frequency homodyne analysis is
consistent with Caves’s view that detection noise plus
radiation-pressure back action enforce the SQL; the use of
squeezed states permits a reduction in the photon number
needed to reach, but not surpass, the SQL. Based on Sec.
II, one should expect (54) to be lower than the photon-
number requirement for a direct-detection squeezed-state
interferometer to reach the SQL. However, Caves’s
analysis! of differenced direct detection (analogous to
measuring a®Ta®® —po"Tpout in Fig. 2) in a squeezed-
state interferometer for gravity-wave detection shows
SQL performance being reached (with a different operat-
ing point than ours) at the same Ny, given by (54). It
turns out there is no contradiction between Sec. II and the
equivalence of optimized differenced direct-detection and
homodyne-detection squeezed-state interferometers. The
use of differenced direct-detection was not explicitly treat-
ed in Sec. II. Such an arrangement can favorably exploit
nonclassical photocounting correlations that exist between
the states of the a° and b°" modes. In particular,'© for
a classical output state, i.e., when the density operator for
the states of the output modes has a joint P representation
with a non-negative P function, we have the semiclassical
lower bound

(A(aoutTaout_bouthout)Z) > (aoutTaout> + <boutfbout)
(56)

whereas for a nonclassical output state, e.g., a squeezed
state, we have the quantum-mechanical lower bound

(A(aoutfaout_boutfbout)Z> >0. (57)

Note that no such nonclassical correlations are available
for homodyne detection, hence processing both a°* and
b°" in the homodyne-detection interferometer offers no
significant gain in performance. On the other hand,



Caves’s differenced direct-detection interferometer’ is not
a phase-conjugate system, and so it suffers from 8/ depen-
dence in its detection noise. Indeed, just as was noted fol-
lowing (43), certain variance terms which Caves discards
turn out to be larger, although of the same magnitude, as
the terms he retains. This 8/ dependence of the detection
noise may not be of practical concern, but from a theoreti-
cal standpoint it makes it unlikely that the differenced
direct-detection system could truly achieve the SQL.

V. BEYOND THE STANDARD QUANTUM LIMIT

In recent work, Yuen* has cast doubt on the usual
derivation® of the SQL from the Ap Ag uncertainty princi-
ple. Yuen argues that the standard approach neglects
correlations that may exist between p and gq. Moreover,
he has shown that there is a general class of free-particle
states, which he calls twisted coherent states, for which
the accuracy of a position measurement is not constrained
by the SQL. In this section we shall develop a comple-
" mentary result, namely, a conceptual design for a
gravity-wave detecting interferometer whose performance
surpasses the SQL. The principal price paid in our design
is that single-frequency fields can no longer be used.

For the interferometer shown in Fig. 2, the mean-
square estimation error can be written in the form

£=SQL({AN?)/N¢s+Ncs(AD?)) , (58)

where the first term represents the radiation pressure error
contribution in terms of an appropriate photon number
variance, and the second term represents the detection er-
ror contribution in terms of an appropriate phase vari-
ance. This expression applies for arbitrary quantum
states. Because the cases considered thus far were all sin-
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gle frequency, the phase-energy uncertainty principle!'!!

can be used to show
E>SQL{1/4Ncs{AD?) + Ns(AD?) ], (59)

which has a minimum equal to the SQL. Thus, in our
view, it is not the radiation-pressure back action per se
that prevents the single-frequency interferometer from
outperforming the SQL, rather it is the fact that the
radiation-pressure error is inextricably tied to the detec-
tion error through (AN?){A®?) > +. Furthermore, the
exact prescription we shall need to circumvent this uncer- -
tainty principle has recently been developed by Shapiro
and Wagner.> They have analyzed the quantum limits on
squared-amplitude (U) and phase (P) measurements
made via optical heterodyne detection,'* and shown that a
particular multimode two-photon coherent state (squeezed
state!*) permits (AU?)—0 and { A®?) —0 to be achieved
simultaneously.

Consider the two-frequency interferometer shown in
Fig. 3, where we have dispensed with the input beam-
splitter from the Fig. 2 configuration and replaced @ and
b with dual-mode field operators

E (t)=a  exp[ —j (@ +op)t]+a_exp] —j(w—ayg)t]
(60)
and \
Ey(t)=b _exp] —jlo+wp)t]+b_expl—j o —wrE)],
(61)

where we have suppressed space and time normalization
constants, o is an optical frequency, wir is a radio (inter-
mediate) frequency, and {a,,a_,b,,b_} are a canonical
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FIG. 3. Two-frequency interferometer for gravity-wave detection.
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set of photon annihilation operators. These fields are split
into their constituent frequency components by the action
of lossless passive grating/mirror arrangements that are
labeled dichroic splitters in Fig. 3. The four separate field

ROY S. BONDURANT AND JEFFREY H. SHAPIRO ' 30

modes now enter plane-parallel mirror systems at small
angles 6, and 6_ to the 8/ axis for modes with frequen-
cies w+w and w—awp, respectively. After dichroic
beam combination, output fields

E;"(1)=2712=I%({a , exp[j (0 +w)2b8] /c cos(0 )] +b , exp[ —j (0 +w)2b8l /c cos(6,)]}e ot
+ {a_exp[j(w—wr)2b8l /c cos(0_)]+b _exp[ —j(aj—a)IF)2b81/c cos(6_)] }eijF') (62)

and
Eg*(1)=2""1%e 1" ({a_ exp|j(w+w)2b8l /c cos(0 )] —b  exp[ —j (0 +wir)2b81 /c cos(6 )] }e —Jow!
+{a_exp[j(®—wip)2b8l /c cos(0_)]—b _exp[ —j(w —wp)2b8l /c cos(6_)] }ejm"’t) (63)

are obtained from the final beamsplitter, where
2b(w—wyp)l /c cos(0_) are both integral multiples of 27.

If we heterodyne detect EJ"'(¢) and Eg“(¢) with local-oscillator lasers of frequency w, then synchronously demodulate
the cosine quadrature of the E;" intermediate-frequency signal and the sine quadrature of the Ey™ intermediate-
frequency signal and add the results, we obtain a real-valued classical random variable y whose statistics coincide with
those of the operator measurement>® '3

7! f {Re[ES"(1)e/®|cos(wypt) + Re[ Ef ' (¢)e /! Isin(wypt) }dt

we have assumed that 2b(w+w)l/ccos(6,) and

=2_3/2{(a+1 +b+1 +a_, +b—l +a+2——b+2—(1__2+b_2)

—2b8l/)(w+wENa,—b—a 1 —b )/cos(9+)+(w—a)1p)(q_2~b_2+a_1 +b_y1)/cos(6_)]} .

Here, the integration is over an appropriate 7-sec
interval, | 2b(w+wip)8l /e cos(0,) | << 1 and
|2b(w—wip)8l/c cos(6_)| <<1 are assumed, and we
have used our usual notation for the quadrature com-
ponents of an annihilation operator. Next we introduce
another canonical set of photon annihilation operators via
the transformations®

cy 1 1 |[a%

c =2_1/2L —1]|a™ 63
and

dy 1 1 bi—i

d_ =212 1 —1] |pn (66)

in terms of which the right member of (64) becomes
27 ey1+d ) 14+ A)—(cjp—dy—c_—d_|)B
+(c_r—d_,)(1—-A4)],

where, because of radiation-pressure error considerations
(see below), we have chosen 6 and 6_ to force

& =(w+wp)cos(0 ) =(w—wir)cos(6_) (67)
for a frequency @ slightly below & — wyf, and

A=8wwbdl/c& ,

B=4o*+wi2)bdl /cw .

(68a)
(68b)

We shall assume that the modes associated with the an-
nihilation operators ¢, d,, c_, and d_ are placed in
the independent squeezed states |Bju,v), |B;u,v),
| —jBsu,—v), and | jB;u,—v), respectively, where B,u,v

(64)

are positive real. It can then be shown that y is a Gauss-
ian random variable with a mean value of

(y)=(16bBww/c®)dl (69)
and variance
(Ay?) =(u—v)2/4+BHu+v)*/4 , (70)

where 3 =f(u—v). We shall assume that the second term
on the right-hand side in (70) is negligible. Physically, the
high-noise quadrature contribution arises because our
two-frequency system is not exactly phase conjugate in
the sense of Sec. III. We shall check later that the preced-
ing assumption is valid.

Based on (69) and ( Ay?) =(u —v)*/4 we have that

8T=y /(16bBwwp/cB) (71)

is an unbiased estimate of 8/ with mean-square detection
error '

Eger=(u—v1/(32bBowg/cd)?
~(c®/32bwor) /4B for v>>1. (72)

The radiation-pressure contribution to the mean-square
position error is computed as follows. The differential
momentum-transfer operator for the 8/ axis is

Ap=2bh[(w+a)n:)(a1a+ —b1b+ )cos(6,.)
+(w—wlp)(aia_ —b'b_ )eos(6_.)]/c
=@btiw/cNata, +ata_—blb, —bT b ). (73)
It follows that [see (52)]
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£, =2btimr/Mc([Aala, +ata_—blb, —bTb )P)
=Qbtiwr/Mc{[Alctc, +cle_—dla, —dald_)P?)
=Qbtimr/MeP{((Act e )+ ((Act e )+ ((adl d , )?) +((adTd_)?))

= (2b%BT/ MV [4B 2 —v)*+8(uv)?]
~(2b#mT /M) [B2 /v +8v*] for v>>1,

where we have used the orthogonality of the two different
frequency modes in each interferometer arm, the unitary
nature of (65), (66), and the assumed independent
squeezed states for the transformed modes. Thus, com-
bining (49), (53), (55), (72), and (74) we find that the total
mean-square position error obeys

E=SQL[Ncs~'(B2/2V +4*)(@ /)
+Ncs(w/16w1)? /2BM] . (75)
Minimizing & over v* and B2 we obtain

§min= SQLNCS - I/S(w/zwIF)zﬂ(CT)/w )2

~SQLN s~ ¥ w/2w)*”? (76)
with
V=8 Ngsw/op)'?, (1n
and
B?=Ncsw /160 , (78)

corresponding to an average number of photons entering
the interferometer given by

Nr=Ncso/4op+(Ncso/orp) 372 . (79)

Equation (76) shows that the two-frequency squeezed-
state interferometer will substantially surpass'> the SQL if
Nes > (0/20F)?, e.g., for Nes=10% and (0 /2wp)=107
we find £,;,~0.01 SQL, with N;~10'"N¢s. The sub-
SQL performance requires an enormous increase in aver-
age photon number, plus a substantial added burden in
system complexity to generate and heterodyne detect the
two-frequency squeezed state fields. At this point, we
should verify that the noise term we suppressed in (70) is,
in fact, negligible. Assuming 8/ in B is on the order of
Emin'’%, we find that this term will be smaller than the
term we retained in (70) when &.;, <SQL. Indeed, for

(74)

[

Nes=10%, (0/201)=10", and £,;,=0.01 SQL, the
neglected noise term is 10™* times the noise term we re-
tained. Thus, our analysis is self-consistent.

Several concluding comments are now in order. The
essence of the Shapiro and Wagner paper,® which under-
lies our two-frequency interferometer, is that there is no
universal lower limit on phase uncertainty times ampli-
tude uncertainty when measuring frequency beats via op-
tical heterodyne detection. Thus, the performance shown
in (76) comes about by using the squeezed states to simul-
taneously minimize radiation pressure fluctuations [cf.
Egs. (77)—(79) and Egs. (6) and (7)], and make a squeezed
phase-measurement on the intermediate-frequency signal
[cf. Egs. (50) and (72)]. Note that the behavior of our
two-frequency interferometer would be quite different
were we to assume that ideal photodetectors respond to
energy flux instead of photon flux. In this case,!® there is
an intermediate-frequency uncertainty principle limiting
simultaneous amplitude and phase measurements, from
which it can be shown that the Fig. 3 interferometer
achieves but does not exceed the SQL. As yet, the photo-
detector modeling issue is not fully resolved. :

Finally, the Fig. 3 construction requires the mixed-
frequency . modes associated with the operators
¢,,c_,d,and d_ to be placed in independent squeezed
states. It follows that the modes associated with a and
a_ must be in correlated states, and likewise for b, and
b_. The correlated modes for @, and a_ may be gen-
erated, in principle, by use of a nearly degenerate
parametric amplifier.!* !
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