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I. INTRODUCTION

The use of squeezed states in a single-frequency Michel-
son interferometer gravity-wave detector was considered
bg Csvcs& &ho sho&cd fh84 8 sqQcez&-848II, c lBfcHcfomc-
tcr lcqullcs substaatlaHy fcwcI' photons than docs 8 co11-
veational coherent-state interferometer to reach the stan-
dard quantum limit (SQL) on position-measurement accu-
I'8cp. Ca,vw 8 8ARIQMs dc8It I dcta.H 0BI7 .&ikh dlI'cck-
detection (photon counting) methods, whereas it is known
that optical hoalodyllc dctcctlon of squcczcd stRtcs gcn-
eraHy provides a higher signal-to-noise ratio (SNR) than
d~ dlfMt dCtMkiOH. MOfMVCF& 8 mimmQm"VDCCNRi64$
squeezed state is the optimum state to use with homodyne
detection, as it yields the highest SNR of any state for this
detection format. The present study began as a search
for the further reduction in the number of photons re-
quired to achieve the SQL that might be realized with the
Usc of llomodync detection ln 8 sqUcczcd-state latcffcl'o111-
eter As wiH .be described, a number of surprises ensued
in this quest. In particular, it will be showa that homo-
dyllc dctcc'tloa offcI's Ilo slgalflcRat advantage 111 8 slaglc-
frequency squeezed-state interferometer, but heterodyne
detection in a multifrequency squeezed-state interferome-
ter permits the SQL to be surpassed by a large margin.

The paper is organized as foHows. Section II briefly re-
views some now weH-known results from quantum optics
OOAccmmg smgIc-mod@ sqvcczcd 84RCcs ~d vRnoQs mcRB8
for detecting them. This section will establish notation
8Qd cxhlbIII; the IRrgc SNR advRQtkgc th8II. ' homodpAc
de MKIGQ hRS OVCr di.X CCC dCIMtiOH WIkh SiQIIC-ModC

squeezed states. In Sec. III, single-frequency phase-
sensiag intcrferometers will bc considered with respect to
their quantum-state input/output relations. It will be
shown that there is an optimum interferometer design
WhICh feSQItS IQ IEQimBI-UACCNMQtp SqQMZCd SII,PCS bC-

ing produced at the output ports when they are present at
the input ports of the system. The standard Michelson
and Mach-Zehnder configurations do not fall into this
category What ls. needed ls a phase-con]agate Interferom-
eter in which the phase shift incurred in oae arm is the
conjugate of that incurred in the other arm.

Slx:tion IV applies the results of Sec. III to single-
frequency gravitational-wave detectors. Here it wiH bc
shown that a smgle-frequency squeezed-state homodyne-
detection interferometer achieves SQL position-sensing
performance with basically the same photon-number re-
quirement as Caves's direct-detection interferometer.
This equivalence in performance is I'econciled with the
homodyne advantage found in Sec. II by arguing that
Caves s interferometer is exploiting nonclassical correla-
tions between the fields in the two output ports through
las dlffclcaccd-dctcctor Rrraagcalcllt. .

ThC ICSQICS Of SCC. IV MC CGQSEStCQ4 ~i' the PICVEOUSIQ

held view' that back action, in the form of radiation pres-
sul'c flllctuatlons, balances wltll pllasc-scaslag crlol' 1I1 111-

terferometric gl'avity-wave detectors to prevent position-
measurement accuracy from surpassing the SQL. In Sec.
V WC fiI'Sk 840M II:hRII: thIS baIRACC OCCGW iA SlQgIC-

frequency interferometers because of the energy-phase un-
certainty principle. Next, making use of recent work on
ph8SC BBd RmpIICUdC DQCCNRIQkiM I heICI&QHC deII,CC
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tion, 3 we show that the energy-phase uncertainty principle
can be circumverited in a two-frequency squeezed-state in-
terferometer. Here we find that position-sensing accuracy
far better than the SQL is predicted at photon numbers
substantially larger than those for a coherent-state single-
frequency interferometer running at the SQL. This per-
formance analysis complements the work of Yuen, who
has questioned the validity of the SQL on fundamental
grounds. Our analysis assumes that ideal photodetectors
respond to photon flux rather than energy flux. This
question is not yet fully resolved.

which is far superior to the coherent-state (CS) result

SNRcs ——(N )

for direct detection at the same average photon number.
Optical homodyne detection, with a unity quantum ef-

ficiency detector, of the single mode with annihilation
operator a measures the field quadrature operator
(aeJ~+a e J")/2, where P is the phase difference be-
tween the mode being measured and the local-oscillator
field. When /=0 and the state of the a mode is

~
P;p;v),

this becomes a measurement of

II. SQUEEZED STATES,
DIRECT AND HOMODYNE DETECTION

ai ——(a+a )/2,

with mean value

(10)

The properties of squeezed states, also called two-
photon coherent states, have been treated extensively by
Yuen. Using his notation, the single-mode squeezed state

~
P;p, v) is parametrized by three complex numbers P, p,

and v with
~ p ~

—
~

v
~

=1. If a denotes the photon an-
nihilation operator for the electromagnetic field mode in
question, then the state ~P;p, v) is defined to be the
eigenstate of the operator

b =pa +vat

with eigenvalue P.
The statistics of direct, homodyne, and heterodyne

detection of multimode quantized fields are conveniently
calculated from the results of Yuen and Shapiro. Direct
detection, with a unity quantum efficiency detector, of the
single mode with annihilation operator a measures the
photon-number operator N =a~a. When the state of the
mode is

~ P;p, v) the N measurement has the mean value

& N & =
I & I

'+
I
v

I

' (2)

(a, ) = Re(P)

and variance

(ba, 2) =
~ p —v

~

/4 . (12)

=4(N)((N)+1),
which is achieved with P,p, v real valued and

p, =(&N &+1)/(2(N &+1)'",
v= (N ) /(2(N ) + I )'i

(13)

(14)

(15)

When (N ) »1, (13) represents a significant improvement
over both the optimized coherent-state homodyne detec-
tion performance

SNRcs=4&N & (16)

For a fixed average photon number (N), Eqs. (11) and
(12) imply the following maximum homodyne-detection
signal-to-noise ratio:~

SNRm, „=((ai) /(b, ai )),„

and variance

&~N'& =
I V& v&'

I
'+2

I
V—v

I

',
where

& a & =p'fI vP" =13-—
(3)

(4)

and the optimized squeezed-state direct detection perfor-
mance (8).

Physically, the preceding SNR, „advantage of homo-
dyne detection over direct detection can be justified. The
squeezed state

~
P;p, v) with p, v positive real valued, is a

minimum-uncertainty state for the Heisenberg inequality
For P,p, v positive real valued, Eq. (3) reduces to

(hN ) =((N) —v )[(1+v )'~ —vj +2v (1+v )

=((N) —v )/4v +2v (1+v ), (5)

(Aa, ') (ba, ') & —,', , (17)

where az ——(a —a )/2j is the conjugate observable to ai
and

where the approximation is valid for (N ) & v »1.
Minimizing the right member of (5) with respect to v at
constant (N) yields

(ha, ) =[(1+v )' —v] /4

=1/16v, for v »1 . (18)

(hN );„=(N) ~

at

(N) =16v »1 .

Thus, the maximum direct-detection SNR one may
achieve using a single-mode squeezed state is

SNR,„=(N) /(bN )

=(N) ~, for (N) &&1,

The right member of (18) is far superior to the coherent-
state value ( b,a i )cs———,', hence the advantage of (13)
over (16). On the other hand, for the photon-number
operator we have

%=a a =a& +a2 ——, (19)

Thus, direct detection of the squeezed state
~
P;p, v) with

p, v positive real valued is sensitive to both the low-noise
quadrature component (18), and the high-noise quadrature
component
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( b,a2 ) = [(1+v )'~ +v] /4

=v, for v »1,
hence the advantage of (13) over (8).

(20)
ej&

~ bout

OUTPUT
FIELDS/ )

p OUI

III. SINGI.E-FREQUENCY
INTERFEROMETER ANALYSIS

Figure 1 shows an archetypal single-frequency inter-
ferometer whose behavior we shall analyze quantum
mechanically. The boxes eJ and e J& represent the excess
phase shifts (beyond some reference value) incurred by the
monochromatic light beams as they propagate through
the signal and reference arms of the system, respectively.
The annihilation operators, a'"' and b'"', for the single-
mode output fields are related to the relevant single-mode
input-field annihilation operators, a'" and b'", via the uni-
tary transformation

a'"' j sin(5) cos(5) a'"
=ej~ 21cos(5) j sin(5)

where

and

0 =(8+$)/2,

5=(8—P)/2 .

(22)

(23)

A knowledge of the states of the a'" and b'" modes in
conjunction with the transformation (21) is sufficient to
completely characterize the quantum states of the output
modes.

It should be noted that although Fig. 1 is in the form of
a Mach-Zehnder (MZ) interferometer, the unitary
transformation (21) also applies to a Michelson inter-
ferometer. In either case, information concerning the sig-
nal arm phase shift 8 may be extracted from either 4 or
5, depending on the optical detection scheme employed.
We should also note that the temporal coherence that is
implicit in our single-frequency formulation permits us to
dispense with the input beamsplitter, and consider the
modes associated with the annihilation operators a and b
of Fig. I to be the inputs. This approach will be of use in
Sec. V. Our interest in the present section is to determine
the best operating point for a horn odyne-detection
squeezed-state iriterferometer.

Without significant loss of generality, we shall assume
that the a'" and b'" modes are in the minimum-
uncertainty squeezed states

~
p1,'p1, v1) and

~
p2,p2, v2),

respectively, where Ip;, v;;i =1,2] are real valued. We
shall also assume that homodyrie detection is used to mea-
sure a1"'——(a'"'+a'"' )/2, and we will use y to denote the
classical random-variable outcome of this measurement.
We want to choose the interferometer's operating point,
i.e., the state parameters I p;,p;, v; I and the reference-arm
phase shift P, to optimize the estimate of the signal-arm
phase shift 8 that can be obtained from the data y. This
optimization involves three performance criteria: (1) the
average measurement outcome (y) should be a linear
function of 8 for

~

8
~

&&1; (2) the variance of the mea-
surement outcome (by ) should be minimized at con-

p lh

INPUT
FIELDS

bSA

FIG. 1. Basic interferometric precision-measurement device.

stant (y ); and (3) the measurement noise should not de-
pend on the signal phase shift, i.e., (by ) should be 8 in-
dependent. The first criterion permits straightforward
linear data processing to be employed. The second cri-
terion amounts to seeking a maximum SNR operating
point. The third criterion is a subtlety whose importance
will be made clear later.

In pursuing the foregoing optimization, the method of
antinormally ordered characteristic functions ' is particu-
larly germane. A single-mode field with annihilation
operator a in a state described by a density operator p has
antinormally ordered characteristic function

XQ ( qI q ) « Ip exp[ —(r)1a 1 +ri2a 2 )-j (q)1a2 —ri2a 1 ) ]

&«xP[(ri1a1+ ri2a2) J (91a2 q)2a1) l]

where
(24)

27l2
with g~, gq real valued, (25)

(P+P*)/2
(p —p*)/2j

~ p —v
(

21m(pv*)
A, =4

21m(pv")
~
p+v

~

(27)

(28)

T denotes transpose, and I is the 2)&2 identity matrix.
Equation (26) is especially convenient for our purposes, in
that homodyne detection of a1 for a mode whose charac-
teristic function takes this form yields a classical outcome
y that is Gaussian distributed with (y ) = e 1 a q and
(by ) =e1A,e1, where e1 ——[1,0].

From (21), (24) and the assumed input states to the in-
terferometer it is now straightforward to show that the
characteristic function for the density operator of the a'"'
mode is given by (26) with

Qq =2
Re[(e e~)p1+(e—+e &)p2]

Im[(eje eJ&)P, +(ej —+e»)P ]
(29)

and

and a1 and a2 are the quadrature components of a [see
Eqs. (10), (17)]. For the squeezed state

~
p;1M, v) we have

Xq(riq)=exP[jri qaq 2~riq(A +—I/4)rjq], (26)

where
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= —(cl 1
—c» +el& —c Iz )(sm28+ SIB2$)/2

+«I I —c 11
—c21 +

cled

)»n(8+0»

e 2A, e I——cII(cos8+cosp)'+el&(sln8+SIBQ)I

(30b)

/=1/4v (NT 2v—)

for v »1. Equation (41) can be minimized with respect
to v at fixed Xr to give

e I ——[0,1],

c;J= I[pi+( —1)'vJ]/4I~, for I',j=1,2.
As an illustration of the use of Eqs. (26) and (29)—'(32),

let us consider the MZ interferometer. We shall assume
that the excess phase shifts 8 and p obey

~
8 ( &&1, /=0,

i.e., the signal arm incurs a very small shift from the
reference-Rlm phase. We have that our homodyne obser-
vRtloll of Q 1 ylclds a GRUsslan I'andonl variable y with
mcsB vRIQc

(33)

to lowest order in 8. We can enforce our first perfor-
mance criterion, namely, making (y ) 0:8 for

~

8
~

«& 1, by
choosing pl ———jp for p real and pl ——0 so that Eqs. (31)
and (33) yield

(y& =8(p,,+v, )P/2.

To maximize the strength of the mean we will take

pI ——p, &0 and v2 ——v&O„hence determining the state of
the b" mode to be

~

—jp;p, v). Turning to the variance
' of y wc find

(hy ) =(p, —v) /4+8 [4pv+(pl+v() —(p —v) ]/16

to second order in 8. We shall assume p, =p„vl ———v
(making the state of the a'" mode

~
0;p, —v) ) to reduce

(35) to

Although we have Bot been particularly careful to show
that our Ip;, v; I choices are the best, it can be demonstrat-
e'd 'tllat /ming ~NI ls tllc optimum IncRB sqllRrc error
bcllavlol of tllc llonlodyllc-dctcctlon squeezed-state MZ
llltcrfcronlctcl. At this juncture, howcvcr, wc can point
out thc slgfllflcallcc of 0UI' third pcrfolnlatlcc cflterlon.
For the MZ interferometer with a mean-square error
given by (42) we cannot measure 8 accuratdy for

~
8) &2'/I/Mr=8m;„. Assuming that ] 8~ =8m;„, we

find that the 8 term on the right-hand side in (36) is of
'

the same order of magnitude as the zeroth-order term in
this expression. The analysis leading from (36) to (42) as-
8QIM khks 8 term 'to be DegIkgibic~ bg'II; sgch Es Got the
case f'or

~
8

~
&8;„. This 8 dependence of (hy ) comes

about because the state of the a'"' mode (or for that
matter the b"' mode) is not a minimum-uncertainty
squeezed state when the MZ interferometer input modes
are

~
0;p, —v) and

~

—jP;p, v) and 8~0,v~O.
Tile problem of 8 dcpcndcncc ln (6y )' I'ccurs lf wc

pursue a similar analysis for the Michdson interferome-
ter. To truly optimize interferometer design, we want a
8$84cm &hoM 0QtpQ'I; stRfcs M1B M mmkmQI-QQccNRmfg
SqvMXA 848tcs &heQ Its mpof sII;Stcs Kfe mlmmQI-
QQcc@MQtp sqQcczed SII;Rkw. This props/ ls heId bp
what we call phase-conjugate interferometers, i.e., systems
for which the reference-arm phase shift equals the conju-
gate of the signal-arm phase shift (P= —8). With input
states

~

—jp;p, —v) and ~0;p, v) for the a'" and b'"
Blodcs, 1'cspcctlvcly, (30) lcduccs to

A, =diag[(p —v) /4, (p+v) /4],

(y)=8(p —v)P, for
i
8

i «&1,

8=2y/P(p+ v)

/=1/4P =(p v)'/4(NI. 22), — —

g'=((8 —8) ) =(p —v) /P (p+v)

when
~
8

~
««1. Using the fact that
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Figure 2 shows a single-frequency phase-conjugate in-
terferometer for gravity-wave detection. As a gravity
wave displaces the mass M, the phase shift in one arm of
the system increases while the phase shift in the other arm
decreases by the same amount. The light in each arm of
the interferometer makes b round trips between its end
mirror and the mass M before exiting the system, and so
the time spent within each arm"is

b

ylA

where c is the speed of light. To apply the analysis of
Sec. III to Fig. 2 we identify 8 as 2b5/Rt/c, where 5/ is the
differential displacement of M induced by the gravity
wave, and RI is the radian frequency of the light. We want
to estimate 5/ in the regime ~2b5/CI/c

~
~&1 using

squcczcd states Rnd hornodync detection of a I, Rnd coln-
pare the resulting performance with that obtained by
Caves for squcczcd states Rnd dll cct dctcx:tlon.

According to Caves, there are three sources of error
that limit our ability to measure 5/. The first is the intrin-
sic quantum-mechanical uncertainty, called the standard
quantum hmit (SQL), in determining the position of a free
mass that arises from the /)tpht/ & fi/2 Heisenberg inequal-

ity; Caves et a/. have shown the SQI. restricts 5/ mea-
surement acculacy to about +(Rr/M) . The second
source of error is just the noise associated with the detec-
tion process, and the third source of error is the so-called
back action of the interferometer in the form of radiation
pressure fluctuations on the mirrors attached to M. Ac-
cQI'dmg 40 CRvcs, the M4AQMc UQccQMQfg Aced Aof bc
coBsIdcI"cd cxpIIcitI7, bMRUsc It I'cprcscAts 8 Io&cr' IIIII,
which Inay be approached, but never surpassed, with

proper contml of the other error sources. Furthermore,
the detection and radiation-pressure errors, when properly
balanced, must enforce the SQI..'

Following the preceding error-analysis prescription we
assume that ihe total mean-square ermr, g, in the position

estimate 5/ can be decomposed into detection noise and
ISdIRCIOQ PfC88VFC COIPOQCQf Sp VIZ+ s

For homodyne detection of al" in Fig. 2, with input
states

i

—Jp~Itt, —v) Rnd
i 0;/I, ,V) for a Rlld /I, rcspcc-

tively, and 5/=@8/2b~ with 8 from (46), we have that

d„(c/Sbatp'v)—l, for v»1,

is the average photon number requil'ed to run a coherent-
state interferometer at the SQL. Because Pcs&&i for
realistic interferometer parameters, (54) is a substantial
improvement over (55).

The preceding single-frequency homodyne analysis is
consistent with Caves's view that detection noise plus
radiation-pressure back action enforce the SQL; the use of
squeezed states permits a reduction in the photon number
needed to reach, but not surpass, the SQL. Based on Sec
II, one should expect (54) to be lower than the photon-
number requirement for a direct-detection squeezed-state
interferometer to reach the SQL. However, Caves's
analysis' of differenced direct detection (analogous to
measuring aouttao"' b'"'tb" —in Fig. 2) in a squeezed-
state interferometer for gravity-wave detection shows
SQL performance being reached (with a different operat-
ing point than ours) at the same Nz;„given by (54). It
kgme out Cher'c Is me cmtmdic4ion between See. II md the
equivalence of optimized differenced direct-detection and
lloIIlodyllc-dctectlon squcczcd-state lntcIfcrofllctcl's. Tllc
usc of dlffcrcnccd dllcct-dctcctloli was llot explicitly treat-
ed in Sec. D. Such an arrangement can favorably exploit
nonclassical photocounting corrdations that exist between
the states of the a'" and b "' modes. In particular, ' for
a classical output state, i.e., when the density operator for
the states of the output modes has a joint P representation
with a non-negative P function, we have the semiclassical
lower bound

{Q(aouttaout bouttbout)Z) & { out[' out) + {/ out/bout)

(56)

we find that {Itt/I ) =0 and

g~=(r/M) {hp )=(4bhrmvP/Mc)

{g(aout'l/aout bouttbout)2) &O
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Caves's differenced direct-detection interferometer' is not
a phase-conjugate system, and so it suffers from 51 depen-
dence in its detection noise. Indeed, just as was noted fol-
lowing (43), certain variance terms which Caves discards
turn out to be larger, although of the same magnitude, as
the terms he retains. This 5l dependence of the detection
noise may not be of practical concern, but from a theoreti-
cal standpoint it makes it unlikely that the differenced
direct-detection system could truly achieve the SQL.

V. BEYOND THE STANDARD QUANTUM LIMIT

In recent work, Yuen has cast doubt on the usual
derivation of the SQL from the Apb, q uncertainty princi-
ple. Yuen argues that the standard approach neglects
correlations that may exist between p and q. Moreover,
he has shown that there is a general class of free-particle
states, which he calls twisted coherent states, for which
the accuracy of a position measurement is not constrained
by the SQL. In this section we shall develop a comple-
mentary result, namely, a conceptual design for a
gravity-wave detecting interferometer whose performance
surpasses the SQL. The principal price paid in our design
is that single-frequency fields can no longer be used.

For the interferometer shown in Fig. 2, the mean-
square estimation error can be written in the form

gle frequency, the phase-energy uncertainty principle"'2
can be used to show

g&SQLI1l4Ncsth@ ~+Ncs(, ~4'&1 (59)

which has a minimum equal to the SQL. Thus, in our
view, it is not the radiation. -pressure back action. per se
that prevents the single-frequency interferometer from
outperforming the SQL, rather it is the fact that the
radiation-pressure error is inextricably tied to the detec-
tion error through (bN )(b,@ ) & —,'. Furthermore, the

exact prescription we shall need to circumvent this uncer-
tainty principle has recently been developed by Shapiro
and Wagner. They have analyzed the quantum limits on
squared-amplitude ( U) and phase (4) measurements
made via optical heterodyne detection, ' and shown that a
particular multimode two-photon coherent state (squeezed
state' ) permits (hU )~0 and (b,4 ) —+0 tobe achieved
simultaneously.

Consider the two-frequency interferometer shown in
Fig. 3, where we have dispensed with the input beam-
splitter from the Fig. 2 configuration and replaced a and
b with dual-mode field operators

F., (t) =a+ exp[ j(au+—cotF)t]+ a exp[ j(co co—tF)t]—
(60)

g=SQL((bN )/N +N (b4 )), (58) and

where the first term represents the radiation pressure error
contribution in terms of an appropriate photon number
variance, and the second term represents the detection er-
ror contribution in terms of an appropriate phase vari-
ance. This expression applies for arbitrary quantum
states. Because the cases considered thus far were all sin-

Ftp(t) =b+ exp[ —j(co+cotF)t]+ b exp[ j(co cotF
—)t], —
(61)

where we have suppressed space and time normalization
constants, co is an optical frequency, cotF is a radio (inter-
mediate) frequency, and I a+,a,b+, b I are a canonical

DICHROlC

SPLlT TER

DICWRO1C

COMBINER

OUT

b

OUT

d

DlCHROIC

SPLlTTER DlCWROlC

COMBlNE. R

FIG. 3. Two-frequency interferometer for gravity-wave detection.



2554 ROY S. BONDURANT AND JEFFREY H. SHAPIRO 30

set of photon annihilation operators. These fields are split
into their constituent frequency components by the action
of lossless passive grating/mirror arrangements that are
labeled dichroic splitters in Fig. 3. The four separate field

I

modes now enter plane-parallel mirror systems at small
angles 8+ and 8 to the 51 axis for modes with frequen-
cies co+co&p and co —cotp, respectively. After dichroic
beam combination, output fields

and

E,'"'(t)=2 ' e '(Ia+exp[j (co+coqp)2b51/c cos(8+)]+b+exp[ j(c—o+coqp)2b51/c cos(8+)]]e

+ Ia expj[(co co&p—)2b51/c cos(8 )]+b exp[ J(r—o co&—p)2b51/c cos(8 )]Ie '" ) (62)

Eb"'(t) =2 ' e "'(Ia+exp[j (co+cozp)2b51/c cos(8+)]—b+exp[ —j (m+urp)2b51/c cos(8+)]Ie

+ I+ —exp[j(o) ~tp)2b51/c cos(8 )]—b exp[ —j (co co~p)2—b51/c cos(8 )]Ie '" ) (63)

are obtained from the final beamsplitter, where we have assumed that 2b (~+~tp)1/'c cos(8 ) and
2b (co —co& p)l/c cos(8 ) are both integral multiples of 2m..

If we heterodyne detect E,'"'(t) and Eb"'(t) with local-oscillator lasers of frequency co, then synchronously demodulate
the cosine quadrature of the E,'"' intermediate-frequency signal and the sine quadrature of the Eb"' intermediate-
frequency signal and add the results, we obtain a real-valued classical random variable y whose statistics coincide with
those of the operator measurement ' '

' I IRe[E,'"'(t)eJ"']cos(co,pt)+Re[EP"'(t)ej"']sin(cotpt)]dt

=2 ' 'I(a ++b ++~ &+b &+~+, b+, ~—,+b—, )

(2b51/c)—[(co+cotp)(a+2 b+2 ——a+ ~ b+ &
)/—cos(8+ ) + (co —cotp)(a 2

—b 2+a
& +b ~ ) /cos(8 )] I .

(64)

Here, the integration is over an appropriate ~-sec
interval,

~

2b (co+cotp)51/c cos(8+)
~

&& 1 and

~

2b(co —co& p) 51/c cos(8 )
~

&&1 are assumed, and we
have used our usual notation for the quadrature com-
ponents of an annihilation operator. Next we introduce
another canonical set of photon annihilation operators via
the transformations

C+

C

a'+
~ —1/2

in (65)

and

d + 1 1
2—1/2

1 —1

b'+

b'" (66)

in terms of which the right member of (64) becomes

2 '[(c+~+d+&)(1+A)—(c+2 —d+2 —c
&

—d &)B

+(c 2
—d z)(1 —A)],

are positive real. It can then be shown that y is a Gauss-
ian random variable with a mean value of

(y ) = (16bgcocotp/ceo)51

and variance

(69)

51=y /(16bPcocoip/ceo) (71)

is an unbiased estimate of 51 with mean-square detection
error

(by') =(p —v) /4+B'(p+v)'/4, (70)

where p—:p(p —v). We shall assume that the second term
on the right-hand side in (70) is negligible. Physically, the
high-noise quadrature contribution arises because our
two-frequency system is not exactly phase conjugate in
the sense of Sec. III. We shall check later that the preced-
ing assumption is valid.

Based on (69) and (by ) =(p —v) /4 we have that

where, because of radiation-pressure error considerations
(see below), we have chosen 8+ and 8 to force

gd„(p v) /(32bP——coco(—p/ceo)

=(ceo/32bcocotp) /4P v for v&&1 . (72)
co = (co+cotp)cos(8+ ).= (co —cotp)cos(8 )

for a frequency-co slightly below co —coqF, and

A—:8coc01Fb5l /ceo,

B:4(co +co,p )b51—/ceo .

(67)

(68a)

(68b)

We shall assume that the modes associated with the an-
nihilation operators c+, d+, c, and d are placed in
the independent squeezed states

~ p;p, v),
~ p;p, v),

jp;p, —v), and
~jp—;p, —v), respectively, where p, p, v

The radiation-pressure contribution to the mean-square
position error is computed as follows. The differential
momentum-transfer operator for the 51 axis is

bp =2bA[(co+coqp)(a+a+ b+b+ )cos—(8+)

+ (co —co~p)(a a bb )cos(8 )—]/c

=(2bfico/c)(a+a++a a b+b+ bb ) . (73—)—
It follows that [see (52)]

)
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fr~ =(2bfuor/Mc) ([h(a+a++a a b—+b+ b—b )] )

=(2bficor/Mc) ([A(c+c++c c —d+d+ —d d )] )

=(2bfico~/Mc) I((bc+c+) )+((bc c ) )+((bd+d+) )+((bd d ) )I

=(2bkcor/Mc) [4P (p v)—+8(pv) ]

(2bkcor/Mc)2[p /v +8v ] for v»1, (74)

where we have used the orthogonality of the two different
frequency modes in each interferometer arm, the unitary
nature of (65), (66), and the assumed independent
squeezed states for the transformed modes. Thus, com-
bining (49), (53), (55), (72), and (74) we find that the total
mean-square position error obeys

g=SQL[Ncs '(P /2v +4v )(co/co)

+Ncs(co/16cotp) /2P v ) . (75)

Minimizing g over v and P we obtain

gm;„= SQLNcs (co/2cotF) (co/co)

=SQLNcs 'i (co/2coiF) i

with

v =8 '(Ncsco/cotp)'i

and

(76)

(77)

P =Ncsco/16cotp, (78)

corresponding to an average number of photons entering
the interferometer given by

Nr Ncsco/4——cotF+(Ncsco/cotF) /2 . (79)

Equation (76) shows that the two-frequency squeezed-
state interferometer will substantially surpass' the SQL if
Ncs &(co/2coiF), e.g. , for Ncs ——10 and (co/2cotF)=10
we find g;„=0.01 SQL, with NT=10 Ncs. The sub-
SQL performance requires an enormous increase in aver-
age photon number, plus a substantial added burden in
system complexity to generate and heterodyne detect the
two-frequency squeezed state fields. At this point, we
should verify that the noise term we suppressed in (70) is,
in fact, negligible. Assuming 51 in B is on the order of
g;„'r, we find that this term will be smaller than the
term we retained in (70) when g;„&SQL. Indeed, for

Ncs ——10~, (co/2cotF) = 10, and g;„=0.01 SQL, the
neglected noise term is 10 times the noise term we re-
tained. Thus, our analysis is self-consistent.

Several concluding comments are now in order. The
essence of the Shapiro and Wagner paper, which under-
lies our two-frequency interferometer, is that there is no
universal lower limit on phase uncertainty times ampli-
tude uncertainty when measuring frequency beats via op-
tical heterodyne detection. Thus, the performance shown
in (76) comes about by using the squeezed states to simul-
taneously minimize radiation pressure fluctuations [cf.
Eqs. (77)—(79) and Eqs. (6) and (7)], and make a squeezed
phase-measurement on the intermediate-frequency signal
[cf. Eqs. (50) and (72)]. Note that the behavior of our
two-frequency interferometer would be quite different
were we to assume that ideal photodetectors respond to
energy flux instead of photon flux. In this case, ' there is
an intermediate-frequency uncertainty principle limiting
simultaneous amplitude and phase measurements, from
which it can be shown that the Fig. 3 interferometer
achieves but does not exceed the SQL. As yet, the photo-
detector modeling issue is not fully resolved.

Finally, the Fig. 3 construction requires the mixed-
frequency modes associated with the operators
c+,c,d+, and d to be placed in independent squeezed
states. It follows that the modes associated with a+ and
a must be in correlated states, and likewise for b+ and
b . The correlated modes for a+ and a may be gen-
erated, in principle, by use of a nearly degenerate
parametric amplifier. ' '
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